0 ratings 0% found this document useful (0 votes) 89 views 30 pages ML File 1-5
The document appears to be a collection of notes or instructions related to data analysis and machine learning experiments. It includes references to various algorithms, data structures, and programming languages, particularly Python. Additionally, there are mentions of data inspection, quality assessment, and the use of specific libraries for data manipulation.
AI-enhanced title and description
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content,
claim it here .
Available Formats
Download as PDF or read online on Scribd
Go to previous items Go to next items
Save ML file 1-5 For Later (pa OR ETE RTA REED EEA rea EE
AoE Ee
Index
5 Name of the Experiment le an of | Date a
ea?
auWwoduclfou ‘bo Hatlaue inate Or \5)on| aon | =
“y Kuow Aboud fhe dosaaak \\ pF | 9207 pony —$___
Teper (ugar pul Sow | \'L i
f ery ea i a
u Dupament voto. —__| Vb [aA efoen]
higurdion Our oldest | __|
® Impene Loni tte + 14 [tees
feu eu a dodo
ata deulatonn tyee| 24 | foam)
Lalgorithun ona dokasck |
A. dwelumend Ndr Bayes | 23
{on ort OU A dorkoret- be 23/04 loony
5x footer damauatynhe, 25 |23/ou/aery
_| Ko vieotat Nigh bait meri i
| daw odion - [
4. | Maparenk GVM adeortthw, | 27 go)ouoory|
19 Progra “ip dumowrtyat?, 24 30[>Y| 2014
omens used |
_adgoriviun On mond wry they
| qlodranek—
i!)
meee
a ae es 8 a 8 ES See —————ioerrerrr SS —_—:
oe
ae
iha viv 180% | vony
01 Poy Wo O8 |
Totraduction 40 Houle. ane,
Hakinr Veannlng Thom Ope OE Nae epee ‘datas
ot aed SlaelAN eal Lechunlapae wendy, “Wo aah
vd wane, 0H! Gt oud tinea ‘de ” al wyrnaed.
t Ne _py wicked ov the wotlon dott wpe d,
our Gott, Spot pode Ona Woon ct
Dart atouate st WM aA Wt nut re
awd 4 fuapeosntd ered OW dno =e
Hug Wowk Wah Prowse,
‘adh qyality Aon $e ned fod
dijgpn) aba or Yaad ice
ig anes 0 AWA A, 006 H peudy
| on ta 4 4 Pe |, Aoda ok oud Quad Wd pe of oS by hah
| wee edt, to be. quadoursded, :
0
F awh %
| Madfug Leann 14 Super
Sk aiuas onbenpytses 0 afi 6
| pibyaiouts and budiusrs 0}
buporclt Do. LOPWAMiAk Ath, we _peoo
obey congas ” Foe
wn ae oobies
hoine looms /
tek as, oee
Ansa, Tt oso op
aad Nibwalh ee C4 OVDate
Page No, _ O02
» 18 brcondliye Uarited ‘ule 63 vos
[
ag lant ann
yi
Nursel \easeut t As tht vame “ edt | tun ty
&
f en {& bared a & wpe Stow. a “at
wad ui “wt “Takoted d' dala sek and. eet
machine , predicts tie Oubpub, |
Unsaporatsed LewuSny Tn Or tu wodel in te Law
ce. and wees wad padtounds aud evtract the neta
wong the oloda. Unaupowsfeed (enou vg ppesated ey
apd * yorrabies. Tn Out wo tang et “uantanes to so quite tho |
QOMMAVG _preeins.
a N
| 3. Re x id Lea uAret ay
: éspe Pund_-tut_Og % © “ope MO QU arn
pt He feedback ov ae af ey be guuivoument Py
a ; abe ie of ug. Tre howard chuld ef the be potitie
weed
e
Ha MOC
nat dada beet, “the
4yqu
Tidrdluckfon +0 _ Pytnon_ Ubwarated
— Py thou Lolich fs A pyle a
L seh
| ee re
|s did nehonal ne ae slit oval glumes
| why Provides vosious Chul _ctada Shructwils,
— ‘pti yomth - oat ae and yuatriws
CT Teacher's SignatureDate
Page Mo. OZ
Foutowiiag qe tha ad work aged 6, walig Wane 49 dado
neha. *
aby pUrporm4 ava oriented cour
Afostt Furplomenle” the Waubrcdinrenst oust gsns ‘
os p f
| ON wit balantl om purations.
prt capable 4 4, port “fete tea sapere it]
a Hous i Boson ogee |
px wi dor a
and youdomM vue
——
bey 2
he GaP 94 OU eee Loun. cl Puen
wor PS usta to sotwe Lowplex, Li, e owd. weasel
pede . Te_prowides y
uaresal Ld gets ad dad col 4 tego a 2
6 Auf OP 0 Gt te Boe On _+0p OS numb ae
a4 €% a doba and Dypten prbtofyntiug. anshrbawe
mA ‘falas +p ae KILAb. :
AED Condiauad guia mothemattial Algorithuis trot
pe Ade vaninass _oewelop hoptat ined eo ded£ coded
Pfadion t. WA _ppan LOUnIe, Ubon St Wad lange
oo Onegin aio sane mae ;
rae oda tttoual module , duns + ‘i pone
Morph =
Mok b 4b On Omartug vis alt rotfou LUlraru4 5
fyien tyros. og ett
Teacher's Signoture ___—__—idea wisuallration lye "pal lt on Mame
ee
tbe Qpraack eat benef 4. weuntlrateon
oliows wa Uitual aeons +o huge
olf Ai ble igual, Makplot Pb Wee
ry
ee Uke Uva, bor, Leottey , Wierogram
5) CUrvak ? 3 : :
Ute wottg Lot [fb Suu A aH TT +wo APL 2 4
rygot Att {6 0 iilating d), Python code
plore topped _by mock ptot ti Liye: Z
pr $d _L okjek — Dvfent ed ) APS * collector Blogecke
Exe thet Gn _be-omonbed ustitdh quater Seats
p .
4h
f
wit A Syunboo Xt, Loweusbicdion Python Package.
Se pan - Cowue - Te be used aa A Standard-alour
pevgsune. 2 oe then cottour, eke. 14 Pe
Stuaphy A Cowra puter ein Syste uth (pw
wae tyovk ‘te TK Wiuaplth 4, uae Aud g
aud oxtendoe codebase written fu a well provenoe
Page No. _05
) fowdas 5 ;
Se ay oppo Gounce bad Yok TL wads
ae | seven. with Yelodtonal oY labeled olata both af
£ 4 aku usta, \t prov da varioua Daba Sbrruck
LoALQUN Ep Wout pu warn p vwmedinl data asa & |
wre (fea , Ta “ oud’ Ft Lo 4 gn
LOvWAQA aud_produdt 4 for UAUHA- ey
puwd 6 { Pardon %
3s Jost abd 2 Vouk NOME, objec worth, A
Quad ¢ shot ind axivg aota Seuttc
Ase Jer ma qr lata Cott
A) | ser ker te lca i badge
g Panu Ba eu ol ‘Bune, a
oud Os RO provide +o oloba en jer
0 oO ’
raowtionr ; WL
| w ~ ae danke ey
b) paka brome:
a Sate - Leasuy
SRS - Neon 44 Own eee S owed Pytnou Ubve thot
| wplywmott wi makina Leovurr prow
a “ep = vor cond revallratrorr Spohn wai
| 0
Teacher's Signature —_____—__p oO
— gadieht poesty
10m
pie” Ad evsiuy lod. Our prs Dole
° 0
ou 40P 4, NowPy i ba Py & Hokplottib. |
= ep Uae |
Low, LOWAARAU aly Wsobhe,
view and cuatering als ortho Sududl ivy
,
,R- wien , eke.
__ aes |
|
|Cae Date ilo fron
02 Page No. $t_
Ex postwmeut -2
TH Rnow abouk the _dotarek Uimpow tay dada , 4
check About +he wisssin data, bo 4 Acawaakelied
daa, |iud salation vetween Aepondeud aud ‘exdepevdeut,
oud A aud to Ao eee Aeatiug, )
the dakasek
te heguived to 4 Se ee
fares a ae
= ve A epecibied Nvuubeh 6) held vote
fh sehr aa % 4
5 ae pandas ad gol
foapert Muwipy a4 we
4p = pa. wade ev ( "data cay")
ay, head 8) |
yy. +04k (10)
Teacher’s Signaturea tt
Wet wl 18
1 (sh of eect cn Hert)
wii
se ‘hone Hem Party Meee eee aay Le Meteal
vo! ™ he ‘som 1 OMT
tet me mee oon (Mo AAT
en em (ve
ee ee
ee ee
1 te Fae np ren mY
thot we ow he a
bet te me he haem oR) HAE
a
We) tally) .
mio
‘hw Reon Pang Warthowne evra Mten Po Pre}
met oh ‘Doe Toe Souhen ta accevO8 IMO
met hw lw he New C1emeGed ntn ET
WM 1 Fie Fle fhe Pad
Wr WS 2 re Toe Te Do Seth MT
WR) fe Tae Tae Pd te
Data Inspection
Wo (i): age
‘onsi}s (a, a) Z
1 [2 tna) a aaa a |
ineartegression|
Lineartegression()
In (24): y ged » cf. predict(x test)
Model Evaluation ‘ {
0 (38): from sileara.uetrics Laport r2_ score
from sclera netrics kaport ean absolute error
from siears metrics suport ean squared error
Print( FR: squared of UL is (12 score(y test, y pred)
prlot(F’nean absolute error of Lh is {ean absolute-¢fror(y test + y.pred))')
prlnt(hean squared error of LR is (vein sqarederrory test y y_pred)}")
Aesqaed oF UN iso siononnasian
ean abslte ero of Ui 708
ean spared ero of UN Hs 1358» IS
4 Pr fd = WR, predier (m—Aeat)
valeaare the teat
pw { - So Layron ed & LR fe. _by2- anit
pik Lp elie Dokojuke. ooor ov LRutp eh weniok |
Qlornlude — OUT pats He |
wrt | H ig Ros Sum 2
t b pnt 4eped ye -Dore 24 [92/2004
We
2
«i
Pxposwent ‘
Jpiumenl> wattiple raarteeie Du aA dotasek
Reake Alon
ha wurion Te. Ox — Wat at oad eebuh que: ased ta |
Fas suelation etSp botoeey a ot a VOrFotle
ol woo er were Tu vasfables. It extendr
waa ee to a ‘42uodion Lolarr tore ar
; Seu _tiw, goal Tete Rud the apoten |
Tr a thet best Sta Hr The 29 0bou
= Bo + Bs% ee tava wie
be heeeeaeecteres
y % te lepenceut variable» A A, - — Ay
= li nce pe
used aa prediction as well
pi Happenin (Coun be =
Lanratfou
pe ee (me) oud p.values *
2d tr extent 4
aaa fu as Fou model . ie fs
Ker mom Vostarte tr the
oO
aud 4+ provides an Tudi ot¥ou q
Teacher’s Signature(t+
pw wu, variowet 6 _extfwasbed esyend Peat
nS iuqrated aur to wt Modsaote wants
mea —
we >S — High autre 292 eg ss
ti 7
_ Hate wadel, Stade. gut Rens _ 3
D ahiane —
iw os Queer
vil = ae cent |
Boke oe VEX tase |
a (aoaaaye valusd =a jackor .
iu @ (en (
Bude Seneeer ae Saeed
Smeal
we )
wodel © bm, OLS Cy.x), et)
gp vaabA = wooded © aura [O" Prequanctes " "GSutote !
" gwed Paorawnt "8 SISA TUE denon auth" ngHyr
nefowures Faclonu Function Ase wy |”
P- Non f a
priv Cwodieh. -Anneeri al
warowal dia Lowe." |] | axis 21)
pd. & (vorwmoal L” put rome”)
Ke [Se
p\r
tetra, feat Yaoi, Yadeah = a Aeah oo
7 Lx, Wa, tet bi122. 0 ale “eancleuy — sate ug) |
| piv |. Mapes , A—tradin. kage, X— het Khope )
— wads = Busar Reqrorsion ()
wool Bie ( X-twaiu , Y~ tyoin )
tepid = waadel. pradiy ( x_teat’)
give (Mean Atosnlice aver % " welstus meou
alotobde - Ost (Yteat_y_ pred 9)
[3 pik S hae tant ne © Aeicd . cou.
| _ Sqnoned CY-teat_, Y pred ))
—piiuk ("Rook mean Gapared Eresov ' ", wp. Cant (
___webicd. wen — - aw _(y- test, Y-prved)))
plage LR2 seore 4") mebtics 1 - Seove LY-bedh
ie ‘Y-pved ))
Teacher's Signatureyr date 12-103 Loony
05 Page No. (4
Expodweut oe.
, planet Ln Repaion bu oO dotosek
RIM,
Log Sete. Raywsion
or Bl oe pulpu 4,0 aa elal
& Outtome wut be a
he Ral ox Aaurebe malut. Lt Cun eter be Yea
a NO, Bot , Tus OF False, dle . out iuatead
gut “ta Cwatt’ walusa_D pir 3, it fives th provale-
GeAle_ Madake wlidag Hex beboeen O itm 1:
4 ooh edie. ion “kb used Aso Run ond iat
rn Woo etie begrassiou , Auateod 4 ota repursio
hus a Sioa Kbo-pech Angi at vba,
pricks oO waxivaumn volusd (0 mi)
at 86 cigus (eat wana pad’
Inceguase. oe our hi. toad ott
iol wsdl vn dota za en and oltacyete,
oe Oxi = 1).
7)
(won = (ovo)
nf seen valucs.xovel \))
Teacher's Signature1X » df. drop([ outcome), axtset)
Y = Pa, OataFrame( df "outcome"))
from skleamn, Linear model smport Logisticnegresston
© LoRReG & Logisticnegress ton (nay, Ster«1000)
Logreg. FLUX train, ¥, train,values,ravel())
OR( za) Logistlenegression
1000)
(26) 1 Logreg.seore(x test, Ytest)
Out (26) 9. 2922077922077922
™ (30): 1. from sklearnnetrics Amport confusion matrix, Classification report
2 predictions « ogres. predict(X test)
3a. Confusion astrix(¥_test, predictions)
4a
Outl38): arrayitton, 9),
(22, 32)], dtypestintesy
7
In [221];
1 sn5.heatmap(ca,ennotetrve)
Out221]: eres: >
1 print classificatton report (y_test, Predictions))
Precision
In (222): ,
fecal fi-score
Support
OL 9k gas 100
%78 Oso Py
154
0.79 75
80 gee
156
1542
py tt
Lore (xteak teat )
soe arlene + Lmehies Auaport top ution VAL
\ wdion _ xepovt _
podttiina fe, ode (xteat)
a vou. Alon woatrsx (Y-teat , pred deus’) a
(MS
uM pees
4
Es
wel “veotvaop Com , oumot = Tour) |
- pi oe peers Lye teat paca)
; E a
Se Teacher's Signature ____
ae