0 ratings 0% found this document useful (0 votes) 16 views 26 pages Gas Power Cycle
The document discusses the principles of reversible thermodynamic cycles, particularly focusing on heat engines and their efficiencies. It includes calculations related to heat transfer, work output, and temperature variations in various thermodynamic processes. The content is fragmented and appears to be scanned notes with various examples and equations related to thermodynamics.
AI-enhanced title and description
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content,
claim it here .
Available Formats
Download as PDF or read online on Scribd
Go to previous items Go to next items
Save Gas power cycle (1) For Later Reversible
ae
\
ieaie:*
holt Wi
Qa eG
ovk done
Coosa -Qyg,))
Gass emer t>
Vin
Cetyict eney)
aleve, m 2 mag of Sbid.
Cael
Ccornot cycle)
Reveysi ble
isothermal
Weak exchangey 2.
Ci Compyeasoy
T: Toy bine,
Scanned wth
G camscannerExample ol: é Sion
A heat argine yeceives heat at. the yate of
| g00ekTImin ands gives: ai: pkpow of Oke lec.
Determine + pot Epc
1| The they mal___ af fret ney, {bw “gay
LT! The yobe of heat ye@eotian = ee \
Solo bion
|Meat yecewed || Bat Wie? Weddsianginbac! Os
J Cy
Qy «2 1500 kT [rnin ae 1806,
3 oe ;
29 LIg a
aa
2 ate3/a7 Agia k.]
ork. ovbpob eu ¢ €- Aled
| Bhevnal effret ency
OYE Wahlen wo pele =) gnekone aebye(D
; Gn 125
~ hf
f+ 2, 16. 8S) 6.
oo
1) @e ¢ G@-w «!
Example oe. ool
lahat i9 thei Thpbatb | Rogar ble “theora bical
alfiaency of a heat engine. opera 4ing wi th
la bok yesoyvaiy of) foyneae gawea'i'at liso
—foshen__the __cookwig aa toy quaihble 19 at we?
Cals sls
UW 2 aloot+ 23% 2 . 2393k
Tao \5 + 293 2 ase ke.
— | Winan ota ge 2 20-598 [63p7,
2393
Scanned with
|CamScanner™Guomple 03 . a - io _lga
fe cond. u _qyele opexabes_ herke een aia yee
and gniks bempeya teve | of seat. sand -15°G
—___|C£ the gga tem
|gooyce find > __t
L ede ili ae
: T|_ Stthreciency of the systeo.
Tt The web oor bransfey-
Ei feas yejebberd Hol) site bo vis 09
] gin Ds) ooas . a)
SF. oa 4g ee, 523k. BS
£ Te 2-\S54+ 293 2 258k. = edt
jx Gives Gals eSA0 be hss 3 » Fogg uc
ion Wg sosnaihc ee
\t « Gadd Gi) a
0.6 « Web a
oS Ven:
Wwebid 46.54 ne
>) tes 2 dias’ “Gag Jon! y
Qyey ei Qaddi- Mueb Ag clr 5
2 AokI- 49-S4kT x =
OPM AG RIS AOU = 1
Scanned with
|\CamScannerer
J
[Example ee AWC Biomns
An ventory Clana that hia engine hoa the
2. ffollbaing specs froat frenetic due ol
: E KK
Corbpavqsiva Noor b 6 = Fenn ond 28°C.
Poacr developed - 48 ke) s
fool boned pey lwoy gaithio
Weatwa valve of the 6 fool: ~ 4 204TI Ka I
Lake mbhethey ia %Claim ia: valid oy wh.
rs
Tie 9 4093 2 lees le” de
Tee 294 093 2 2Gek. Hog de
IM nae ee ah ee 2 tl 248. /\ec-9en6/2 Jo - o-86y
Tv t (o23
CIE [4d
Li: heeic sf
[Ne boal thermal ftictency fo
WU. bhormal . (wovte \dono. « orrie| 98x 1600 X 60x95
Heat Sopplved 3-Ax94300 %
leo
20-4290 | ae.qaly © se
Scanned with
|\CamScannerCa imple of 8. eee th
Th apie heak erpends: opera bag, between a ca0rcy
Lemporaboye of [oc0% and 9 snk tem paratore—
“gore. find bho leagt 'yabo of heat vefeo toh _
“Pay ka neb cobpoh of the). eyine >.) ead
beast yabe °F beat yejeokon “pew kes) ve
Ook pobk x! pew a
Qa 1-826 Karn bilp
|G 2 Qy loved * 1-326 -) co 30ekay,
Scanned with
|CamScanner™Caamele. 06.
Bovce | Can soppy _en eng | ab the wle of
\2000 S| mn ab Bectc. N seand gouyce eo
Cav 20: pela sat at the yabe of 20000 &If
msn at Rhee ei _goovee Cl oy 2) goold yoo
noose bo soppy energy 62 an_idegl —yavey sible
heat engine that 6 to pyodece age arootn t
£ Powey it & the Lemperateye of the soyyoonds
Lng 16 ase % aby i
Gooree\* i ee
Rate of sepplg ct energy « 1200c eS! mrp
Gy 320+ 29% 2sqak_ Z
Gooryce 2% es
Rabe ot sopply of energy 2120000 L5}mn
Ty 2 4299 2 349K sa 3
To 2 get c +293 * 30Fk “ad
Ws eh ive SO VAR ey eee
hy u
2\ - 38 2 ag. 067% Vig 2 te abe2 ata.
543 34.5,
Wi 2 \2000x 64806 2 5% ¢q.245!min
Wr 2 (2000cK Wo9-loe » (2240 &Tlmn
Soorce 2 +4 elected, ok =
Scanned with
@ camscannerWo » mi Cho -b)
, Gigdard ray Clas Rane
Wrz >» Cho- ha) : tee
Qodd.e MEX Cy foy Octo,
- | egole.
ma2 M1 +MF Copenkype)
ms =™1 Celased bgPe)
Cory stan dayd Analyais)
Scanned wth
G camscannerWheb + Wt- We
= Aire Una- h> Cha Y
y Standayd cgole ettrorergy.
ewreb 2 my {Cha ha) Cns-bn)Y,
i Cay
A
Sata rm, Cha- ho), \.
i t Chan bX}, set aden’
pes Sele ti «Cha-h
piv ee ee
ae Lea
procegace 1-2 and a-4 aWich ave of v sen bro
2 (ef 4g)
Pa
® Pressove yabio:
Scanned with
BcamScanner‘canned withCyele
Actoal Bxaytor
3 2 ~- 7
OY le vwpot ‘i
oCP CT. -
}
Boyle” cotpt Cho)
Ni Le ea %)
fi!
Keak oe
= CPC Tar)
Neb oy ook Pot
“loop (Tel)-cPC GT,
e Efticiency,
= Noy owe OOMTURE
Heat Supplied
Cella Te )-ceCt-t)
CRC %-T.))
@Torbine (gen bY pro
SATCLeMEY ay.
= Redwol ork oobPob
Toentyope cork oobpol
2 cp Cte)
OWNeSSOY isen tYohC
effreiency , V\com
= woyk in Rob yeeoryed
¥ in taenbyoprce Comm Pyegaion
Actoal work yegured
= CPC Te“ WH) Ghee Ry
ae eh
. Tart 7s
a Mh
‘Scanned with
@ camScannerCaore Ye.
oe
p
t 2
Riv enters the compyessoy of a gaa twbne Pont
—_____|@erating on Brayton Woele at | icl-seackipa, eat =
‘Che pressve
the cyclo effrctengy -
olbeye We ond We
Compyessoy wovle
yatro in the
dhe manimom bem perature iw Xne agcle and —
aye the
yes peotwely
eple i867) Calalate
Aasomo W¢ 2 2aWe ,
toybine and the —
‘Tehel Wi pig
7
oO 42cm
eo)"
Pye 101.306 po ~
Ti 2 29+ 293 2 380k ee al
ye St i
Fripty Tey | te) do™ gy 5
CY ms ) goth bia
Cae se (By NP re. /
ey Ai! Cy é
( i ah
Te pete
doo | pik foet Le Es
(4 1
[Tee eT xeoo es! 8 A Soi
= 500: 4k., q
Scanned with
|\CamScannermep CTs -Ta) = 2-3 xm soe CT-T,) ae
ie eo 24 Cie Te
_£- }
[Ts - Ts 2 2-3 Csc0-4-300) 4
eel
__{- 668 i seg
Tse teak,
q si I< Ls}
Ta 2128) a: REO ke epee 44
| -668 ol ee ee CN
We wet = Mee C Ta Tad op Cla -T
Q@add pep CTa— Tt), Z
fel nes) a
ae Cae ta) - Chet m
er Py’ iientetiecs
Scanned with
|CamScanner™Caample oF: ee be Ly lll
Lay)
A gas bovbine is _Bopphied. ith goa at bay
and (ooo k and _expanda 6 adiabatically &ei/s5
| bay - The mean —apecifre heat at Conatan k
—___| pre os esove and _Conatan _volome ava 1-040.8 —
Lhd] keg k___dind «0: 4662 | iT) bg Kk _yeapedérvely
t| oyan the _ bompey aloe -enbyopy diadyam bo
_|Ye present bbex sensees DANA Lthe- simple gaa_
__|borbwe System. ss! +
ake
Caleolate the pomesr- developed _n leo Pe k.g.o+—
gas per gecond and the exhavst gas
Lew pera bore - 4
Go he ay
Ta © tocc lk
Pie \bay
aps 10428 Ed} eg %
ty 20-9662 Bley kk
=< ne
ies deve bred Pey ky Of gag Per Seance
Bis! pie igor
SY ae Fag Bee a
i
$ =f 2 1:9428 2 |. 3606.
ao: t662
Scanned with
|\CamScannerSTagse, 6 Go\lase aa
: £
esak. 9
Pie 0950 ha — had
x 1099
65>
siha S104 28° Cico0-weS=3)
8
= 961-945 ka. @Ss¢
ol Ge bagalisus, “ieee ARs. “SJabeie) |S
; 3 Bu! ii A BE ce,
49 WE H1.99 O
}
7
! 4
ro] ea e ae
Leg > |
't2 Os u5 19
etait ea) ye
1 a
i ae WO
1 fe Go
UD
sais: SS aa
1 Scanned with
|CamScanner™i? Geomeie 09, (gmoe)
An taenbyopic Lary Bybines 116 oaed» bo sopply—
te 4 bay.
o1kg1s of ay atibay and! ab. 263 kito 9
| Cabin. The ipyeasoye of mlet to the) torbine—
Deokermne the bempoyateve at | toybine.
inle b and paoy developed by the tovbme
hesome Cp « |-0 Le I hee (Soc - s a
(en q
2 i tt Ta
SG Lar ie Xt Lies
288 ‘ ( ae 4
t
Te © page ~295 2420. ak |
fowey develope se mop Cae)
eo hick, OTH W WT
2o-| x C429.5)~ 2/96)
2198S haul ’
Scanned with
|\CamScanner__Gaampleso- ely a IE PS OL
4 Conarder an ain shandayd — qyelo an obaelr ON
iy. enters: the. Compyessox | abi1o bariand 20%
The pyessve of ary leaymg the Con pressor
in. 3-8 pr laceraai Cait tempera tove’ ab torbine.
inlet 18 Boot. Mebermne pay ky of aly
| CiSscccency eke bye: edeloy!
b _& |Meat Soipplied 6 ory: 2
—_ DBlaok orlable at the. abot bl ieee
Bi Neg O yepected in bhe — Coc Gellgg Sed
ile of ary leauiaes the. pes
Ss
empera tove
TP 2 10 bay i OEE ai
Ty 2 20C wt 293 2 2g. Ne é i
Pr = 35 bay-
Ta + Gootea3 2 993k.” «a
7 a Ae) ; a
CP 21.008 “ko legk:
Aa)
Dye fy on
\ 2. a aA j
z0:300§ 2 30-08
Ceb Jaro & sfols uo b owe)
AD Qwis ce CT qe)» « ‘
I of ae . a
eR 5 :
—_
Scanned with
|CamScanner™oooex Ceaaiiaaiaeg)
vite Mi Btun GS WTibgus
gr
Qoet « We ~ We: a4
Sia edbplCitacif, rot tote sae = pi
We 2 Ce C=). _
Eee [apy ee gaeeu pale ke ee coc ee
[+4303
Wee ceCTa-Ta) 4
2 1-005 ( 93- 610-36) a
| eep.gg kSleg acs
aa
@camscanner|wes CpeC%—T
L-cosC 4\9- of - 24
ae
LE oud =z Cp Cha)
oec8 C one. #1893) 0) = doc
L sarees al hy.
( 42 wo)
| vl le 2 eve ah “ST oe,
a Ear ath =s
fe Vie:
—— -
ta
Z, an Nad a
1 oh \ Ch S
\ ] vat
} J é
ER é¢
f
et eT
eM
( # ) 95
Scanned with
@camScanner| wele , the aiy at
—|\T_pyessove ya bro 8
____Compyessor ef treremiea ove each eo’
ga5__loybine | plank oor leng
et (8 ante
and -bhe maxmom
|temperatoye 19 goo'c. ‘The toybing and __
fi cd
___| Canpvessoy ooye, borbine @oyk, heat eopplied
| A as_{ keg. Draw T-3 deagran.
trina
qgole ofrcrency ‘ain d boy bine exhans t_
meeratoye: Moss of avy _may be conside,
j co
y26-25
VW = s0%7-
Tae 800+ 23 21093 K,
Ty 2 29 4293) 2 300K
: Pre alMpa’ . | bay
Le : miei 1&9)
>
Ree FS
Soy, the Com pressoy> sb 4)
Te
oa
Te
3200 {
Unt pie iam f SF BID Be ieee
B00
to esoe 4k, NIC eRe,
Scanned with
@ camscanner— IC. om Pye S3oy
lecdip@ ae Taos
E Leterc. Ga
Lived te ThgMt Tae 9 i i
x 306-4! 2 109% A o J
oie 2 pei TUS
fae ee G3s-c6k,
aoe, Ua =!
i iat eo
Psi oh =e ais Tal
lot - 635.66
| Bg Considenng Posty on of Frovendg:
te%>Lo.88 Cicyd-635-ce) 2 TH
|
Ta) © eS CaRA 4,
Scanned with
Bcamscannerwe _ffovbrne wovk 2 IxCp Cta-t)
: 21-008 Cloyd -wee 9291)
if - 2 38-6 Kk S)ko
“Tread sogiaks once ety
eh 211008 Clo93 -588) _
2313-5 L3leg
IW kerma) 2 Net govk oot pob_ Bice es
Weak goplted.
2 38)-6 ~ 299.5
aia - 43
cO-1I98S 219 9d:
forbrne ex haw « Tie tea We
“Temporatore
Scanned with
|\CamScannerLintroduction to Gas Power Cycles,
© Gas power c: es 2 arg used in gas turbine power plants, lateral eomunion
ob SO SEU "RiaibIo) gasow Dada
Oa ote on sysicms’ oh0 90.0 BS on B 8 BO. Be 6
‘© These cycles convert heat a et a mechanjgal work using 8 working Nid
a O®, BE mba 63 Bag. MD 9
(usually air or gas). 69 OS, ae arenes 69 DU obeo 966
+ The two major gas power cycles discussed are:
© Camot Cycle (Theoretical maximum efficiency)
© Brayton Cycle (Practical gas turbine cycle)
2,Carnot Cycle (Idealized Gas Power Cycle)
‘Developed by Sadi Carnot (1824), this cycle provides a theoretical upper limit on
efficiency.
«It consists of four reversible processes.
Processes in the Carnot Cycle
1 Isothermal Expansion (1 —> 2),
© Heat Qin is added at a constant high temperature 7;
Had Bboaidan® ovo Goon O
© The gas expands and perfgns wk onthe surroundings
Boa Bebo F ‘Aba DH XD OS
2. ‘Adiabatic Expansion (2 > 3)
co The gas expands further without heat transfer.
DP? BDI OOD Bobdloo MD.
© Its temperature decreases from T; to T.
Abowd? TT Ber
3. Isothermal Compression (3+ 4) |
© Heat Quy is rejected at constant low temperature Ty,
eon 3 Gdronrve OD wne Qoriov
‘Scanned with
|CamScanner@ Soa cond OO
© Thegas is compressed, losing eneray
4. ‘Adiabatic Compression (4+ 1)
© The gas is further compressed without heat transfer,
m0 BD MOY O92 sPs00% @BSErc A+
‘© Its temperature rises back to Ty
BG Cdbow2 nyo Ten Olae wv
Limitations of the Carnot Cycle
* Not practical for real engines due to:
BD DBA DED Heo ao
1. Fries processes % {impossible
@ ns
2. Heat cangot transfer wit out a temperature diffe
Lo BODaM GOED nS ee myambe Cor
3. Sothermal expafBion Compression requites very Sow operation,
which is impractical. 4% O8 cox ar! 4200260
3Bravton Cycle (Practical Gas Turbine Cycle)
‘+ The Brayton cycle is used in gas turbines for power plant, jet engines, and
industrial applications.
‘© It operates on a continuous flow system, unlike the Camot eycle.
82 Corre’ oOo 00D BONO God SEDAN Oo Bay
Processes in the Brayton Cycle
1 Compression (1 — 2)
© Airis compressed ina compressor. 20.0 agbaman we, e882
6
co Pressure and temperature increase. Py T (Y
2. Constant Pressure Heat Addition (2 3)/
co Heat is added at constant pressure in the combustion chamber.
Bod B20 6dr) Gadd
© Temperature rises significantly.
T axOOa Oe Oe are ce
3 Adiabatic Expansion (3 4)
© The hot air expands in the turbine, producing work output
Ciogp Doa Qanbbo S 22 gee moa
‘Scanned with
|CamScanner‘© Temperature and pressure drop. @v'T &B@
4 (Constant Pressure Heat Rejection (4 — 1)
© Heat is rejected to the surroundings, cooling the gas before re-entering the
cycle, BBBOOS roe 22> wh:
Comparison: Camot Cycle vs. Brayton Cycle
Feature Camot Cycle | Brayton Cycle
Efficiency | Theoretically highest | Lower but practical
| Heat Transfer Isothermal | Constant pressure
Work Process | Reversible Continuous flow
Application | Theoretical | Gas turbines, jet engines
4 Actual Brayton Cycle (Real-World Adiustnents),
© Inreal gas turbines, the actual cycle differs due to irreversibilities such as:
prec 03 Ob69n 90 Hz) MbI® Oooo Hw BBO
© Friction hd D-
o. Pressure losses
© Non-ideal heat transfer
Deviations from the Ideal Brayton Cycle
‘* Compression is not isentropic (irreversible compression due to friction),
aboroo od
Expansion in the turbine is not isentropic (energy losses in turbine blades).
POP AMG Y DO
‘+ Pressure losses occur in the combustion chamber.
ego B08 BA wD.
‘Scanned with
|CamScannerModifications to Improve Efficiency
1 Imercooting |
‘© Used between compressor stages to reduce work required ig compression.
MOD Deo) G22 ovo. DO
‘© Advantage: Reduces compressor work, improving efficiency,
DBIOG 10 BAm@d8 , bor AON 2D Hdd,
© Disadvantage: Requires additional cooling equipment.
98689 BS O0 (Cad F200.
i
2
©. Used between turbine stages o increase work output.
DEo20 VD DS ‘3
© Advantage: Increases power output.
‘© Disadvantage: Additional fuel consumption,
BOELO Yao Forvod
3. Regeneration!
© Uses exhaust heat to preheat air before entering the combustion chamber.
One AB YD mI 2%SODO 02b Ave 64 esd
© Advantage: Reduces fuel consumption and increases cycle efficiency.
Q- WB ovdvo YD.
© Disadvantage: Increases system complexity.
+ F082 BocHbtocr
—5.Practical Applications,
© Camot Cycle is used as a theoretical benchmark but not in real systems.
‘© Brayton Cycle is the foundation of gas turbines, used in:
©. Jetengines
© Power plants
© Industrial gas turbines
‘Scanned with
|CamScannerMethods to Improve Gas Turbine Performance
Method] Purpose Effect on Efficiency
Intercooling | Reduces compressor work | Moderate improvement
Reheating | Increases turbine work | Moderate improvement
Regeneration | Reuses exhaust heat ‘Significant improvement
Conclusion
‘© Gas power cycles are essential in modem energy conversion systems.
© The Camot cycle is ideal but impractic
‘world applications.
+ Efficiency improvements (intercooling, reheating, regeneration) enhance practical
gas turbines.
‘ The’Brayton cycle is the foundation of modem power generation and aviation
propulsion systems.
31, while the Brayton cycle is used in real-
Scanned with
|\CamScanner