0% found this document useful (0 votes)
18 views21 pages

Kev 4

The document contains a series of mathematical problems and questions, including calculations involving spheres, expansions of algebraic expressions, and geometric transformations. It also includes questions on sequences, curve analysis, and function compositions. The problems are structured for students to solve, with spaces provided for answers.

Uploaded by

kev
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
18 views21 pages

Kev 4

The document contains a series of mathematical problems and questions, including calculations involving spheres, expansions of algebraic expressions, and geometric transformations. It also includes questions on sequences, curve analysis, and function compositions. The problems are structured for students to solve, with spaces provided for answers.

Uploaded by

kev
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 21

9

Do not write
outside the
3k box
10 The radius of a sphere, in cm, is
2
The volume of the sphere, in cm3, is 972π

4 3
Volume of a sphere = πr where r is the radius
3

Work out the value of k.


[3 marks]

Answer

11 Expand and simplify fully (5x + 3y2)(4x – y2)


[3 marks]

Answer

10

Turn over ►

*09*
IB/M/Jun21/8365/2
10
Do not write
outside the
box
12 A and B are points on the line y = 3x + 2
B, C and D (5, 0) are points on the line L.
OA : AC = 1 : 4

Work out the x-coordinate of B.


[5 marks]

Answer

*10*
IB/M/Jun21/8365/2
11
Do not write
outside the
box
13 P is the point on the curve y = ax3 + 10x2 where x=2
1
The gradient of the normal to the curve at P is –
4

Work out the value of a.


[4 marks]

Answer

Turn over for the next question

Turn over ►

*11*
IB/M/Jun21/8365/2
12
Do not write
outside the
1 0  box
14 (a) A=  
 0 –1

Describe geometrically the single transformation represented by A.


[1 mark]

Answer

 0 1
14 (b) B=  
 –1 0 

Describe geometrically the single transformation represented by B2


[2 marks]

Answer

*12*
IB/M/Jun21/8365/2
13
Do not write
outside the
box
15 A, B and C are points on a circle, centre O.
ACD is a straight line.
Angle BCD = w

Prove that w = x + 90°


[5 marks]

Turn over ►

*13*
IB/M/Jun21/8365/2
14
Do not write
outside the
box
16 The coefficient of x4 in the expansion of (a + 2 x )6 is 1500

Work out the two possible values of a.


[3 marks]

Answer and

*14*
IB/M/Jun21/8365/2
15
Do not write
outside the
box
17 ABCDEFGH is a cube with side length 32 cm
M and N are points on DH and CG respectively.

Work out the size of the angle that the line BM makes with the plane ABCD.
[5 marks]

Answer degrees 8

Turn over ►

*15*
IB/M/Jun21/8365/2
16
Do not write
outside the
3 box
18 y = 12x +
x

Show that y has a minimum value when x = 0.5


[5 marks]

*16*
IB/M/Jun21/8365/2
17
Do not write
outside the
box
19 (a) f(x) = (x + 2)3
g is a function such that gf(x) = (x + 2)12

Work out an expression for g(x)


[1 mark]

Answer

19 (b) h(x) = x2 + 5
k is a function such that hk(x) = 4x2 + 5

Work out an expression for kh(x)


[2 marks]

Answer

Turn over for the next question

Turn over ►

*17*
IB/M/Jun21/8365/2
18
Do not write
outside the
2sin x + cos x 1 box
20 Show that – can be written in the form acos x + bsin x
tan x sin x
where a and b are integers.
[4 marks]

*18*
IB/M/Jun21/8365/2
19

Do not write
outside the
box
21 3x2 + 2bx + 8a can be written in the form 3(x + a)2 + b + 2

Work out the two possible pairs of values of a and b.


[6 marks]

a= b=

a= b=

END OF QUESTIONS

10

*19*
IB/M/Jun21/8365/2
2

Answer all questions in the spaces provided.

1 Factorise fully 6𝑎! 𝑏 − 15𝑎𝑏 "

[2 marks]

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

Answer _____________________________________

2 Work out the values of 𝑝, 𝑞 and 𝑟 such that 2𝑥 # − 8𝑥 + 𝑝 ≡ 𝑞 𝑥 + 𝑟 #


+ 19

[3 marks]

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

𝑝 = ____________ 𝑞 = ____________ 𝑟 = ____________


3

3 2 6 8 1
Work out
4 5 10 3

[2 marks]

Answer ________________________

4 How many numbers satisfy all of the following conditions?

• The number is a four-digit integer..


• The second digit is 8.
• The other digits are all odd numbers.

[3 marks]

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

Answer ________________________
4

5 Simplify 8( 98 + 32 − 50 ) writing your answer as an integer.

[3 marks]

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

Answer ________________________

6 Solve 𝑥 # − 𝑥 < 12
[2 marks]

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

Answer __________________________________
5

7 Use matrix multiplication to show that, in the 𝑥−𝑦 plane,

• a reflection in the line 𝑦 = 𝑥, followed by


• a reflection in the line 𝑦 = −𝑥
is equivalent to a rotation of 180º about the origin.n in the x-axis.
[3 marks]
6

8 The curve shown has equation 𝑦 = 𝑎𝑏 $% where 𝑎 and 𝑏 are positive integers.
The point (2, 0.75) lies on the curve. Find the values of 𝑎 and 𝑏.

[2 marks]

𝑎 = ____________ 𝑏 = ____________
7

9 The curve with equation 𝑦 = 𝑥 & + 4𝑥 " − 6𝑥 # − 5𝑥 + 13 has a turning point at (1,7).
Determine whether this point is a maximum or a minimum.
[2 marks]

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

_______________________________________________________________________

Answer ________________________

10 f(𝑥) = 2𝑥 − 1
g 𝑥 = 𝑥# + 3

Work out fg(𝑥)

[2 marks]

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

Answer ________________________
8

11 (a) On the axes, sketch 𝑦 = cos 𝑥 for − 360° ⩽ 𝑥 ⩽ 360°


[3 marks]

(b) You are given that 180° < 𝑢 < 360° and that tan 𝑢 = 1
Find the value of 𝑢.
[1 mark]

___________________________________________________________________

________________________________________________________________________

Answer ________________________
9

12 The 𝑛th term of a sequence is 𝑈'

4𝑛 − 11
𝑈' =
5𝑛

(a) Work out the least value of 𝑛 for which 𝑈' ≥ 0.7
[3 marks]

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

Answer ________________________

(b) Write down the limiting value of 𝑈' as 𝑛 → ∞


[1 mark]

Answer ________________________
10

13 (a) Show that (2sin 𝜃 + cos 𝜃)(cos 𝜃 − 2sin 𝜃) + 2 ≡ 5 cos# 𝜃 − 2

[3 marks]

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

(b) Hence, or otherwise, find the value of (2sin 60° + cos 60°)(cos 60° − 2sin 60°)

[3 marks]

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

Answer ________________________
11

14 The table lists the equations of three straight lines.

Equation of line Gradient 𝑦-intercept

𝑦 = 7 − 3𝑥

5𝑥 + 2𝑦 = 20

𝑦 − 21
=3
𝑥−5

Fill in the gradients and 𝑦-intercepts of each line.

[6 marks]

You might also like