Gas Turbine Power Plant
The Brayton Cycle (closed)
Product of
air fuel Ec Combustion
2 mixture
QA EP
S≠C 2’
3
Start-up Wc Wሖ 𝑐 Combustor TP IP
BP
motor BPT
BPc P=C
Compressor Gas Turbine
ḿ
S≠C S=C Generator
P=C
4’ S≠C
1
Heat Sink
4
where, QR
E𝑐 → energy charged
E𝑐 = mf HHV or Vf HHV
PV diagram TS diagram
P
T
3
QA P=C
2 2’ P=C
2 2’ S≠C
S=C
S≠C S=C S≠C
4 4’
3
S=C
S≠C P=C
P=C
4’ 1
QR
4
S
V
processes:
1-2: isentropic process → compression
1-2’: irreversible adiabatic compression
2-3:
isobaric process → heat addition
2’-3:
3-4: isentropic process → expansion
3-4’: irreversible adiabatic expansion
4-1:
isobaric process → heat rejection
4’-1 1
fuel
2 mf
mg = ma + mf
2’
ma Combustor
S≠C S≠C
P=C 3
Compressor Gas Turbine
S=C S=C
4’ S≠C
1
4
Energy analysis:
for compressor,
ḿ
2 h2
S≠C
2’
Compressor
S=C
h1 1 Wc
considering for ideal compression ; Ein = Eout
m′ h1 + Wc = m′ h2
Wc = m′ (h2 − h1 ) ; h = cp T
Wc = m′ (cp T2 − cp T1 )
Wc = m′ cp (T2 − T1 ) → ideal compression work
for actual compression,
Wሖ c = m′ cp (T2 ′ − T1 ) → actual compression work
2
for nc ,
nc → compression efficiency
Wc Wc
nc = × 100% ; Wሖ c : × 100%
Wሖ c nc
also,
m′cp (T2 − T1 )
Ƞc = × 100%
m′cp (T2 − T1 )
or,
(T2 − T1 )
Ƞc = × 100%
(T2 ′ − T1 )
but,
T2 − T1
T2 ′ = + T1
nc
for Ƞmc ,
Ƞmc → mechanical efficiency of compressor
Wሖ c
Ƞmc = × 100%
BPc
Wሖ c
BPc =
Ƞmc
for combustor,
QA
2’
h2 Combustor
3 h3
2
ḿ
for ideal process heat addition,
m′ h2 + Q A = m′ h3
Q A = m′ (h3 − h2 ) ; h = cp T
3
Q A = m′ (cp T3 − cp T2 )
so,
Q A = m′ cp (T3 − T2 ) → ideal heat added
for actual heat addition,
Q′A = m′ cp (T3 − T2 ′) actual heat added
for combustor efficiency,
Ƞcomb → combustor efficiency
𝑄𝐴
Ƞcomb = × 100%
Ec
Ec = mf HHV ; kJ/kg
or
vf HHV ; kJ/m3
for Gas Turbine,
h3
3
ḿ
Gas Turbine TP
4’
4
h4
for ideal Gas turbine expansion,
m′ h3 = TP + m′ h4
TP = m′ (h3 − h4 ) ; h = cp T
TP = m′ (cp T3 − cp T4 )
TP = m′ cp (T3 − T4 ) → turbine theoretical power 4
for actual expansion process → process 4 − 4′,
IP = m′ cp (T3 − T4 ′) → turbine internal power
for ȠT ,
ȠT → turbine expansion efficiency
IP
ȠT = × 100%
TP
m′ cp (T3 − T4 ′)
= ′ × 100%
m cp (T3 − T4 )
but,
T4 ′ = T3 − ηT (T3 − T4 )
for ηmT ,
ηmT → mechanical efficiency of turbine
BPT
ηm T = × 100%
IP
BPT = (IP) ηmT
for net brake power,
BP → BP input to generator
BP = BPT − BPC
for generator efficiency,
𝐸𝑃
𝜂𝑔 = 𝑋 100%
𝐵𝑃
EP = (BP)ηg
5
for heat sink,
𝑄𝑅
ℎ4
1 Heat Sink 4
ℎ1 4′
ḿ
for ideal heat rejection,
m′ h4 = Q R + m′ h1
Q R = m′ (h4 − h1 ) ; h = cp T
Q R = m′ cP (T4 ′ − T1 )
Q R = m′ cp (T4 − T1 ) ; ideal heat rejection
for actual heat rejection,
Q R = m′ cp (T4 ′ − T1 ) ; actual heat rejection
for ideal cycle only,
Wnet
ec = × 100% → ideal cycle thermal efficiency
QA
where,
Wnet = Q A − Q R
or,
Wnet = TP − WC
for actual cycle thermal efficiency,
ሖ net
W
é c = × 100% → actual cycle thermal efficiency
QሖA
ሖ net = Qሖ A − Qሖ R
W
6
or,
ሖ net = IP − W
W ሖC
considering 𝑟𝑝 ,
rp → compression pressure ratio
Pmax P2
rp = =
Pmin P1
NOTE: if no pressure drop across combustor and heat sink
∴ P2 = P3 and P1 = P4
then,
P2 P3
rp = =
P1 P4
for maximum Wnet ,
T2 = √T1 T3
otherwise,
consider isentropic process 1-2; PVK = C
k−1
T2 P2 k
=( )
T1 P1
or,
k−1
P2 k
T2 = T1 ( )
P1
7
T2 k−1
= (rp ) k
T1
k−1
T2 = T1 (rp ) k
considering isentropic process 3-4 ; PVk = C
k−1
T3 P3 k
=( )
T4 P4
or,
T3 k−1
= (rp ) k
T4
k−1
T3 = T4 (rp ) k
also,
Wnet QA − QR
ec = × 100% → ec = × 100%
QA QA
|QR | m′cp (T4−T1 )
ec = [1 − ] × 100 % → ec = [1 − ] × 100 %
QA m′cp (T3−T2 )
in terms of temperature,
(T4 − T1 )
ec = [1 − ] × 100 %
(T3 − T2 )
8
substituting T2 and T3 ,
(T4 − T1 )
𝑒𝑐 = 1 − k−1 k−1
× 100 %
(T4 (rp ) k − T1 (rp ) k )
[ ]
simplifying,
(T4 − T1 )
𝑒𝑐 = [1 − k−1
] × 100 %
(T4 − T1 )(rp ) k
finally,
1
𝑒𝑐 = [1 − 𝑘−1
] × 100 %
(𝑟𝑝 ) 𝑘
× 100 %
SAMPLE PROBLEM
1. A gas electric turbine plant is to generate 80 000 kW. The unit receives air at
100 kPaa and 295 °K. The maximum temperature is 1200°K and the maximum
pressure is 400 kPaa .Other data are as follows: for air and fuel mixture, 𝐶𝑃 =
1.0047 kJ⁄kg − k , k=1.5; compression adiabatic eff., 90%; compressor
mech’l eff., 85%; turbine internal eff., 90%; turbine mech’l eff., 80%;
generator eff., 95%; combustor eff., 95%.
Determine:
a) EC
b) cycle thermal efficiency
c) over-all station thermal eff.