FORMULAE
1) ∫ 1 dx = 𝒙 + C
2) ∫ k dx = k 𝒙 + C , where k is a constant
𝒙𝒏+𝟏
3) ∫ 𝒙𝒏 dx = + C ; n ≠ -1
𝒏+𝟏
4) ∫ sin𝒙 dx = – cos𝒙 + C
5) ∫ cos𝒙 dx = sin𝒙 + C
6) ∫ sec2𝒙 dx = tan𝒙 + C
7) ∫ cosec2𝒙dx = – cot𝒙 + C
8) ∫ sec𝒙 tan𝒙 dx = sec 𝒙 + C
9) ∫ cosec𝒙 cot𝒙 dx = – cosec 𝒙 + C
𝟏
10) ∫ dx = log |𝒙| + C
𝒙
11) ∫ 𝒆𝒙 dx = 𝒆𝒙 + C
𝒂𝒙
12) ∫ 𝒂𝒙 dx = + C ; a>0, a≠1
𝒍𝒐𝒈𝒂
𝟏
13) ∫√ 𝒅𝒙 = 𝐬𝐢𝐧−𝟏 𝒙 + 𝑪 𝑶𝑹 − 𝐜𝐨𝐬−𝟏 𝒙 + 𝑪
𝟏−𝒙𝟐
𝟏
14) ∫ 𝟏+𝒙𝟐 𝒅𝒙 = 𝐭𝐚𝐧−𝟏 𝒙 + 𝑪 𝑶𝑹 − 𝐜𝐨𝐭 −𝟏 𝒙 + 𝑪
𝟏
15) ∫ 𝒅𝒙 = 𝐬𝐞𝐜 −𝟏 𝒙 + 𝑪 𝑶𝑹 − 𝐜𝐨𝐬𝐞𝐜 −𝟏 𝒙 + 𝑪
𝒙√𝒙𝟐 −𝟏
16) ∫ 𝒕𝒂𝒏𝒙 𝒅𝒙 = 𝐥𝐨𝐠|𝑺𝒆𝒄𝒙| + 𝑪
17) ∫ 𝑪𝒐𝒕𝒙 𝒅𝒙 = 𝐥𝐨𝐠|𝑺𝒊𝒏𝒙| + 𝑪
18) ∫ 𝑺𝒆𝒄𝒙 𝒅𝒙 = 𝐥𝐨𝐠|𝑺𝒆𝒄𝒙 + 𝒕𝒂𝒏𝒙| + 𝑪
19) ∫ 𝑪𝒐𝒔𝒆𝒄𝒙 𝒅𝒙 = 𝐥𝐨𝐠|𝑪𝒐𝒔𝒆𝒄𝒙 − 𝑪𝒐𝒕𝒙| + 𝑪
𝟏 𝟏 𝒙−𝒂
20) ∫ 𝒙𝟐−𝒂𝟐 𝒅𝒙 = 𝟐𝒂
𝒍𝒐𝒈 |
𝒙+𝒂
|+𝑪
𝟏 𝟏 𝒂+𝒙
21) ∫ 𝒂𝟐−𝒙𝟐 𝒅𝒙 = 𝟐𝒂
𝒍𝒐𝒈 |
𝒂−𝒙
|+𝑪
𝟏 𝟏 𝒙
22) ∫ 𝒙𝟐+𝒂𝟐 𝒅𝒙 = 𝐭𝐚𝐧−𝟏 ( ) + C
𝒂 𝒂
𝟏
23) ∫√ 𝒅𝒙 = 𝒍𝒐𝒈|𝒙 + √𝒙𝟐 − 𝒂𝟐 | + 𝑪
𝒙𝟐 −𝒂𝟐
𝟏
24) ∫√ 𝒅𝒙 = 𝒍𝒐𝒈|𝒙 + √𝒙𝟐 + 𝒂𝟐 | + 𝑪
𝒙𝟐 + 𝒂 𝟐
𝟏 𝒙
25) ∫√ 𝒅𝒙 = 𝐬𝐢𝐧−𝟏 ( ) + 𝑪
𝒂𝟐 −𝒙𝟐 𝒂
𝒙 𝒂𝟐
26) ∫ √𝒙𝟐 − 𝒂𝟐 𝒅𝒙 = √𝒙𝟐 − 𝒂𝟐 − 𝒍𝒐𝒈|𝒙 + √𝒙𝟐 − 𝒂𝟐 | + 𝑪
𝟐 𝟐
𝒙 𝒂𝟐
27) ∫ √𝒙𝟐 + 𝒂𝟐 𝒅𝒙 = 𝟐
√𝒙𝟐 + 𝒂𝟐 +
𝟐
𝒍𝒐𝒈|𝒙 + √𝒙𝟐 + 𝒂𝟐 | + 𝑪
𝒙 𝒂𝟐 𝒙
28) ∫ √𝒂𝟐 − 𝒙𝟐 𝒅𝒙 = √𝒂𝟐 − 𝒙𝟐 + 𝐬𝐢𝐧−𝟏 ( ) + 𝑪
𝟐 𝟐 𝒂
NOTE: In all the above formulae , if x is replaced by ax+b ( where a and b are constants) then all
the above formulae still remains true , provided the result on the RHS is divided by a
( ie the coefficient of x)