Mercy
Mercy
Introduction
Cancer is one of the main causes of death worldwide, and in the past
decade, many research studies have focused on finding new therapies
to reduce the side effects caused by conventional therapies.
Taken all together, these strategies will be able to provide the best
personalised therapies for cancer patients, highlighting the
importance of combining multiple disciplines to get the best outcome.
Nanomedicine
Three clinical trials with loaded exosomes are currently ongoing for
the treatment of different tumours [85–87]: a phase I trial is
evaluating the ability of exosomes to deliver curcumin to normal and
colon cancer tissues [85]; a phase II trial is investigating the in
vivo performance of autologous tumour cell-derived microparticles
carrying methotrexate in lung cancer patients [86] and a clinical
inquiry is focusing on autologous erythrocyte-derived microparticles
loaded with methotrexate for gastric, colorectal and ovarian cancer
treatment [87].
Every day, the human body undergoes several exogenous insults, such
as ultraviolet (UV) rays, air pollution and tobacco smoke, which result
in the production of reactive species, especially oxidants and free
radicals, responsible for the onset of many diseases, including cancer.
These molecules can also be produced as a consequence of clinical
administration of drugs, but they are also naturally created inside our
cells and tissues by mitochondria and peroxisomes, and from
macrophages metabolism, during normal physiological aerobic
processes.
Oxidative stress and radical oxygen species are able to damage DNA
(genetic alterations, DNA double strand breaks and chromosomal
aberrations [95, 96]) and other bio-macromolecules [97], such as
lipids (membrane peroxidation and necrosis [98]) and proteins
(significantly changing the regulation of transcription factors and, as a
consequence, of essential metabolic pathways [99]).
Folic acid and biotin are small molecules, whose receptors are
overexpressed in tumour tissues. Several nanocarriers have been
functionalized with folic acid to target ovarian and endometrial
cancers [131]: folic acid-conjugated polyethylene glycol-poly(lactic-
co-glycolic acid) nanoparticles delivering docetaxel increased drug
cellular uptake by human cervical carcinoma cells [132]. Small ligands
are cheap and can be linked to nanoparticles by simple conjugation
chemistry [133, 134].
Table 1.
Advantages and disadvantages of the main innovative cancer therapeutic
approaches.
Go to:
Conflicts of interest
Funding declaration
Authors’ contributions
References
1. Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer
therapies. Nat Rev Clin Oncol. 2018;15(2):81–94.
doi: 10.1038/nrclinonc.2017.166. [PubMed] [CrossRef] [Google Scholar]
2. Martinelli C, Pucci C, Ciofani G. Nanostructured carriers as innovative tools for
cancer diagnosis and therapy. APL Bioeng. 2019;3(1):011502.
doi: 10.1063/1.5079943. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
3. Kumar B, Garcia M, Murakami JL, et al. Exosome-mediated microenvironment
dysregulation in leukemia. Biochim Biophys Acta. 2016;1863(3):464–470.
doi: 10.1016/j.bbamcr.2015.09.017. [PubMed] [CrossRef] [Google Scholar]
4. Chikara S, Nagaprashantha LD, Singhal J, et al. Oxidative stress and dietary
phytochemicals: role in cancer chemoprevention and treatment. Cancer
Lett. 2018;413:122–134. doi: 10.1016/j.canlet.2017.11.002. [PubMed]
[CrossRef] [Google Scholar]
5. Singh S, Sharma B, Kanwar SS, et al. Lead phytochemicals for anticancer drug
development. Front Plant Sci. 2016;7:1667. doi: 10.3389/fpls.2016.01667. [PMC
free article] [PubMed] [CrossRef] [Google Scholar]
6. Bazak R, Houri M, El Achy S, et al. Cancer active targeting by nanoparticles: a
comprehensive review of literature. J Cancer Res Clin Oncol. 2015;141(5):769–
784. doi: 10.1007/s00432-014-1767-3. [PMC free article] [PubMed]
[CrossRef] [Google Scholar]
7. Lebedeva IV, Su ZZ, Sarkar D, et al. Restoring apoptosis as a strategy for cancer
gene therapy: focus on p53 and mda-7. Semin Cancer Biol. 2003;13(2):169–178.
doi: 10.1016/S1044-579X(02)00134-7. [PubMed] [CrossRef] [Google Scholar]
8. Shanker M, Jin J, Branch CD, et al. Tumor suppressor gene-based nanotherapy:
from test tube to the clinic. J Drug Deliv. 2011. 465845. [PMC free
article] [PubMed] [CrossRef]
9. Vaishnaw AK, Gollob J, Gamba-Vitalo C, et al. A status report on RNAi
therapeutics. Silence. 2010;1(1):14. doi: 10.1186/1758-907X-1-14. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
10. Brace C. Thermal tumor ablation in clinical use. IEEE Pulse. 2011;2(5):28–38.
doi: 10.1109/MPUL.2011.942603. [PMC free article] [PubMed]
[CrossRef] [Google Scholar]
11. Hervault A, Thanh NTK. Magnetic nanoparticle-based therapeutic agents for
thermo-chemotherapy treatment of cancer. Nanoscale. 2014;6(20):11553–
11573. doi: 10.1039/C4NR03482A. [PubMed] [CrossRef] [Google Scholar]
12. Yu KH, Zhang C, Berry GJ, et al. Predicting non-small cell lung cancer
prognosis by fully automated microscopic pathology image features. Nat
Commun. 2016;7:12474. doi: 10.1038/ncomms12474. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
13. Aerts HJWL. The potential of radiomic-based phenotyping in precision
medicine a review. JAMA Oncol. 2016;2(12):1636–1642.
doi: 10.1001/jamaoncol.2016.2631. [PubMed] [CrossRef] [Google Scholar]
14. Grove O, Berglund AE, Schabath MB, et al. Quantitative computed
tomographic descriptors associate tumor shape complexity and intratumor
heterogeneity with prognosis in lung adenocarcinoma. PLoS
One. 2015;10(3):e0118261. doi: 10.1371/journal.pone.0118261. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
15. Aerts HJWL, Velazquez ER, Leijenaar RTH, et al. Decoding tumour phenotype
by noninvasive imaging using a quantitative radiomics approach. Nat
Commun. 2014;5:4006. doi: 10.1038/ncomms5006. [PMC free article] [PubMed]
[CrossRef] [Google Scholar]
16. Kong J, Cooper LAD, Wang F, et al. Machine-based morphologic analysis of
glioblastoma using whole-slide pathology images uncovers clinically relevant
molecular correlates. PLoS One. 2013;8(11):e81049.
doi: 10.1371/journal.pone.0081049. [PMC free article] [PubMed]
[CrossRef] [Google Scholar]
17. Tinkle S, Mcneil SE, Mühlebach S, et al. Nanomedicines: addressing the
scientific and regulatory gap. Ann N Y Acad Sci. 2014;1313:35–56.
doi: 10.1111/nyas.12403. [PubMed] [CrossRef] [Google Scholar]
18. Albanese A, Tang PS, Chan WCW. The effect of nanoparticle size, shape, and
surface chemistry on biological systems. Annu Rev Biomed Eng. 2012;14:1–16.
doi: 10.1146/annurev-bioeng-071811-150124. [PubMed] [CrossRef] [Google
Scholar]
19. Maeda H. Toward a full understanding of the EPR effect in primary and
metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv
Rev. 2015;91:3–6. doi: 10.1016/j.addr.2015.01.002. [PubMed] [CrossRef] [Google
Scholar]
20. Gerlowski LE, Jain RK. Microvascular permeability of normal and neoplastic
tissues. Microvasc Res. 1986;31(3):288–305. doi: 10.1016/0026-2862(86)90018-
X. [PubMed] [CrossRef] [Google Scholar]
21. Shi J, Kantoff PW, Wooster R, et al. Cancer nanomedicine: progress, challenges
and opportunities. Nat Rev Cancer. 2017;17(1):20–37.
doi: 10.1038/nrc.2016.108. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
22. Shi J, Votruba AR, Farokhzad OC, et al. Nanotechnology in drug delivery and
tissue engineering: from discovery to applications. Nano Lett. 2010;10(9):3223–
3230. doi: 10.1021/nl102184c. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
23. Sinha R. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles
for drug delivery. Mol Cancer Ther. 2006;5(8):1909–1917. doi: 10.1158/1535-
7163.MCT-06-0141. [PubMed] [CrossRef] [Google Scholar]
24. Bregoli L, Movia D, Gavigan-Imedio JD, et al. Nanomedicine applied to
translational oncology: a future perspective on cancer
treatment. Nanomed. 2016;12(1):81–103.
doi: 10.1016/j.nano.2015.08.006. [PubMed] [CrossRef] [Google Scholar]
25. Kim EM, Jeong HJ. Current status and future direction of nanomedicine: focus
on advanced biological and medical applications. Nucl Med Mol
Imaging. 2017;51(2):106–117. doi: 10.1007/s13139-016-0435-8. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
26. May JP, Li S-D. Hyperthermia-induced drug targeting. Expert Opin Drug
Deliv. 2013;10(4):511–527. doi: 10.1517/17425247.2013.758631. [PubMed]
[CrossRef] [Google Scholar]
27. Matea CT, Mocan T, Tabaran F, et al. Quantum dots in imaging, drug delivery
and sensor applications. Int J Nanomed. 2017;12:5421–5431.
doi: 10.2147/IJN.S138624. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
28. Gao J, Chen K, Miao Z, et al. Affibody-based nanoprobes for HER2-expressing
cell and tumor imaging. Biomaterials. 2011;32(8):2141–2148.
doi: 10.1016/j.biomaterials.2010.11.053. [PMC free article] [PubMed]
[CrossRef] [Google Scholar]
29. Leiner T, Gerretsen S, Botnar R, et al. Magnetic resonance imaging of
atherosclerosis. European Radiology. 2005;15(6):1087–1099.
doi: 10.1007/s00330-005-2646-8. [PubMed] [CrossRef] [Google Scholar]
30. Boyer C, Whittaker MR, Bulmus V, et al. The design and utility of polymer-
stabilized iron-oxide nanoparticles for nanomedicine applications. NPG Asia
Materials. 2010;2:23–30. doi: 10.1038/asiamat.2010.6. [CrossRef] [Google
Scholar]
31. Sanchez C, Belleville P, Popall M, et al. Applications of advanced hybrid
organic-inorganic nanomaterials: from laboratory to market. Chem Soc
Rev. 2011;40(2):696–753. doi: 10.1039/c0cs00136h. [PubMed]
[CrossRef] [Google Scholar]
32. Sun T, Zhang YS, Pang B, et al. Engineered nanoparticles for drug delivery in
cancer therapy. Angew Chem Int Ed Engl. 2014;53(46):12320–
12464. [PubMed] [Google Scholar]
33. Connor EE, Mwamuka J, Gole A, et al. Gold nanoparticles are taken up by
human cells but do not cause acute cytotoxicity. Small. 2005;1(3):325–327.
doi: 10.1002/smll.200400093. [PubMed] [CrossRef] [Google Scholar]
34. Abadeer NS, Murphy CJ. Recent progress in cancer thermal therapy using gold
nanoparticles. J Phys Chem C. 2016;120(9):4691–4716.
doi: 10.1021/acs.jpcc.5b11232. [CrossRef] [Google Scholar]
35. Zhong J, Wen L, Yang S, et al. Imaging-guided high-efficient photoacoustic
tumor therapy with targeting gold nanorods. Nanomed. 2015;11(6):1499–1509.
doi: 10.1016/j.nano.2015.04.002. [PubMed] [CrossRef] [Google Scholar]
36. Stuchinskaya T, Moreno M, Cook MJ, et al. Targeted photodynamic therapy of
breast cancer cells using antibody-phthalocyanine-gold nanoparticle
conjugates. Photochem Photobiol Sci. 2011;10(5):822–831.
doi: 10.1039/c1pp05014a. [PubMed] [CrossRef] [Google Scholar]
37. Gubernator J. Active methods of drug loading into liposomes: recent
strategies for stable drug entrapment and increased in vivo activity. Expert Opin
Drug Deliv. 2011;8(5):565–580. doi: 10.1517/17425247.2011.566552. [PubMed]
[CrossRef] [Google Scholar]
38. Narang AS, Delmarre D, Gao D. Stable drug encapsulation in micelles and
microemulsions. Int J Pharm. 2007;345(1–2):9–25.
doi: 10.1016/j.ijpharm.2007.08.057. [PubMed] [CrossRef] [Google Scholar]
39. Barenholz Y. Doxil—the first FDA-approved nano-drug: lessons learned. J
Control Release. 2012;160(2):117–134.
doi: 10.1016/j.jconrel.2012.03.020. [PubMed] [CrossRef] [Google Scholar]
40. Markman M. Pegylated liposomal doxorubicin in the treatment of cancers of
the breast and ovary. Expert Opin Pharmacother. 2006;7(11):1469–1474.
doi: 10.1517/14656566.7.11.1469. [PubMed] [CrossRef] [Google Scholar]
41. Hofheinz RD, Gnad-Vogt SU, Beyer U, et al. Liposomal encapsulated anti-
cancer drugs. Anticancer Drugs. 2005;16(7):691–707.
doi: 10.1097/01.cad.0000167902.53039.5a. [PubMed] [CrossRef] [Google
Scholar]
42. Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized
vehicles for drug delivery in cancer. Trends Pharmacol Sci. 2009;30(11):592–599.
doi: 10.1016/j.tips.2009.08.004. [PubMed] [CrossRef] [Google Scholar]
43. Nasir A, Kausar A, Younus A. A review on preparation, properties and
applications of polymeric nanoparticle-based materials. Polym-Plast Technol
Eng. 2015;54(4):325–341.
doi: 10.1080/03602559.2014.958780. [CrossRef] [Google Scholar]
44. Waghmare AS, Grampurohit ND, Gadhave MV, et al. Solid lipid nanoparticles:
a promising drug delivery system. Int Res J Pharmacy. 2012;3(4):100–
107. [Google Scholar]
45. Liu J, Xiao Y, Allen C. Polymer-drug compatibility: a guide to the development
of delivery systems for the anticancer agent, ellipticine. J Pharm
Sci. 2004;93(1):132–143. doi: 10.1002/jps.10533. [PubMed] [CrossRef] [Google
Scholar]
46. Ganesan P, Narayanasamy D. Lipid nanoparticles: different preparation
techniques, characterization, hurdles, and strategies for the production of solid
lipid nanoparticles and nanostructured lipid carriers for oral drug
delivery. Sustainable Chemistry and Pharmacy. 2017;6:37–56.
doi: 10.1016/j.scp.2017.07.002. [CrossRef] [Google Scholar]
47. Müller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved
microencapsulation of drugs. Int J Pharm. 2002;242(1-2):121–128.
doi: 10.1016/S0378-5173(02)00180-1. [PubMed] [CrossRef] [Google Scholar]
48. Kreuter J, Ramge P, Petrov V, et al. Direct evidence that polysorbate-80-
coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via
specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm
Res. 2003;20(3):409–416. doi: 10.1023/A:1022604120952. [PubMed]
[CrossRef] [Google Scholar]
49. Grillone A, Riva ER, Mondini A, et al. Active targeting of sorafenib:
preparation, characterization, and in vitro testing of drug-loaded magnetic solid
lipid nanoparticles. Adv Healthc Mater. 2015;4(11):1681–1690.
doi: 10.1002/adhm.201500235. [PubMed] [CrossRef] [Google Scholar]
50. Tapeinos C, Marino A, Battaglini M, et al. Stimuli-responsive lipid-based
magnetic nanovectors increase apoptosis in glioblastoma cells through synergic
intracellular hyperthermia and chemotherapy. Nanoscale. 2018;11(1):72–88.
doi: 10.1039/C8NR05520C. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
51. Gillies ER, Fréchet JMJ. Dendrimers and dendritic polymers in drug
delivery. Drug Discov Today. 2005;10(1):35–43. doi: 10.1016/S1359-
6446(04)03276-3. [PubMed] [CrossRef] [Google Scholar]
52. Kesharwani P, Jain K, Jain NK. Dendrimer as nanocarrier for drug
delivery. Prog Polym Sci. 2014;39(2):268–307.
doi: 10.1016/j.progpolymsci.2013.07.005. [CrossRef] [Google Scholar]
53. Al-jamal KT, Rubio N, Buddle J, et al. Cationic poly-l-lysine dendrimer
complexes doxorubicin and delays tumor growth in vitro and in vivo. ACS
Nano. 2013;7(3):1905–1917. doi: 10.1021/nn305860k. [PubMed]
[CrossRef] [Google Scholar]
54. ClinicalTrials.gov. US National Library of Medicine. [01/08/19]. [
https://clinicaltrials.gov/ct2/show/NCT03255343]
55. Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular
interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev
Biol. 2014;30:255–289. doi: 10.1146/annurev-cellbio-101512-122326. [PubMed]
[CrossRef] [Google Scholar]
56. Vlassov AV, Magdaleno S, Setterquist R, et al. Exosomes: current knowledge of
their composition, biological functions, and diagnostic and therapeutic
potentials. Biochim Biophys Acta. 2012;1820(7):940–948.
doi: 10.1016/j.bbagen.2012.03.017. [PubMed] [CrossRef] [Google Scholar]
57. Thery C. Exosomes: secreted vesicles and intercellular
communications. F1000 Biol Rep. 2011;3:15. doi: 10.3410/B3-15. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
58. Witwer KW, Buzas EI, Bemis LT, et al. Standardization of sample collection,
isolation and analysis methods in extracellular vesicle research: an ISEV position
paper. J Extracell Vesicles. 2013;2 doi: 10.3402/jev.v2i0.20360. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
59. Luga V, Wrana JL. Tumor-stroma interaction: revealing fibroblast-secreted
exosomes as potent regulators of Wnt-planar cell polarity signaling in cancer
metastasis. Cancer Res. 2013;73(23):6843–6847. doi: 10.1158/0008-5472.CAN-
13-1791. [PubMed] [CrossRef] [Google Scholar]
60. Suetsugu A, Honma K, Saji S, et al. Imaging exosome transfer from breast
cancer cells to stroma at metastatic sites in orthotopic nude-mouse models. Adv
Drug Deliv Rev. 2013;65(3):383–390. doi: 10.1016/j.addr.2012.08.007. [PubMed]
[CrossRef] [Google Scholar]
61. Raimondo S, Saieva L, Corrado C, et al. Chronic myeloid leukemia-derived
exosomes promote tumor growth through an autocrine mechanism. Cell Commun
Signal. 2015;13:8. doi: 10.1186/s12964-015-0086-x. [PMC free article] [PubMed]
[CrossRef] [Google Scholar]
62. Martinelli C. Molecular Oncology: Underlying Mechanisms and Translational
Advancements. 1st. Switzerland AG: Springer Nature, Springer; 2017. Exosomes:
new biomarkers for targeted cancer therapy; pp. 129–157. chapter 6. [Google
Scholar]
63. Siravegna G, Marsoni S, Siena S, et al. Integrating liquid biopsies into the
management of cancer. Nat Rev Clin Oncol. 2017;14(9):531–548.
doi: 10.1038/nrclinonc.2017.14. [PubMed] [CrossRef] [Google Scholar]
64. Kosaka N, Urabe F, Egawa S, et al. The small vesicular culprits: the
investigation of extracellular vesicles as new targets for cancer treatment. Clin
Transl Med. 2017;6(1):45. doi: 10.1186/s40169-017-0176-z. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
65. Thakur BK, Zhang H, Becker A, et al. Double-stranded DNA in exosomes: a
novel biomarker in cancer detection. Cell Res. 2014;24(6):766–769.
doi: 10.1038/cr.2014.44. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
66. Kahlert C, Melo SA, Protopopov A, et al. Identification of double stranded
genomic dna spanning all chromosomes with mutated KRAS and P53 DNA in the
serum exosomes of patients with pancreatic cancer. J Biol
Chem. 2014;289(7):3869–3875. doi: 10.1074/jbc.C113.532267. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
67. Valadi H, Ekström K, Bossios A, et al. Exosome-mediated transfer of mRNAs
and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell
Biol. 2007;9(6):654–659. doi: 10.1038/ncb1596. [PubMed] [CrossRef] [Google
Scholar]
68. Simpson RJ, Lim JWE, Moritz RL, et al. Exosomes: proteomic insights and
diagnostic potential. Expert Rev Proteomics. 2009;6(3):267–283.
doi: 10.1586/epr.09.17. [PubMed] [CrossRef] [Google Scholar]
69. Yang S, Che SPY, Kurywchak P, et al. Detection of mutant KRAS and TP53 DNA
in circulating exosomes from healthy individuals and patients with pancreatic
cancer. Cancer Biol Ther. 2017;18(3):158–165.
doi: 10.1080/15384047.2017.1281499. [PMC free article] [PubMed]
[CrossRef] [Google Scholar]
70. Allenson K, Castillo J, San Lucas FA, et al. High prevalence of mutant KRAS in
circulating exosome-derived DNA from early-stage pancreatic cancer
patients. Ann Oncol. 2017;28(4):741–747. [PMC free article] [PubMed] [Google
Scholar]
71. Del Re M, Biasco E, Crucitta S, et al. The detection of androgen receptor splice
variant 7 in plasma-derived exosomal rna strongly predicts resistance to
hormonal therapy in metastatic prostate cancer patients. Eur
Urol. 2017;71(4):680–687. doi: 10.1016/j.eururo.2016.08.012. [PubMed]
[CrossRef] [Google Scholar]
72. McKiernan J, Donovan MJ, O’Neill V, et al. A novel urine exosome gene
expression assay to predict high-grade prostate cancer at initial biopsy. JAMA
Oncol. 2016;2(7):882–889. doi: 10.1001/jamaoncol.2016.0097. [PubMed]
[CrossRef] [Google Scholar]
73. Liu T, Zhang X, Gao S, et al. Exosomal long noncoding RNA CRNDE-h as a novel
serum-based biomarker for diagnosis and prognosis of colorectal
cancer. Oncotarget. 2016;7(51):85551–85563.
doi: 10.18632/oncotarget.13465. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
74. Cazzoli R, Buttitta F, Di Nicola M, et al. MicroRNAs derived from circulating
exosomes as noninvasive biomarkers for screening and diagnosing lung cancer. J
Thorac Oncol. 2013;8(9):1156–1162.
doi: 10.1097/JTO.0b013e318299ac32. [PMC free article] [PubMed]
[CrossRef] [Google Scholar]
75. Melo SA, Luecke LB, Kahlert C, et al. Glypican-1 identifies cancer exosomes
and detects early pancreatic cancer. Nature. 2015;523(7559):177–182.
doi: 10.1038/nature14581. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
76. Costa-Silva B, Aiello NM, Ocean AJ, et al. Pancreatic cancer exosomes initiate
pre-metastatic niche formation in the liver. Nat Cell Biol. 2015;17(6):816–826.
doi: 10.1038/ncb3169. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
77. Skotland T, Ekroos K, Kauhanen D, et al. Molecular lipid species in urinary
exosomes as potential prostate cancer biomarkers. Eur J Cancer. 2017;70:122–
132. doi: 10.1016/j.ejca.2016.10.011. [PubMed] [CrossRef] [Google Scholar]
78. Sun D, Zhuang X, Xiang X, et al. A novel nanoparticle drug delivery system: the
anti-inflammatory activity of curcumin is enhanced when encapsulated in
exosomes. Mol Ther. 2010;18(9):1606–1614. doi: 10.1038/mt.2010.105. [PMC
free article] [PubMed] [CrossRef] [Google Scholar]
79. Kim MS, Haney MJ, Zhao Y, et al. Development of exosome-encapsulated
paclitaxel to overcome MDR in cancer cells. Nanomed. 2016;12(3):655–664.
doi: 10.1016/j.nano.2015.10.012. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
80. Qi H, Liu C, Long L, et al. Blood exosomes endowed with magnetic and
targeting properties for cancer therapy. ACS Nano. 2016;10(3):3323–3333.
doi: 10.1021/acsnano.5b06939. [PubMed] [CrossRef] [Google Scholar]
81. Jang SC, Kim OY, Yoon CM, et al. Bioinspired exosome-mimetic nanovesicles
for targeted delivery of chemotherapeutics to malignant tumors. ACS
Nano. 2013;7(9):7698–7710. doi: 10.1021/nn402232g. [PubMed]
[CrossRef] [Google Scholar]
82. Yang T, Martin P, Fogarty B, et al. Exosome delivered anticancer drugs across
the blood-brain barrier for brain cancer therapy in Danio Rerio. Pharm
Res. 2015;32(6):2003–2014. doi: 10.1007/s11095-014-1593-y. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
83. Kim MS, Haney MJ, Zhao Y, et al. Engineering macrophage-derived exosomes
for targeted paclitaxel delivery to pulmonary metastases: in vitro and in vivo
evaluations. Nanomed. 2018;14(1):195–204.
doi: 10.1016/j.nano.2017.09.011. [PubMed] [CrossRef] [Google Scholar]
84. Hadla M, Palazzolo S, Corona G, et al. Exosomes increase the therapeutic index
of doxorubicin in breast and ovarian cancer mouse models. Nanomed
(Lond) 2016;11(18):2431–2441. doi: 10.2217/nnm-2016-0154. [PubMed]
[CrossRef] [Google Scholar]
85. ClinicalTrials.gov. US National Library of Medicine. [15/05/19]. [
https://clinicaltrials.gov/ct2/show/NCT01294072]
86. ClinicalTrials.gov. US National Library of Medicine. [15/05/19]. [
https://clinicaltrials.gov/ct2/show/NCT02657460]
87. ClinicalTrials.gov. US National Library of Medicine. [15/05/19]. [
https://clinicaltrials.gov/ct2/show/NCT03230708]
88. Mizrak A, Bolukbasi MF, Ozdener GB, et al. Genetically engineered
microvesicles carrying suicide mRNA/protein inhibit schwannoma tumor
growth. Mol Ther. 2013;21(1):101–108. doi: 10.1038/mt.2012.161. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
89. Ohno SI, Takanashi M, Sudo K, et al. Systemically injected exosomes targeted
to EGFR deliver antitumor microrna to breast cancer cells. Mol
Ther. 2013;21(1):185–191. doi: 10.1038/mt.2012.180. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
90. Cho JA, Yeo DJ, Son HY, et al. Exosomes: a new delivery system for tumor
antigens in cancer immunotherapy. Int J Cancer. 2005;114(4):613–622.
doi: 10.1002/ijc.20757. [PubMed] [CrossRef] [Google Scholar]
91. Lapierre V, Théry C, Virault-Rocroy P, et al. Updated technology to produce
highly immunogenic dendritic cell-derived exosomes of clinical grade. J
Immunother. 2010;34(1):65–75. doi: 10.1097/CJI.0b013e3181fe535b. [PubMed]
[CrossRef] [Google Scholar]
92. Besse B, Charrier M, Lapierre V, et al. Dendritic cell-derived exosomes as
maintenance immunotherapy after first line chemotherapy in
NSCLC. Oncoimmunology. 2016;5(4):e1071008.
doi: 10.1080/2162402X.2015.1071008. [PMC free article] [PubMed]
[CrossRef] [Google Scholar]
93. Dai S, Wei D, Wu Z, et al. Phase I clinical trial of autologous ascites-derived
exosomes combined with GM-CSF for colorectal cancer. Mol
Ther. 2008;16(4):782–790. doi: 10.1038/mt.2008.1. [PMC free article] [PubMed]
[CrossRef] [Google Scholar]
94. Boriachek K, Islam MN, Möller A, et al. Biological functions and current
advances in isolation and detection strategies for exosome
nanovesicles. Small. 2018;14(6) doi: 10.1002/smll.201702153. 1702153 (1–21)
[PubMed] [CrossRef] [Google Scholar]
95. Cadet J, Douki T, Ravanat JL. Artifacts associated with the measurement of
oxidized DNA bases. Environ Health Perspect. 1997;105(10):1034–1039. [PMC
free article] [PubMed] [Google Scholar]
96. Floyd RA, Watson JJ, Wong PK, et al. Hydroxyl free radical adduct of
deoxyguanosine: sensitive detection and mechanisms of formation. Free Radic
Res Commun. 1986;1(3):163–172. doi: 10.3109/10715768609083148. [PubMed]
[CrossRef] [Google Scholar]
97. Gupta RK, Patel AK, Shah N, et al. Oxidative stress and cancer: an
overview. Asian Pac J Cancer Prev. 2014;15(11):4405–4409.
doi: 10.7314/APJCP.2014.15.11.4405. [PubMed] [CrossRef] [Google Scholar]
98. Gille G, Sigler K. Oxidative stress and living cells. Folia Microbiol
(Praha) 1995;40(2):131–152. doi: 10.1007/BF02815413. [PubMed]
[CrossRef] [Google Scholar]
99. Halliwell B. Oxidative stress and cancer: have we moved forward? Biochem
J. 2006;401(1):1–11. doi: 10.1042/BJ20061131. [PubMed] [CrossRef] [Google
Scholar]
100. Katz L, Baltz RH. Natural product discovery: past, present, and future. J Ind
Microbiol Biotechnol. 2016;43(2–3):155–176. doi: 10.1007/s10295-015-1723-
5. [PubMed] [CrossRef] [Google Scholar]
101. Bernardini S, Tiezzi A, Laghezza Masci V, et al. Natural products for human
health: an historical overview of the drug discovery approaches. Nat Prod
Res. 2018;32(16):1926–1950. doi: 10.1080/14786419.2017.1356838. [PubMed]
[CrossRef] [Google Scholar]
102. Iqbal J, Abbasi BA, Mahmood T, et al. Plant-derived anticancer agents: a
green anticancer approach. Asian Pac J Trop Biomed. 2017;7(12):1129–1150.
doi: 10.1016/j.apjtb.2017.10.016. [CrossRef] [Google Scholar]
103. González-Vallinas M, González-Castejón M, Rodríguez-Casado A, et al.
Dietary phytochemicals in cancer prevention and therapy: a complementary
approach with promising perspectives. Nutr Rev. 2013;71(9):585–599.
doi: 10.1111/nure.12051. [PubMed] [CrossRef] [Google Scholar]
104. Kocaadam B, Şanlier N. Curcumin, an active component of turmeric
(Curcuma longa), and its effects on health. Crit Rev Food Sci
Nutr. 2017;57(13):2889–2895.
doi: 10.1080/10408398.2015.1077195. [PubMed] [CrossRef] [Google Scholar]
105. Imran M, Ullah A, Saeed F, et al. Cucurmin, anticancer, & antitumor
perspectives: a comprehensive review. Crit Rev Food Sci Nutr. 2018;58(8):1271–
1293. doi: 10.1080/10408398.2016.1252711. [PubMed] [CrossRef] [Google
Scholar]
106. Perrone D, Ardito F, Giannatempo G, et al. Biological and therapeutic
activities, and anticancer properties of curcumin. Exp Ther
Med. 2015;10(5):1615–1623. doi: 10.3892/etm.2015.2749. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
107. Sordillo PP, Helson L. Curcumin and cancer stem cells: curcumin has
asymmetrical effects on cancer and normal stem cells. Anticancer
Res. 2015;35(2):599–614. [PubMed] [Google Scholar]
108. Kumar G, Mittal S, Sak K, et al. Molecular mechanisms underlying
chemopreventive potential of curcumin: current challenges and future
perspectives. Life Sci. 2016;148:312–328.
doi: 10.1016/j.lfs.2016.02.022. [PubMed] [CrossRef] [Google Scholar]
109. Kunnumakkara AB, Bordoloi D, Harsha C, et al. Curcumin mediates
anticancer effects by modulating multiple cell signaling pathways. Clin Sci
(Lond) 2017;131(15):1781–1799. doi: 10.1042/CS20160935. [PubMed]
[CrossRef] [Google Scholar]
110. Wang YJ, Pan MH, Cheng AL, et al. Stability of curcumin in buffer solutions
and characterization of its degradation products. J Pharm Biomed
Anal. 1997;15(12):1867–1876. doi: 10.1016/S0731-7085(96)02024-9. [PubMed]
[CrossRef] [Google Scholar]
111. Rahimi HR, Nedaeinia R, Sepehri Shamloo A, et al. Novel delivery system for
natural products: nano-curcumin formulations. Avicenna J
Phytomed. 2016;6(4):383–398. [PMC free article] [PubMed] [Google Scholar]
112. Liu W, Zhai Y, Heng X, et al. Oral bioavailability of curcumin: problems and
advancements. J Drug Target. 2016;24(8):694–702.
doi: 10.3109/1061186X.2016.1157883. [PubMed] [CrossRef] [Google Scholar]
113. ClinicalTrials.gov. US National Library of Medicine. [15/05/19].
[ https://clinicaltrials.gov/ct2/results?term=curcumin+cancer&Search=Apply&r
ecrs=b&recrs=a&recrs=f&recrs=d&recrs=e&age_v=&gndr=&type=&rslt=]
114. Farooqi AA, Qureshi MZ, Khalid S, et al. Regulation of cell signaling pathways
by berberine in different cancers: searching for missing pieces of an incomplete
jig-saw puzzle for an effective cancer therapy. Cancers (Basel) 2019;11(4)
doi: 10.3390/cancers11040478. pii: E478. [PMC free article] [PubMed]
[CrossRef] [Google Scholar]
115. Mohammadinejad R, Ahmadi Z, Tavakol S, et al. Berberine as a potential
autophagy modulator. J Cell Physiol. 2019. [PubMed] [CrossRef]
116. Bianchi S, Giovannini L. Inhibition of mTOR/S6K1/4E-BP1 signaling by
nutraceutical sirt1 modulators. Nutr Cancer. 2018;70(3):490–501.
doi: 10.1080/01635581.2018.1446093. [PubMed] [CrossRef] [Google Scholar]
117. Wang ZP, Wu JB, Chen T-S, et al. In vitro and in vivo antitumor efficacy of
berberine-nanostructured lipid carriers against H22 tumor. Progress in
Biomedical Optics and Imaging—Proceedings of
SPIE. 2015;9324 doi: 10.1117/12.2079107. id 93240Y 8 pp. [CrossRef] [Google
Scholar]
118. Kabary DM, Helmy MW, Abdelfattah E-ZA, et al. Inhalable multi-
compartmental phospholipid enveloped lipid core nanocomposites for localized
mTOR inhibitor/herbal combined therapy of lung carcinoma. Eur J Pharm
Biopharm. 2018;130:152–164. doi: 10.1016/j.ejpb.2018.06.027. [PubMed]
[CrossRef] [Google Scholar]
119. Shen R, Kim JJ, Yao M, et al. Development and evaluation of vitamin E D-α-
tocopheryl polyethylene glycol 1000 succinate-mixed polymeric phospholipid
micelles of berberine as an anticancer nanopharmaceutical. Int J
Nanomedicine. 2016;11:1687–1700. [PMC free article] [PubMed] [Google
Scholar]
120. ClinicalTrials.gov. US National Library of Medicine. [15/05/19].
[ https://clinicaltrials.gov/ct2/results?term=berberine+cancer&Search=Apply&r
ecrs=b&recrs=a&recrs=f&recrs=d&recrs=e&age_v=&gndr=&type=&rslt=]
121. Liu Y, Tang ZG, Lin Y, et al. Effects of quercetin on proliferation and
migration of human glioblastoma U251 cells. Biomed Pharmacother. 2017;92:33–
38. doi: 10.1016/j.biopha.2017.05.044. [PubMed] [CrossRef] [Google Scholar]
122. Murakami A, Ashida H, Terao J. Multitargeted cancer prevention by
quercetin. Cancer Lett. 2008;269(2):315–325.
doi: 10.1016/j.canlet.2008.03.046. [PubMed] [CrossRef] [Google Scholar]
123. Yang F, Song L, Wang H, et al. Quercetin in prostate cancer:
Chemotherapeutic and chemopreventive effects, mechanisms and clinical
application potential (review) Oncol Rep. 2015;33(6):2659–2668.
doi: 10.3892/or.2015.3886. [PubMed] [CrossRef] [Google Scholar]
124. Shih H, Pickwell GV, Quattrochi LC. Differential effects of flavonoid
compounds on tumor promoter-induced activation of the human CYP1A2
enhancer. Arch Biochem Biophys. 2000;373(1):287–294.
doi: 10.1006/abbi.1999.1550. [PubMed] [CrossRef] [Google Scholar]
125. Brito AF, Ribeiro M, Abrantes AM, et al. Quercetin in cancer treatment, alone
or in combination with conventional therapeutics? Curr Med
Chem. 2015;22(26):305–339.
doi: 10.2174/0929867322666150812145435. [PubMed] [CrossRef] [Google
Scholar]
126. ClinicalTrials.gov. US National Library of Medicine. [15/05/19].
[ https://clinicaltrials.gov/ct2/results?term=quercetin+cancer&Search=Apply&r
ecrs=b&recrs=a&recrs=f&recrs=d&recrs=e&age_v=&gndr=&type=&rslt=]
127. Alasvand N, Urbanska AM, Rahmati M, et al. Multifunctional Systems for
Combined Delivery, Biosensing and Diagnostics. 1st. Elsevier; 2017. Therapeutic
nanoparticles for targeted delivery of anticancer drugs; pp. 245–259. chapter 13.
[CrossRef] [Google Scholar]
128. Barua S, Mitragotri S. Challenges associated with penetration of
nanoparticles across cell and tissue barriers: A review of current status and
future prospects. Nano Today. 2014;9(2):223–243.
doi: 10.1016/j.nantod.2014.04.008. [PMC free article] [PubMed]
[CrossRef] [Google Scholar]
129. Xu S, Olenyuk BZ, Okamoto CT, et al. Targeting receptor-mediated
endocytotic pathways with nanoparticles: rationale and advances. Adv Drug Deliv
Rev. 2013;65(1):121–138. doi: 10.1016/j.addr.2012.09.041. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
130. Hymel D, Peterson BR. Synthetic cell surface receptors for delivery of
therapeutics and probes. Adv Drug Deliv Rev. 2012;64(9):797–810.
doi: 10.1016/j.addr.2012.02.007. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
131. Senol S, Ceyran AB, Aydin A, et al. Folate receptor α expression and
significance in endometrioid endometrium carcinoma and endometrial
hyperplasia. Int J Clin Exp Pathol. 2015;8(5):5633–5641. [PMC free
article] [PubMed] [Google Scholar]
132. Tao W, Zhang J, Zeng X, et al. Blended nanoparticle system based on miscible
structurally similar polymers: a safe, simple, targeted, and surprisingly high
efficiency vehicle for cancer therapy. Adv Healthc Mater. 2015;4(8):1203–1214.
doi: 10.1002/adhm.201400751. [PubMed] [CrossRef] [Google Scholar]
133. Byrne JD, Betancourt T, Brannon-Peppas L, et al. Active targeting schemes
for nanoparticle systems in cancer therapeutics. Advanced Drug Delivery
Rev. 2008;60(15):1615–1626. doi: 10.1016/j.addr.2008.08.005. [PubMed]
[CrossRef] [Google Scholar]
134. Yu B, Tai HC, Xue W, et al. Receptor-targeted nanocarriers for therapeutic
delivery to cancer. Mol Membr Biol. 2010;27(7):286–298.
doi: 10.3109/09687688.2010.521200. [PMC free article] [PubMed]
[CrossRef] [Google Scholar]
135. Demeule M, Currie JC, Bertrand Y, et al. Involvement of the low-density
lipoprotein receptor-related protein in the transcytosis of the brain delivery
vector Angiopep-2. J Neurochem. 2008;106(4):1534–1544. doi: 10.1111/j.1471-
4159.2008.05492.x. [PubMed] [CrossRef] [Google Scholar]
136. Huang S, Li J, Han L, et al. Dual targeting effect of Angiopep-2-modified, DNA-
loaded nanoparticles for glioma. Biomaterials. 2011;32(28):6832–6838.
doi: 10.1016/j.biomaterials.2011.05.064. [PubMed] [CrossRef] [Google Scholar]
137. Kulhari H, Pooja D, Shrivastava S, et al. Peptide conjugated polymeric
nanoparticles as a carrier for targeted delivery of docetaxel. Colloids Surf B
Biointerfaces. 2014;117:166–173. doi: 10.1016/j.colsurfb.2014.02.026. [PubMed]
[CrossRef] [Google Scholar]
138. Cornelio DB, Roesler R, Schwartsmann G. Gastrin-releasing peptide receptor
as a molecular target in experimental anticancer therapy. Ann
Oncol. 2007;18(9):1457–1466. doi: 10.1093/annonc/mdm058. [PubMed]
[CrossRef] [Google Scholar]
139. Recht L, Torres CO, Smith TW, et al. Transferrin receptor in normal and
neoplastic brain tissue: implications for brain-tumor immunotherapy. J
Neurosurg. 1990;72(6):941–945. doi: 10.3171/jns.1990.72.6.0941. [PubMed]
[CrossRef] [Google Scholar]
140. Daniels TR, Bernabeu E, Rodríguez JA, et al. The transferrin receptor and the
targeted delivery of therapeutic agents against cancer. Biochim Biophys
Acta. 2012;1820(3):291–317. doi: 10.1016/j.bbagen.2011.07.016. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
141. Muhamad N, Plengsuriyakarn T, Na-Bangchang K. Application of active
targeting nanoparticle delivery system for chemotherapeutic drugs and
traditional/herbal medicines in cancer therapy: a systematic review. Int J
Nanomedicine. 2018;13:3921–3935. doi: 10.2147/IJN.S165210. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
142. Ni X, Castanares M, Mukherjee A, et al. Nucleic acid aptamers: clinical
applications and promising new horizons. Curr Med Chem. 2011;18(27):4206–
4214. doi: 10.2174/092986711797189600. [PMC free article] [PubMed]
[CrossRef] [Google Scholar]
143. Farokhzad OC, Cheng J, Teply BA, et al. Targeted nanoparticle-aptamer
bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci
USA. 2006;103(16):6315–20. doi: 10.1073/pnas.0601755103. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
144. Bagalkot V, Zhang L, Levy-Nissenbaum E, et al. Quantum dot-aptamer
conjugates for synchronous cancer imaging, therapy, and sensing of drug
delivery based on Bi-fluorescence resonance energy transfer. Nano
Lett. 2007;7(10):3065–3070. doi: 10.1021/nl071546n. [PubMed]
[CrossRef] [Google Scholar]
145. Sharkey RM, Goldenberg DM. Targeted therapy of cancer: new prospects for
antibodies and immunoconjugates. CA Cancer J Clin. 2009;56(4):226–243.
doi: 10.3322/canjclin.56.4.226. [PubMed] [CrossRef] [Google Scholar]
146. Acharya S, Dilnawaz F, Sahoo SK. Targeted epidermal growth factor receptor
nanoparticle bioconjugates for breast cancer
therapy. Biomaterials. 2009;30(29):5737–5750.
doi: 10.1016/j.biomaterials.2009.07.008. [PubMed] [CrossRef] [Google Scholar]
147. Ulbrich K, Hekmatara T, Herbert E, et al. Transferrin- and transferrin-
receptor-antibody-modified nanoparticles enable drug delivery across the blood-
brain barrier (BBB) Eur J Pharm Biopharm. 2009;71(2):251–256.
doi: 10.1016/j.ejpb.2008.08.021. [PubMed] [CrossRef] [Google Scholar]
148. McCune JS. Rapid advances in immunotherapy to treat cancer. Clin
Pharmacol Ther. 2018;103(4):540–544. doi: 10.1002/cpt.985. [PubMed]
[CrossRef] [Google Scholar]
149. U.S. Food & Drug Administration. [15/05/19].
[ https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.
process&varApplNo=103705]
150. U.S. Food & Drug Administration. [15/05/19].
[ https://www.accessdata.fda.gov/drugsatfda_docs/nda/2002/125019_0000_Ze
valinTOC.cfm]
151. U.S. Food & Drug Administration. [15/05/19].
[ https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.
process&varApplNo=125427]
152. U.S. Food and Drug Administration. [15/05/19].
[ https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125554s055lbl.
pdf]
153. U.S. Food & Drug Administration. [15/05/19].
[ https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/125514s034lbl.
pdf]
154. Rosenberg SA, Restifo NP, Yang JC, et al. Adoptive cell transfer: a clinical
path to effective cancer immunotherapy. Nat Rev Cancer. 2008;8(4):299–308.
doi: 10.1038/nrc2355. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
155. Miliotou AN, Papadopoulou LC. CAR t-cell therapy: a new era in cancer
immunotherapy. Curr Pharm Biotechnol. 2018;19(1):5–18.
doi: 10.2174/1389201019666180418095526. [PubMed] [CrossRef] [Google
Scholar]
156. Friedmann T. A brief history of gene therapy. Nat Genet. 1992;2(2):93–98.
doi: 10.1038/ng1092-93. [PubMed] [CrossRef] [Google Scholar]
157. Rosenberg SA, Aebersold P, Cornetta K, et al. Gene transfer into humans–
immunotherapy of patients with advanced melanoma, using tumor-infiltrating
lymphocytes modified by retroviral gene transduction. N Engl J
Med. 1990;323(9):570–578. doi: 10.1056/NEJM199008303230904. [PubMed]
[CrossRef] [Google Scholar]
158. Ginn SL, Amaya AK, Alexander IE, et al. Gene therapy clinical trials
worldwide to 2017: an update. J Gene Med. 2018;20(5):e3015.
doi: 10.1002/jgm.3015. [PubMed] [CrossRef] [Google Scholar]
159. Roth JA, Nguyen D, Lawrence DD, et al. Retrovirus-mediated wild-type p53
gene transfer to tumors of patients with lung cancer. Nat Med. 1996;2(9):985–
991. doi: 10.1038/nm0996-985. [PubMed] [CrossRef] [Google Scholar]
160. Griffith TST, Stokes B, Kucaba TA, et al. TRAIL gene therapy: from preclinical
development to clinical application. Curr Gene Ther. 2009;9(1):9–19.
doi: 10.2174/156652309787354612. [PMC free article] [PubMed]
[CrossRef] [Google Scholar]
161. Freeman SM, Abboud C, Freeman SM, et al. The “bystander effect”: tumor
regression when a fraction of the tumor mass is genetically modified. Cancer
Res. 1993;53(21):5274–5283. [PubMed] [Google Scholar]
162. Nasu Y, Saika T, Ebara S, et al. Suicide gene therapy with adenoviral delivery
of HSV-tK gene for patients with local recurrence of prostate cancer after
hormonal therapy. Mol Ther. 2007;15(4):834–840.
doi: 10.1038/sj.mt.6300096. [PubMed] [CrossRef] [Google Scholar]
163. Natsume A, Yoshida J. Gene therapy for high-grade glioma: current
approaches and future directions. Cell Adh Migr. 2008;2(3):186–191.
doi: 10.4161/cam.2.3.6278. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
164. Westphal M, Ylä-Herttuala S, Martin J, et al. Adenovirus-mediated gene
therapy with sitimagene ceradenovec followed by intravenous ganciclovir for
patients with operable high-grade glioma (ASPECT): a randomised, open-label,
phase 3 trial. Lancet Oncol. 2013;14(9):823–833. doi: 10.1016/S1470-
2045(13)70274-2. [PubMed] [CrossRef] [Google Scholar]
165. Ahrendt SA, Hu Y, Buta M, et al. p53 mutations and survival in stage I non-
small-cell lung cancer: Results of a prospective study. J Natl Cancer
Inst. 2003;95(13):961–970. doi: 10.1093/jnci/95.13.961. [PubMed]
[CrossRef] [Google Scholar]
166. Raty J, Pikkarainen J, Wirth T, et al. Gene therapy: the first approved gene-
based medicines, molecular mechanisms and clinical indications. Curr Mol
Pharmacol. 2010;1(1):13–23. doi: 10.2174/1874467210801010013. [PubMed]
[CrossRef] [Google Scholar]
167. Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs
mediate RNA interference in cultured mammalian
cells. Nature. 2001;411(6836):494–498. doi: 10.1038/35078107. [PubMed]
[CrossRef] [Google Scholar]
168. Weiss B, Davidkova G, Zhou LW. Antisense RNA gene therapy for studying
and modulating biological processes. Cell Mol Life Sci. 1999;55(3):334–358.
doi: 10.1007/s000180050296. [PubMed] [CrossRef] [Google Scholar]
169. Whelan J. First clinical data on RNAi. Drug Discov Today. 2005;10(15):1014–
1015. doi: 10.1016/S1359-6446(05)03547-6. [PubMed] [CrossRef] [Google
Scholar]
170. Jia LT, Chen SY, Yang AG. Cancer gene therapy targeting cellular apoptosis
machinery. Cancer Treat Rev. 2012;38(7):868–876.
doi: 10.1016/j.ctrv.2012.06.008. [PubMed] [CrossRef] [Google Scholar]
171. Putney SD, Brown J, Cucco C, et al. Enhanced anti-tumor effects with
microencapsulated c-myc antisense oligonucleotide. Antisense Nucleic Acid Drug
Dev. 1999;9(5):451–458. doi: 10.1089/oli.1.1999.9.451. [PubMed]
[CrossRef] [Google Scholar]
172. Vita M, Henriksson M. The Myc oncoprotein as a therapeutic target for
human cancer. Semin Cancer Biol. 2006;16(4):318–330.
doi: 10.1016/j.semcancer.2006.07.015. [PubMed] [CrossRef] [Google Scholar]
173. Fleming JB. Molecular consequences of silencing mutant k-ras in pancreatic
cancer cells: justification for k-ras-directed therapy. Mol Cancer
Res. 2005;3(7):413–423. doi: 10.1158/1541-7786.MCR-04-0206. [PubMed]
[CrossRef] [Google Scholar]
174. Scanlon K. Anti-genes: sirna, ribozymes and antisense. Curr Pharm
Biotechnol. 2005;5(5):415–420. doi: 10.2174/1389201043376689. [PubMed]
[CrossRef] [Google Scholar]
175. Fire AZ. Gene silencing by double-stranded RNA. Cell Death
Differ. 2007;14(12):1998. doi: 10.1038/sj.cdd.4402253. 2012. [PubMed]
[CrossRef] [Google Scholar]
176. Bora RS, Gupta D, Mukkur TKS, et al. RNA interference therapeutics for
cancer: challenges and opportunities (review) Mol Med Rep. 2012;6(1):9–
15. [PubMed] [Google Scholar]
177. Van De Water FM, Boerman OC, Wouterse AC, et al. Intravenously
administered short interfering RNA accumulates in the kidney and selectively
suppresses gene function in renal proximal tubules. Drug Metab
Dispos. 2006;34(8):1393–1397. doi: 10.1124/dmd.106.009555. [PubMed]
[CrossRef] [Google Scholar]
178. Jackson AL, Linsley PS. Recognizing and avoiding siRNA off-target effects for
target identification and therapeutic application. Nat Rev Drug
Discov. 2010;9(1):57–67. doi: 10.1038/nrd3010. [PubMed] [CrossRef] [Google
Scholar]
179. Hornung V, Guenthner-Biller M, Bourquin C, et al. Sequence-specific potent
induction of IFN-α by short interfering RNA in plasmacytoid dendritic cells
through TLR7. Nat Med. 2005;11(3):263–270. doi: 10.1038/nm1191. [PubMed]
[CrossRef] [Google Scholar]
180. Judge AD, Sood V, Shaw JR, et al. Sequence-dependent stimulation of the
mammalian innate immune response by synthetic siRNA. Nat
Biotechnol. 2005;23(4):457–462. doi: 10.1038/nbt1081. [PubMed]
[CrossRef] [Google Scholar]
181. Martina MS, Nicolas V, Wilhelm C, et al. The in vitro kinetics of the
interactions between PEG-ylated magnetic-fluid-loaded liposomes and
macrophages. Biomaterials. 2007;28(28):4143–4153.
doi: 10.1016/j.biomaterials.2007.05.025. [PubMed] [CrossRef] [Google Scholar]
182. Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances
in siRNA delivery. Nat Rev Drug Discov. 2009;8(2):129–138.
doi: 10.1038/nrd2742. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
183. Xu C fei, Wang J. Delivery systems for siRNA drug development in cancer
therapy. Asian J Pharm Sci. 2015;10(1):1–12.
doi: 10.1016/j.ajps.2014.08.011. [CrossRef] [Google Scholar]
184. Czauderna F, Fechtner M, Dames S, et al. Structural variations and stabilising
modifications of synthetic siRNAs in mammalian cells. Nucleic Acids
Res. 2003;31(11):2705–2716. doi: 10.1093/nar/gkg393. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
185. Liao H, Wang JH. Biomembrane-permeable and ribonuclease-resistant
siRNA with enhanced activity. Oligonucleotides. 2005;15(3):196–205.
doi: 10.1089/oli.2005.15.196. [PubMed] [CrossRef] [Google Scholar]
186. Hall AHS, Wan J, Shaughnessy EE, et al. RNA interference using
boranophosphate siRNAs: structure-activity relationships. Nucleic Acids
Res. 2004;32(20):5991–6000. doi: 10.1093/nar/gkh936. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
187. Elouahabi A, Ruysschaert JM. Formation and intracellular trafficking of
lipoplexes and polyplexes. Mol Ther. 2005;11(3):336–347.
doi: 10.1016/j.ymthe.2004.12.006. [PubMed] [CrossRef] [Google Scholar]
188. Sarisozen C, Salzano G, Torchilin VP. Recent advances in siRNA
delivery. Biomol Concepts. 2015;6(5–6):321–341. doi: 10.1515/bmc-2015-
0019. [PubMed] [CrossRef] [Google Scholar]
189. Kim HS, Song IH, Kim JC, et al. In vitro and in vivo gene-transferring
characteristics of novel cationic lipids, DMKD (O,O’-dimyristyl-N-lysyl aspartate)
and DMKE (O,O’-dimyristyl-N-lysyl glutamate) J Control
Release. 2006;115(2):234–241. doi: 10.1016/j.jconrel.2006.08.003. [PubMed]
[CrossRef] [Google Scholar]
190. Kenny GD, Kamaly N, Kalber TL, et al. Novel multifunctional nanoparticle
mediates siRNA tumour delivery, visualisation and therapeutic tumour reduction
in vivo. J Control Release. 2011;149(2):111–116.
doi: 10.1016/j.jconrel.2010.09.020. [PubMed] [CrossRef] [Google Scholar]
191. Halder J, Kamat AA, Landen CN, et al. Focal adhesion kinase targeting using
in vivo short interfering RNA delivery in neutral liposomes for ovarian carcinoma
therapy. Clin Cancer Res. 2006;12(16):4916–4924. doi: 10.1158/1078-0432.CCR-
06-0021. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
192. Gray MJ, Van Buren G, Dallas NA, et al. Therapeutic targeting of neuropilin-2
on colorectal carcinoma cells implanted in the murine liver. J Natl Cancer
Inst. 2008;100(2):109–120. doi: 10.1093/jnci/djm279. [PubMed]
[CrossRef] [Google Scholar]
193. ClinicalTrials.gov. US National Library of Medicine. [15/05/19]. [
https://clinicaltrials.gov/ct2/show/NCT01591356]
194. Soutschek J, Akinc A, Bramlage B, et al. Therapeutic silencing of an
endogenous gene by systemic administration of modified
siRNAs. Nature. 2004;432(7014):173–178. doi: 10.1038/nature03121. [PubMed]
[CrossRef] [Google Scholar]
195. Rossi JJ. RNAi therapeutics: SNALPing siRNAs in vivo. Gene
Ther. 2006;13(7):583–584. doi: 10.1038/sj.gt.3302661. [PubMed]
[CrossRef] [Google Scholar]
196. ClinicalTrials.gov. US National Library of Medicine. [15/05/19]. [
https://clinicaltrials.gov/ct2/show/NCT00882180]
197. ClinicalTrials.gov. US National Library of Medicine. [15/05/19]. [
https://clinicaltrials.gov/ct2/show/NCT01262235]
198. Mao S, Sun W, Kissel T. Chitosan-based formulations for delivery of DNA and
siRNA. Adv Drug Deliv Rev. 2010;62(1):12–27.
doi: 10.1016/j.addr.2009.08.004. [PubMed] [CrossRef] [Google Scholar]
199. Pillé J-YY, Li H, Blot E, et al. Intravenous delivery of anti-RhoA small
interfering RNA loaded in nanoparticles of chitosan in mice: safety and efficacy in
xenografted aggressive breast cancer. Hum Gene Ther. 2006;17(10):1019–1026.
doi: 10.1089/hum.2006.17.1019. [PubMed] [CrossRef] [Google Scholar]
200. ClinicalTrials.gov. US National Library of Medicine. [15/05/19]. [
https://clinicaltrials.gov/ct2/show/NCT00689065]
201. Urban-Klein B, Werth S, Abuharbeid S, et al. RNAi-mediated gene-targeting
through systemic application of polyethylenimine (PEI)-complexed siRNA in
vivo. Gene Ther. 2005;12(5):461–466. doi: 10.1038/sj.gt.3302425. [PubMed]
[CrossRef] [Google Scholar]
202. ClinicalTrials.gov. US National Library of Medicine. [15/05/19]. [
https://clinicaltrials.gov/ct2/show/NCT01676259]
203. Jeong JH, Mok H, Oh YK, et al. SiRNA conjugate delivery systems. Bioconjug
Chem. 2009;20(1):5–14. doi: 10.1021/bc800278e. [PubMed] [CrossRef] [Google
Scholar]
204. McNamara JO, Andrechek ER, Wang Y, et al. Cell type-specific delivery of
siRNAs with aptamer-siRNA chimeras. Nat Biotechnol. 2006;24(8):1005–1015.
doi: 10.1038/nbt1223. [PubMed] [CrossRef] [Google Scholar]
205. Gallas A, Alexander C, Davies MC, et al. Chemistry and formulations for
siRNA therapeutics. Chem Soc Rev. 2013;42(20):7983–7997.
doi: 10.1039/c3cs35520a. [PubMed] [CrossRef] [Google Scholar]
206. Williford J-MM, Wu J, Ren Y, et al. Recent advances in nanoparticle-mediated
sirna delivery. Annu Rev Biomed Eng. 2014;16:347–370. doi: 10.1146/annurev-
bioeng-071813-105119. [PubMed] [CrossRef] [Google Scholar]
207. Zhou J, Wu Y, Wang C, et al. pH-sensitive nanomicelles for high-efficiency
sirna delivery in vitro and in vivo: an insight into the design of polycations with
robust cytosolic release. Nano Lett. 2016;16(11):6916–6923.
doi: 10.1021/acs.nanolett.6b02915. [PubMed] [CrossRef] [Google Scholar]
208. Sun CY, Shen S, Xu CF, et al. Tumor acidity-sensitive polymeric vector for
active targeted sirna delivery. J Am Chem Soc. 2015;137(48):15217–15224.
doi: 10.1021/jacs.5b09602. [PubMed] [CrossRef] [Google Scholar]
209. Truong NP, Gu W, Prasadam I, et al. An influenza virus-inspired polymer
system for the timed release of siRNA. Nat Commun. 2013;4:1902.
doi: 10.1038/ncomms2905. [PubMed] [CrossRef] [Google Scholar]
210. Andreozzi P, Diamanti E, Py-Daniel KR, et al. Exploring the pH sensitivity of
poly(allylamine) phosphate supramolecular nanocarriers for intracellular siRNA
delivery. ACS Appl Mater Interfaces. 2017;9(44):38242–38254.
doi: 10.1021/acsami.7b11132. [PubMed] [CrossRef] [Google Scholar]
211. van der Zee J. Heating the patient: a promising approach? Ann
Oncol. 2002;13(8):1173–1184. doi: 10.1093/annonc/mdf280. [PubMed]
[CrossRef] [Google Scholar]
212. Bruix J, Sherman M. Management of hepatocellular
carcinoma. Hepatol. 2005;42(5):1208–1236. doi: 10.1002/hep.20933. [PubMed]
[CrossRef] [Google Scholar]
213. Lencioni R, Crocetti L. Image-guided thermal ablation of hepatocellular
carcinoma. Crit Rev Oncol Hematol. 2008;66(3):200–207.
doi: 10.1016/j.critrevonc.2008.01.003. [PubMed] [CrossRef] [Google Scholar]
214. Kudo M. Local ablation therapy for hepatocellular carcinoma: current status
and future perspectives. J Gastroenterol. 2004;39(3):205–214.
doi: 10.1007/s00535-003-1280-y. [PubMed] [CrossRef] [Google Scholar]
215. Brace CL. Radiofrequency and microwave ablation of the liver, lung, kidney,
and bone: what are the differences? Curr Probl Diagn Radiol. 2009;38(3):135–
143. doi: 10.1067/j.cpradiol.2007.10.001. [PMC free article] [PubMed]
[CrossRef] [Google Scholar]
216. Schramm W, Yang D, Haemmerich D. Contribution of direct heating, thermal
conduction and perfusion during radiofrequency and microwave ablation. Open
Biomed Eng J. 2007;1:47–52. doi: 10.2174/1874120700701010047. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
217. Sartori S, Tombesi P, Di Vece F. Radiofrequency, microwave, and laser
ablation of liver tumors: time to move toward a tailored ablation
technique? Hepatoma Res. 2015;1:52–57. doi: 10.4103/2394-
5079.155697. [CrossRef] [Google Scholar]
218. Schena E, Saccomandi P, Fong Y. Laser ablation for cancer: past, present and
future. J Funct Biomater. 2017;8(2) doi: 10.3390/jfb8020019. pii: E19. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
219. Izzo F. Other thermal ablation techniques: microwave and interstitial laser
ablation of liver tumors. Ann Surg Oncol. 2003;10(5):491–497.
doi: 10.1245/ASO.2003.07.016. [PubMed] [CrossRef] [Google Scholar]
220. Giorgio A, Tarantino L, De Stefano G, et al. Interstitial laser photocoagulation
under ultrasound guidance of liver tumors: Results in 104 treated patients. Eur J
Ultrasound. 2000;11(3):181–188. doi: 10.1016/S0929-8266(00)00086-
0. [PubMed] [CrossRef] [Google Scholar]
221. Francica G, Iodice G, Delle Cave M, et al. Factors predicting complete
necrosis rate after ultrasound-guided percutaneous laser thermoablation of
small hepatocellular carcinoma tumors in cirrhotic patients: A multivariate
analysis. Acta Radio. 2007;48(5):514–519.
doi: 10.1080/02841850701199942. [PubMed] [CrossRef] [Google Scholar]
222. Puls R, Langner S, Rosenberg C, et al. Laser ablation of liver metastases from
colorectal cancer with MR thermometry: 5-year survival. J Vasc Interv
Radiol. 2009;20(2):225–234. doi: 10.1016/j.jvir.2008.10.018. [PubMed]
[CrossRef] [Google Scholar]
223. Dennis CL, Ivkov R. Physics of heat generation using magnetic nanoparticles
for hyperthermia. Int J Hyperthermia. 2013;29(8):715–729.
doi: 10.3109/02656736.2013.836758. [PubMed] [CrossRef] [Google Scholar]
224. Giustini AJ, Petryk AA, Cassim SM, et al. Magnetic nanoparticle hyperthermia
in cancer treatment. Nano Life. 2010;1(1n02)
doi: 10.1142/S1793984410000067. [PMC free article] [PubMed]
[CrossRef] [Google Scholar]
225. Society of Radiographers. A guide to modern radiotherapy. 2013. ISBN: 1-
871101-94-8.
226. Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria in cancer cells: what is
so special about them? Trends Cell Biol. 2008;18(4):165–173.
doi: 10.1016/j.tcb.2008.01.006. [PubMed] [CrossRef] [Google Scholar]
227. Lynam-Lennon N, Maher SG, Maguire A, et al. Altered mitochondrial function
and energy metabolism is associated with a radioresistant phenotype in
oesophageal adenocarcinoma. PLoS One. 2014;9(6):e100738.
doi: 10.1371/journal.pone.0100738. [PMC free article] [PubMed]
[CrossRef] [Google Scholar]
228. Liao X, Chaudhary P, Qiu G, et al. The role of propranolol as a radiosensitizer
in gastric cancer treatment. Drug Des Devel Ther. 2018;12:639–645.
doi: 10.2147/DDDT.S160865. [PMC free article] [PubMed] [CrossRef] [Google
Scholar]
229. Collins FS, Varmus H. A new initiative on precision medicine. N Engl J
Med. 2015;372(9):793–795. doi: 10.1056/NEJMp1500523. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
230. Gutman DA, Cooper LAD, Hwang SN, et al. MR imaging predictors of
molecular profile and survival: multi-institutional study of the tcga glioblastoma
data set. Radiol. 2013;267(2):560–569. doi: 10.1148/radiol.13120118. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
231. Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more
information from medical images using advanced feature analysis. Eur J
Cancer. 2012;48(4):441–446. doi: 10.1016/j.ejca.2011.11.036. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
232. Fuchs TJ, Buhmann JM. Computational pathology: challenges and promises
for tissue analysis. Comput Med Imaging and Graph. 2011;35(7):515–530.
doi: 10.1016/j.compmedimag.2011.02.006. [PubMed] [CrossRef] [Google
Scholar]
233. Foran DJ, Yang L, Chen W, et al. ImageMiner: A software system for
comparative analysis of tissue microarrays using content-based image retrieval,
high-performance computing, and grid technology. J Am Med Informa
Assoc. 2011;18(4):403–415. doi: 10.1136/amiajnl-2011-000170. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
234. Clarke LP, Croft BS, Nordstrom R, et al. Quantitative imaging for evaluation
of response to cancer therapy. Transl Oncol. 2014;2(4):195–197.
doi: 10.1593/tlo.09217. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
235. Cooper LAD, Kong J, Gutman DA, et al. Integrated morphologic analysis for
the identification and characterization of disease subtypes. J Am Med Inform
Assoc. 2012;19(2):317–323. doi: 10.1136/amiajnl-2011-000700. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
236. Romo-Bucheli D, Janowczyk A, Gilmore H, et al. Automated tubule nuclei
quantification and correlation with oncotype dx risk categories in ER+ breast
cancer whole slide images. Sci Rep. 2016;6:32706. doi: 10.1038/srep32706. [PMC
free article] [PubMed] [CrossRef] [Google Scholar]
237. Lewis JS, Ali S, Luo J, et al. A quantitative histomorphometric classifier
(QuHbIC) identifies aggressive versus indolent p16-positive oropharyngeal
squamous cell carcinoma. Am J Surg Pathol. 2014;38(1):128–137.
doi: 10.1097/PAS.0000000000000086. [PMC free article] [PubMed]
[CrossRef] [Google Scholar]
238. Kalpathy-Cramer J, Freymann JB, Kirby JS, et al. Quantitative imaging
network: data sharing and competitive algorithmvalidation leveraging the cancer
imaging archive. Transl Oncol. 2014;7(1):147–152. doi: 10.1593/tlo.13862. [PMC
free article] [PubMed] [CrossRef] [Google Scholar]
239. Schlett CL, Hendel T, Weckbach S, et al. Population-based imaging and
radiomics: rationale and perspective of the german national cohort MRI
study. RoFo. 2016;188(7):652–661. doi: 10.1055/s-0042-104510. [PubMed]
[CrossRef] [Google Scholar]
240. ClinicalTrials.gov. US National Library of Medicine. [15/05/19].
[ https://clinicaltrials.gov/ct2/results?cond=&term=radiomics&cntry=&state=&
city=&dist=]