0% found this document useful (0 votes)
89 views30 pages

ML File 1-5

The document appears to be a collection of notes or instructions related to data analysis and machine learning experiments. It includes references to various algorithms, data structures, and programming languages, particularly Python. Additionally, there are mentions of data inspection, quality assessment, and the use of specific libraries for data manipulation.

Uploaded by

s4qapwqz5cuy
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
0% found this document useful (0 votes)
89 views30 pages

ML File 1-5

The document appears to be a collection of notes or instructions related to data analysis and machine learning experiments. It includes references to various algorithms, data structures, and programming languages, particularly Python. Additionally, there are mentions of data inspection, quality assessment, and the use of specific libraries for data manipulation.

Uploaded by

s4qapwqz5cuy
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
You are on page 1/ 30
(pa OR ETE RTA REED EEA rea EE AoE Ee Index 5 Name of the Experiment le an of | Date a ea? auWwoduclfou ‘bo Hatlaue inate Or \5)on| aon | = “y Kuow Aboud fhe dosaaak \\ pF | 9207 pony —$___ Teper (ugar pul Sow | \'L i f ery ea i a u Dupament voto. —__| Vb [aA efoen] higurdion Our oldest | __| ® Impene Loni tte + 14 [tees feu eu a dodo ata deulatonn tyee| 24 | foam) Lalgorithun ona dokasck | A. dwelumend Ndr Bayes | 23 {on ort OU A dorkoret- be 23/04 loony 5x footer damauatynhe, 25 |23/ou/aery _| Ko vieotat Nigh bait meri i | daw odion - [ 4. | Maparenk GVM adeortthw, | 27 go)ouoory| 19 Progra “ip dumowrtyat?, 24 30[>Y| 2014 omens used | _adgoriviun On mond wry they | qlodranek— i!) meee a ae es 8 a 8 ES See —————ioerrerrr SS —_— : oe ae ih a viv 180% | vony 01 Poy Wo O8 | Totraduction 40 Houle. ane, Hakinr Veannlng Thom Ope OE Nae epee ‘datas ot aed SlaelAN eal Lechunlapae wendy, “Wo aah vd wane, 0H! Gt oud tinea ‘de ” al wyrnaed. t Ne _py wicked ov the wotlon dott wpe d, our Gott, Spot pode Ona Woon ct Dart atouate st WM aA Wt nut re awd 4 fuapeosntd ered OW dno =e Hug Wowk Wah Prowse, ‘adh qyality Aon $e ned fod dijgpn) aba or Yaad ice ig anes 0 AWA A, 006 H peudy | on ta 4 4 Pe |, Aoda ok oud Quad Wd pe of oS by hah | wee edt, to be. quadoursded, : 0 F awh % | Madfug Leann 14 Super Sk aiuas onbenpytses 0 afi 6 | pibyaiouts and budiusrs 0} buporclt Do. LOPWAMiAk Ath, we _peoo obey congas ” Foe wn ae oobies hoine looms / tek as, oee Ansa, Tt oso op aad Nibwalh ee C4 OV Date Page No, _ O02 » 18 brcondliye Uarited ‘ule 63 vos [ ag lant ann yi Nursel \easeut t As tht vame “ edt | tun ty & f en {& bared a & wpe Stow. a “at wad ui “wt “Takoted d' dala sek and. eet machine , predicts tie Oubpub, | Unsaporatsed LewuSny Tn Or tu wodel in te Law ce. and wees wad padtounds aud evtract the neta wong the oloda. Unaupowsfeed (enou vg ppesated ey apd * yorrabies. Tn Out wo tang et “uantanes to so quite tho | QOMMAVG _preeins. a N | 3. Re x id Lea uAret ay : éspe Pund_-tut_Og % © “ope MO QU arn pt He feedback ov ae af ey be guuivoument Py a ; abe ie of ug. Tre howard chuld ef the be potitie weed e Ha MOC nat dada beet, “the 4yqu Tidrdluckfon +0 _ Pytnon_ Ubwarated — Py thou Lolich fs A pyle a L seh | ee re |s did nehonal ne ae slit oval glumes | why Provides vosious Chul _ctada Shructwils, — ‘pti yomth - oat ae and yuatriws CT Teacher's Signature Date Page Mo. OZ Foutowiiag qe tha ad work aged 6, walig Wane 49 dado neha. * aby pUrporm4 ava oriented cour Afostt Furplomenle” the Waubrcdinrenst oust gsns ‘ os p f | ON wit balantl om purations. prt capable 4 4, port “fete tea sapere it] a Hous i Boson ogee | px wi dor a and youdomM vue —— bey 2 he GaP 94 OU eee Loun. cl Puen wor PS usta to sotwe Lowplex, Li, e owd. weasel pede . Te_prowides y uaresal Ld gets ad dad col 4 tego a 2 6 Auf OP 0 Gt te Boe On _+0p OS numb ae a4 €% a doba and Dypten prbtofyntiug. anshrbawe mA ‘falas +p ae KILAb. : AED Condiauad guia mothemattial Algorithuis trot pe Ade vaninass _oewelop hoptat ined eo ded£ coded Pfadion t. WA _ppan LOUnIe, Ubon St Wad lange oo Onegin aio sane mae ; rae oda tttoual module , duns + ‘i pone Morph = Mok b 4b On Omartug vis alt rotfou LUlraru4 5 fyien tyros. og ett Teacher's Signoture ___—__— idea wisuallration lye "pal lt on Mame ee tbe Qpraack eat benef 4. weuntlrateon oliows wa Uitual aeons +o huge olf Ai ble igual, Makplot Pb Wee ry ee Uke Uva, bor, Leottey , Wierogram 5) CUrvak ? 3 : : Ute wottg Lot [fb Suu A aH TT +wo APL 2 4 rygot Att {6 0 iilating d), Python code plore topped _by mock ptot ti Liye: Z pr $d _L okjek — Dvfent ed ) APS * collector Blogecke Exe thet Gn _be-omonbed ustitdh quater Seats p . 4h f wit A Syunboo Xt, Loweusbicdion Python Package. Se pan - Cowue - Te be used aa A Standard-alour pevgsune. 2 oe then cottour, eke. 14 Pe Stuaphy A Cowra puter ein Syste uth (pw wae tyovk ‘te TK Wiuaplth 4, uae Aud g aud oxtendoe codebase written fu a well proven oe Page No. _05 ) fowdas 5 ; Se ay oppo Gounce bad Yok TL wads ae | seven. with Yelodtonal oY labeled olata both af £ 4 aku usta, \t prov da varioua Daba Sbrruck LoALQUN Ep Wout pu warn p vwmedinl data asa & | wre (fea , Ta “ oud’ Ft Lo 4 gn LOvWAQA aud_produdt 4 for UAUHA- ey puwd 6 { Pardon % 3s Jost abd 2 Vouk NOME, objec worth, A Quad ¢ shot ind axivg aota Seuttc Ase Jer ma qr lata Cott A) | ser ker te lca i badge g Panu Ba eu ol ‘Bune, a oud Os RO provide +o oloba en jer 0 oO ’ raowtionr ; WL | w ~ ae danke ey b) paka brome: a Sate - Leasuy SRS - Neon 44 Own eee S owed Pytnou Ubve thot | wplywmott wi makina Leovurr prow a “ep = vor cond revallratrorr Spohn wai | 0 Teacher's Signature —_____—__ p oO — gadieht poesty 10m pie” Ad evsiuy lod. Our prs Dole ° 0 ou 40P 4, NowPy i ba Py & Hokplottib. | = ep Uae | Low, LOWAARAU aly Wsobhe, view and cuatering als ortho Sududl ivy , ,R- wien , eke. __ aes | | | Cae Date ilo fron 02 Page No. $t_ Ex postwmeut -2 TH Rnow abouk the _dotarek Uimpow tay dada , 4 check About +he wisssin data, bo 4 Acawaakelied daa, |iud salation vetween Aepondeud aud ‘exdepevdeut, oud A aud to Ao eee Aeatiug, ) the dakasek te heguived to 4 Se ee fares a ae = ve A epecibied Nvuubeh 6) held vote fh sehr aa % 4 5 ae pandas ad gol foapert Muwipy a4 we 4p = pa. wade ev ( "data cay") ay, head 8) | yy. +04k (10) Teacher’s Signature a tt Wet wl 18 1 (sh of eect cn Hert) wii se ‘hone Hem Party Meee eee aay Le Meteal vo! ™ he ‘som 1 OMT tet me mee oon (Mo AAT en em (ve ee ee ee ee 1 te Fae np ren mY thot we ow he a bet te me he haem oR) HAE a We) tally) . mio ‘hw Reon Pang Warthowne evra Mten Po Pre} met oh ‘Doe Toe Souhen ta accevO8 IMO met hw lw he New C1emeGed ntn ET WM 1 Fie Fle fhe Pad Wr WS 2 re Toe Te Do Seth MT WR) fe Tae Tae Pd te Data Inspection Wo (i): age ‘onsi}s (a, a) Z 1 [2 tna) a aaa a | ineartegression| Lineartegression() In (24): y ged » cf. predict(x test) Model Evaluation ‘ { 0 (38): from sileara.uetrics Laport r2_ score from sclera netrics kaport ean absolute error from siears metrics suport ean squared error Print( FR: squared of UL is (12 score(y test, y pred) prlot(F’nean absolute error of Lh is {ean absolute-¢fror(y test + y.pred))') prlnt(hean squared error of LR is (vein sqarederrory test y y_pred)}") Aesqaed oF UN iso siononnasian ean abslte ero of Ui 708 ean spared ero of UN Hs 1358 » IS 4 Pr fd = WR, predier (m—Aeat) valeaare the teat pw { - So Layron ed & LR fe. _by2- anit pik Lp elie Dokojuke. ooor ov LRutp eh weniok | Qlornlude — OUT pats He | wrt | H ig Ros Sum 2 t b pnt 4eped ye - Dore 24 [92/2004 We 2 «i Pxposwent ‘ Jpiumenl> wattiple raarteeie Du aA dotasek Reake Alon ha wurion Te. Ox — Wat at oad eebuh que: ased ta | Fas suelation etSp botoeey a ot a VOrFotle ol woo er were Tu vasfables. It extendr waa ee to a ‘42uodion Lolarr tore ar ; Seu _tiw, goal Tete Rud the apoten | Tr a thet best Sta Hr The 29 0bou = Bo + Bs% ee tava wie be heeeeaeecteres y % te lepenceut variable» A A, - — Ay = li nce pe used aa prediction as well pi Happenin (Coun be = Lanratfou pe ee (me) oud p.values * 2d tr extent 4 aaa fu as Fou model . ie fs Ker mom Vostarte tr the oO aud 4+ provides an Tudi ot¥ou q Teacher’s Signature (t+ pw wu, variowet 6 _extfwasbed esyend Peat nS iuqrated aur to wt Modsaote wants mea — we >S — High autre 292 eg ss ti 7 _ Hate wadel, Stade. gut Rens _ 3 D ahiane — iw os Queer vil = ae cent | Boke oe VEX tase | a (aoaaaye valusd =a jackor . iu @ (en ( Bude Seneeer ae Saeed Smeal we ) wodel © bm, OLS Cy.x), et) gp vaabA = wooded © aura [O" Prequanctes " "GSutote ! " gwed Paorawnt "8 SISA TUE denon auth" ngHyr nefowures Faclonu Function Ase wy |” P- Non f a priv Cwodieh. -Anneeri al warowal dia Lowe." |] | axis 21) pd. & (vorwmoal L” put rome”) Ke [Se p\r tetra, feat Yaoi, Yadeah = a Aeah oo 7 Lx, Wa, tet bi122. 0 ale “eancleuy — sate ug) | | piv |. Mapes , A—tradin. kage, X— het Khope ) — wads = Busar Reqrorsion () wool Bie ( X-twaiu , Y~ tyoin ) tepid = waadel. pradiy ( x_teat’) give (Mean Atosnlice aver % " welstus meou alotobde - Ost (Yteat_y_ pred 9) [3 pik S hae tant ne © Aeicd . cou. | _ Sqnoned CY-teat_, Y pred )) —piiuk ("Rook mean Gapared Eresov ' ", wp. Cant ( ___webicd. wen — - aw _(y- test, Y-prved))) plage LR2 seore 4") mebtics 1 - Seove LY-bedh ie ‘Y-pved )) Teacher's Signature yr date 12-103 Loony 05 Page No. (4 Expodweut oe. , planet Ln Repaion bu oO dotosek RIM, Log Sete. Raywsion or Bl oe pulpu 4,0 aa elal & Outtome wut be a he Ral ox Aaurebe malut. Lt Cun eter be Yea a NO, Bot , Tus OF False, dle . out iuatead gut “ta Cwatt’ walusa_D pir 3, it fives th provale- GeAle_ Madake wlidag Hex beboeen O itm 1: 4 ooh edie. ion “kb used Aso Run ond iat rn Woo etie begrassiou , Auateod 4 ota repursio hus a Sioa Kbo-pech Angi at vba, pricks oO waxivaumn volusd (0 mi) at 86 cigus (eat wana pad’ Inceguase. oe our hi. toad ott iol wsdl vn dota za en and oltacyete, oe Oxi = 1). 7) (won = (ovo) nf seen valucs.xovel \)) Teacher's Signature 1X » df. drop([ outcome), axtset) Y = Pa, OataFrame( df "outcome")) from skleamn, Linear model smport Logisticnegresston © LoRReG & Logisticnegress ton (nay, Ster«1000) Logreg. FLUX train, ¥, train,values,ravel()) OR( za) Logistlenegression 1000) (26) 1 Logreg.seore(x test, Ytest) Out (26) 9. 2922077922077922 ™ (30): 1. from sklearnnetrics Amport confusion matrix, Classification report 2 predictions « ogres. predict(X test) 3a. Confusion astrix(¥_test, predictions) 4a Outl38): arrayitton, 9), (22, 32)], dtypestintesy 7 In [221]; 1 sn5.heatmap(ca,ennotetrve) Out221]: eres: > 1 print classificatton report (y_test, Predictions)) Precision In (222): , fecal fi-score Support OL 9k gas 100 %78 Oso Py 154 0.79 75 80 gee 156 154 2 py tt Lore (xteak teat ) soe arlene + Lmehies Auaport top ution VAL \ wdion _ xepovt _ podttiina fe, ode (xteat) a vou. Alon woatrsx (Y-teat , pred deus’) a (MS uM pees 4 Es wel “veotvaop Com , oumot = Tour) | - pi oe peers Lye teat paca) ; E a Se Teacher's Signature ____ ae

You might also like