0% found this document useful (0 votes)
16 views26 pages

Gas Power Cycle

The document discusses the principles of reversible thermodynamic cycles, particularly focusing on heat engines and their efficiencies. It includes calculations related to heat transfer, work output, and temperature variations in various thermodynamic processes. The content is fragmented and appears to be scanned notes with various examples and equations related to thermodynamics.

Uploaded by

danushka Srinath
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
0% found this document useful (0 votes)
16 views26 pages

Gas Power Cycle

The document discusses the principles of reversible thermodynamic cycles, particularly focusing on heat engines and their efficiencies. It includes calculations related to heat transfer, work output, and temperature variations in various thermodynamic processes. The content is fragmented and appears to be scanned notes with various examples and equations related to thermodynamics.

Uploaded by

danushka Srinath
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
You are on page 1/ 26
Reversible ae \ ieaie:* holt Wi Qa eG ovk done Coosa -Qyg,)) Gass emer t> Vin Cetyict eney) aleve, m 2 mag of Sbid. Cael Ccornot cycle) Reveysi ble isothermal Weak exchangey 2. Ci Compyeasoy T: Toy bine, Scanned wth G camscanner Example ol: é Sion A heat argine yeceives heat at. the yate of | g00ekTImin ands gives: ai: pkpow of Oke lec. Determine + pot Epc 1| The they mal___ af fret ney, {bw “gay LT! The yobe of heat ye@eotian = ee \ Solo bion |Meat yecewed || Bat Wie? Weddsianginbac! Os J Cy Qy «2 1500 kT [rnin ae 1806, 3 oe ; 29 LIg a aa 2 ate3/a7 Agia k.] ork. ovbpob eu ¢ €- Aled | Bhevnal effret ency OYE Wahlen wo pele =) gnekone aebye(D ; Gn 125 ~ hf f+ 2, 16. 8S) 6. oo 1) @e ¢ G@-w «! Example oe. ool lahat i9 thei Thpbatb | Rogar ble “theora bical alfiaency of a heat engine. opera 4ing wi th la bok yesoyvaiy of) foyneae gawea'i'at liso —foshen__the __cookwig aa toy quaihble 19 at we? Cals sls UW 2 aloot+ 23% 2 . 2393k Tao \5 + 293 2 ase ke. — | Winan ota ge 2 20-598 [63p7, 2393 Scanned with |CamScanner™ Guomple 03 . a - io _lga fe cond. u _qyele opexabes_ herke een aia yee and gniks bempeya teve | of seat. sand -15°G —___|C£ the gga tem |gooyce find > __t L ede ili ae : T|_ Stthreciency of the systeo. Tt The web oor bransfey- Ei feas yejebberd Hol) site bo vis 09 ] gin Ds) ooas . a) SF. oa 4g ee, 523k. BS £ Te 2-\S54+ 293 2 258k. = edt jx Gives Gals eSA0 be hss 3 » Fogg uc ion Wg sosnaihc ee \t « Gadd Gi) a 0.6 « Web a oS Ven: Wwebid 46.54 ne >) tes 2 dias’ “Gag Jon! y Qyey ei Qaddi- Mueb Ag clr 5 2 AokI- 49-S4kT x = OPM AG RIS AOU = 1 Scanned with |\CamScanner er J [Example ee AWC Biomns An ventory Clana that hia engine hoa the 2. ffollbaing specs froat frenetic due ol : E KK Corbpavqsiva Noor b 6 = Fenn ond 28°C. Poacr developed - 48 ke) s fool boned pey lwoy gaithio Weatwa valve of the 6 fool: ~ 4 204TI Ka I Lake mbhethey ia %Claim ia: valid oy wh. rs Tie 9 4093 2 lees le” de Tee 294 093 2 2Gek. Hog de IM nae ee ah ee 2 tl 248. /\ec-9en6/2 Jo - o-86y Tv t (o23 CIE [4d Li: heeic sf [Ne boal thermal ftictency fo WU. bhormal . (wovte \dono. « orrie| 98x 1600 X 60x95 Heat Sopplved 3-Ax94300 % leo 20-4290 | ae.qaly © se Scanned with |\CamScanner Ca imple of 8. eee th Th apie heak erpends: opera bag, between a ca0rcy Lemporaboye of [oc0% and 9 snk tem paratore— “gore. find bho leagt 'yabo of heat vefeo toh _ “Pay ka neb cobpoh of the). eyine >.) ead beast yabe °F beat yejeokon “pew kes) ve Ook pobk x! pew a Qa 1-826 Karn bilp |G 2 Qy loved * 1-326 -) co 30ekay, Scanned with |CamScanner™ Caamele. 06. Bovce | Can soppy _en eng | ab the wle of \2000 S| mn ab Bectc. N seand gouyce eo Cav 20: pela sat at the yabe of 20000 &If msn at Rhee ei _goovee Cl oy 2) goold yoo noose bo soppy energy 62 an_idegl —yavey sible heat engine that 6 to pyodece age arootn t £ Powey it & the Lemperateye of the soyyoonds Lng 16 ase % aby i Gooree\* i ee Rate of sepplg ct energy « 1200c eS! mrp Gy 320+ 29% 2sqak_ Z Gooryce 2% es Rabe ot sopply of energy 2120000 L5}mn Ty 2 4299 2 349K sa 3 To 2 get c +293 * 30Fk “ad Ws eh ive SO VAR ey eee hy u 2\ - 38 2 ag. 067% Vig 2 te abe2 ata. 543 34.5, Wi 2 \2000x 64806 2 5% ¢q.245!min Wr 2 (2000cK Wo9-loe » (2240 &Tlmn Soorce 2 +4 elected, ok = Scanned with @ camscanner Wo » mi Cho -b) , Gigdard ray Clas Rane Wrz >» Cho- ha) : tee Qodd.e MEX Cy foy Octo, - | egole. ma2 M1 +MF Copenkype) ms =™1 Celased bgPe) Cory stan dayd Analyais) Scanned wth G camscanner Wheb + Wt- We = Aire Una- h> Cha Y y Standayd cgole ettrorergy. ewreb 2 my {Cha ha) Cns-bn)Y, i Cay A Sata rm, Cha- ho), \. i t Chan bX}, set aden’ pes Sele ti «Cha-h piv ee ee ae Lea procegace 1-2 and a-4 aWich ave of v sen bro 2 (ef 4g) Pa ® Pressove yabio: Scanned with BcamScanner ‘canned with Cyele Actoal Bxaytor 3 2 ~- 7 OY le vwpot ‘i oCP CT. - } Boyle” cotpt Cho) Ni Le ea %) fi! Keak oe = CPC Tar) Neb oy ook Pot “loop (Tel)-cPC GT, e Efticiency, = Noy owe OOMTURE Heat Supplied Cella Te )-ceCt-t) CRC %-T.)) @Torbine (gen bY pro SATCLeMEY ay. = Redwol ork oobPob Toentyope cork oobpol 2 cp Cte) OWNeSSOY isen tYohC effreiency , V\com = woyk in Rob yeeoryed ¥ in taenbyoprce Comm Pyegaion Actoal work yegured = CPC Te“ WH) Ghee Ry ae eh . Tart 7s a Mh ‘Scanned with @ camScanner Caore Ye. oe p t 2 Riv enters the compyessoy of a gaa twbne Pont —_____|@erating on Brayton Woele at | icl-seackipa, eat = ‘Che pressve the cyclo effrctengy - olbeye We ond We Compyessoy wovle yatro in the dhe manimom bem perature iw Xne agcle and — aye the yes peotwely eple i867) Calalate Aasomo W¢ 2 2aWe , toybine and the — ‘Tehel Wi pig 7 oO 42cm eo)" Pye 101.306 po ~ Ti 2 29+ 293 2 380k ee al ye St i Fripty Tey | te) do™ gy 5 CY ms ) goth bia Cae se (By NP re. / ey Ai! Cy é ( i ah Te pete doo | pik foet Le Es (4 1 [Tee eT xeoo es! 8 A Soi = 500: 4k., q Scanned with |\CamScanner mep CTs -Ta) = 2-3 xm soe CT-T,) ae ie eo 24 Cie Te _£- } [Ts - Ts 2 2-3 Csc0-4-300) 4 eel __{- 668 i seg Tse teak, q si I< Ls} Ta 2128) a: REO ke epee 44 | -668 ol ee ee CN We wet = Mee C Ta Tad op Cla -T Q@add pep CTa— Tt), Z fel nes) a ae Cae ta) - Chet m er Py’ iientetiecs Scanned with |CamScanner™ Caample oF: ee be Ly lll Lay) A gas bovbine is _Bopphied. ith goa at bay and (ooo k and _expanda 6 adiabatically &ei/s5 | bay - The mean —apecifre heat at Conatan k —___| pre os esove and _Conatan _volome ava 1-040.8 — Lhd] keg k___dind «0: 4662 | iT) bg Kk _yeapedérvely t| oyan the _ bompey aloe -enbyopy diadyam bo _|Ye present bbex sensees DANA Lthe- simple gaa_ __|borbwe System. ss! + ake Caleolate the pomesr- developed _n leo Pe k.g.o+— gas per gecond and the exhavst gas Lew pera bore - 4 Go he ay Ta © tocc lk Pie \bay aps 10428 Ed} eg % ty 20-9662 Bley kk =< ne ies deve bred Pey ky Of gag Per Seance Bis! pie igor SY ae Fag Bee a i $ =f 2 1:9428 2 |. 3606. ao: t662 Scanned with |\CamScanner STagse, 6 Go\lase aa : £ esak. 9 Pie 0950 ha — had x 1099 65> siha S104 28° Cico0-weS=3) 8 = 961-945 ka. @Ss¢ ol Ge bagalisus, “ieee ARs. “SJabeie) |S ; 3 Bu! ii A BE ce, 49 WE H1.99 O } 7 ! 4 ro] ea e ae Leg > | 't2 Os u5 19 etait ea) ye 1 a i ae WO 1 fe Go UD sais: SS aa 1 Scanned with |CamScanner™ i? Geomeie 09, (gmoe) An taenbyopic Lary Bybines 116 oaed» bo sopply— te 4 bay. o1kg1s of ay atibay and! ab. 263 kito 9 | Cabin. The ipyeasoye of mlet to the) torbine— Deokermne the bempoyateve at | toybine. inle b and paoy developed by the tovbme hesome Cp « |-0 Le I hee (Soc - s a (en q 2 i tt Ta SG Lar ie Xt Lies 288 ‘ ( ae 4 t Te © page ~295 2420. ak | fowey develope se mop Cae) eo hick, OTH W WT 2o-| x C429.5)~ 2/96) 2198S haul ’ Scanned with |\CamScanner __Gaampleso- ely a IE PS OL 4 Conarder an ain shandayd — qyelo an obaelr ON iy. enters: the. Compyessox | abi1o bariand 20% The pyessve of ary leaymg the Con pressor in. 3-8 pr laceraai Cait tempera tove’ ab torbine. inlet 18 Boot. Mebermne pay ky of aly | CiSscccency eke bye: edeloy! b _& |Meat Soipplied 6 ory: 2 —_ DBlaok orlable at the. abot bl ieee Bi Neg O yepected in bhe — Coc Gellgg Sed ile of ary leauiaes the. pes Ss empera tove TP 2 10 bay i OEE ai Ty 2 20C wt 293 2 2g. Ne é i Pr = 35 bay- Ta + Gootea3 2 993k.” «a 7 a Ae) ; a CP 21.008 “ko legk: Aa) Dye fy on \ 2. a aA j z0:300§ 2 30-08 Ceb Jaro & sfols uo b owe) AD Qwis ce CT qe)» « ‘ I of ae . a eR 5 : —_ Scanned with |CamScanner™ oooex Ceaaiiaaiaeg) vite Mi Btun GS WTibgus gr Qoet « We ~ We: a4 Sia edbplCitacif, rot tote sae = pi We 2 Ce C=). _ Eee [apy ee gaeeu pale ke ee coc ee [+4303 Wee ceCTa-Ta) 4 2 1-005 ( 93- 610-36) a | eep.gg kSleg acs aa @camscanner |wes CpeC%—T L-cosC 4\9- of - 24 ae LE oud =z Cp Cha) oec8 C one. #1893) 0) = doc L sarees al hy. ( 42 wo) | vl le 2 eve ah “ST oe, a Ear ath =s fe Vie: —— - ta Z, an Nad a 1 oh \ Ch S \ ] vat } J é ER é¢ f et eT eM ( # ) 95 Scanned with @camScanner | wele , the aiy at —|\T_pyessove ya bro 8 ____Compyessor ef treremiea ove each eo’ ga5__loybine | plank oor leng et (8 ante and -bhe maxmom |temperatoye 19 goo'c. ‘The toybing and __ fi cd ___| Canpvessoy ooye, borbine @oyk, heat eopplied | A as_{ keg. Draw T-3 deagran. trina qgole ofrcrency ‘ain d boy bine exhans t_ meeratoye: Moss of avy _may be conside, j co y26-25 VW = s0%7- Tae 800+ 23 21093 K, Ty 2 29 4293) 2 300K : Pre alMpa’ . | bay Le : miei 1&9) > Ree FS Soy, the Com pressoy> sb 4) Te oa Te 3200 { Unt pie iam f SF BID Be ieee B00 to esoe 4k, NIC eRe, Scanned with @ camscanner — IC. om Pye S3oy lecdip@ ae Taos E Leterc. Ga Lived te ThgMt Tae 9 i i x 306-4! 2 109% A o J oie 2 pei TUS fae ee G3s-c6k, aoe, Ua =! i iat eo Psi oh =e ais Tal lot - 635.66 | Bg Considenng Posty on of Frovendg: te%>Lo.88 Cicyd-635-ce) 2 TH | Ta) © eS CaRA 4, Scanned with Bcamscanner we _ffovbrne wovk 2 IxCp Cta-t) : 21-008 Cloyd -wee 9291) if - 2 38-6 Kk S)ko “Tread sogiaks once ety eh 211008 Clo93 -588) _ 2313-5 L3leg IW kerma) 2 Net govk oot pob_ Bice es Weak goplted. 2 38)-6 ~ 299.5 aia - 43 cO-1I98S 219 9d: forbrne ex haw « Tie tea We “Temporatore Scanned with |\CamScanner Lintroduction to Gas Power Cycles, © Gas power c: es 2 arg used in gas turbine power plants, lateral eomunion ob SO SEU "RiaibIo) gasow Dada Oa ote on sysicms’ oh0 90.0 BS on B 8 BO. Be 6 ‘© These cycles convert heat a et a mechanjgal work using 8 working Nid a O®, BE mba 63 Bag. MD 9 (usually air or gas). 69 OS, ae arenes 69 DU obeo 966 + The two major gas power cycles discussed are: © Camot Cycle (Theoretical maximum efficiency) © Brayton Cycle (Practical gas turbine cycle) 2,Carnot Cycle (Idealized Gas Power Cycle) ‘Developed by Sadi Carnot (1824), this cycle provides a theoretical upper limit on efficiency. «It consists of four reversible processes. Processes in the Carnot Cycle 1 Isothermal Expansion (1 —> 2), © Heat Qin is added at a constant high temperature 7; Had Bboaidan® ovo Goon O © The gas expands and perfgns wk onthe surroundings Boa Bebo F ‘Aba DH XD OS 2. ‘Adiabatic Expansion (2 > 3) co The gas expands further without heat transfer. DP? BDI OOD Bobdloo MD. © Its temperature decreases from T; to T. Abowd? TT Ber 3. Isothermal Compression (3+ 4) | © Heat Quy is rejected at constant low temperature Ty, eon 3 Gdronrve OD wne Qoriov ‘Scanned with |CamScanner @ Soa cond OO © Thegas is compressed, losing eneray 4. ‘Adiabatic Compression (4+ 1) © The gas is further compressed without heat transfer, m0 BD MOY O92 sPs00% @BSErc A+ ‘© Its temperature rises back to Ty BG Cdbow2 nyo Ten Olae wv Limitations of the Carnot Cycle * Not practical for real engines due to: BD DBA DED Heo ao 1. Fries processes % {impossible @ ns 2. Heat cangot transfer wit out a temperature diffe Lo BODaM GOED nS ee myambe Cor 3. Sothermal expafBion Compression requites very Sow operation, which is impractical. 4% O8 cox ar! 4200260 3Bravton Cycle (Practical Gas Turbine Cycle) ‘+ The Brayton cycle is used in gas turbines for power plant, jet engines, and industrial applications. ‘© It operates on a continuous flow system, unlike the Camot eycle. 82 Corre’ oOo 00D BONO God SEDAN Oo Bay Processes in the Brayton Cycle 1 Compression (1 — 2) © Airis compressed ina compressor. 20.0 agbaman we, e882 6 co Pressure and temperature increase. Py T (Y 2. Constant Pressure Heat Addition (2 3)/ co Heat is added at constant pressure in the combustion chamber. Bod B20 6dr) Gadd © Temperature rises significantly. T axOOa Oe Oe are ce 3 Adiabatic Expansion (3 4) © The hot air expands in the turbine, producing work output Ciogp Doa Qanbbo S 22 gee moa ‘Scanned with |CamScanner ‘© Temperature and pressure drop. @v'T &B@ 4 (Constant Pressure Heat Rejection (4 — 1) © Heat is rejected to the surroundings, cooling the gas before re-entering the cycle, BBBOOS roe 22> wh: Comparison: Camot Cycle vs. Brayton Cycle Feature Camot Cycle | Brayton Cycle Efficiency | Theoretically highest | Lower but practical | Heat Transfer Isothermal | Constant pressure Work Process | Reversible Continuous flow Application | Theoretical | Gas turbines, jet engines 4 Actual Brayton Cycle (Real-World Adiustnents), © Inreal gas turbines, the actual cycle differs due to irreversibilities such as: prec 03 Ob69n 90 Hz) MbI® Oooo Hw BBO © Friction hd D- o. Pressure losses © Non-ideal heat transfer Deviations from the Ideal Brayton Cycle ‘* Compression is not isentropic (irreversible compression due to friction), aboroo od Expansion in the turbine is not isentropic (energy losses in turbine blades). POP AMG Y DO ‘+ Pressure losses occur in the combustion chamber. ego B08 BA wD. ‘Scanned with |CamScanner Modifications to Improve Efficiency 1 Imercooting | ‘© Used between compressor stages to reduce work required ig compression. MOD Deo) G22 ovo. DO ‘© Advantage: Reduces compressor work, improving efficiency, DBIOG 10 BAm@d8 , bor AON 2D Hdd, © Disadvantage: Requires additional cooling equipment. 98689 BS O0 (Cad F200. i 2 ©. Used between turbine stages o increase work output. DEo20 VD DS ‘3 © Advantage: Increases power output. ‘© Disadvantage: Additional fuel consumption, BOELO Yao Forvod 3. Regeneration! © Uses exhaust heat to preheat air before entering the combustion chamber. One AB YD mI 2%SODO 02b Ave 64 esd © Advantage: Reduces fuel consumption and increases cycle efficiency. Q- WB ovdvo YD. © Disadvantage: Increases system complexity. + F082 BocHbtocr —5.Practical Applications, © Camot Cycle is used as a theoretical benchmark but not in real systems. ‘© Brayton Cycle is the foundation of gas turbines, used in: ©. Jetengines © Power plants © Industrial gas turbines ‘Scanned with |CamScanner Methods to Improve Gas Turbine Performance Method] Purpose Effect on Efficiency Intercooling | Reduces compressor work | Moderate improvement Reheating | Increases turbine work | Moderate improvement Regeneration | Reuses exhaust heat ‘Significant improvement Conclusion ‘© Gas power cycles are essential in modem energy conversion systems. © The Camot cycle is ideal but impractic ‘world applications. + Efficiency improvements (intercooling, reheating, regeneration) enhance practical gas turbines. ‘ The’Brayton cycle is the foundation of modem power generation and aviation propulsion systems. 31, while the Brayton cycle is used in real- Scanned with |\CamScanner

You might also like