Report
Report
Each member was designed for different load conditions like dead loads, live loads, wind loads, and
seismic forces with the help of appropriate building codes and standards.
Advanced design techniques and analysis tools were used throughout the project, including AutoCAD,
Revit, Robot Structural Analysis and CSI Column software to model the structure and perform
calculations necessary to provide the strength and stability of each member. This was done not only to
ensure that the building adheres to the required safety criteria but also to use materials most
economically.
Some of the challenges during the design process were trying to balance the structural efficiency with
the architectural layout, taking care of the foundation settlement, and optimization of shear wall
locations. The project epitomizes the application of basic principles in civil engineering into a real-life
experience for solving complicated structural problems.
This project has provided me with hands-on experience in structural design, reinforced my knowledge of
engineering principles, and developed the problem-solving skills that are essential for a successful career
in civil engineering. The successful design of the building showcases my ability to integrate theory with
practice and prepares me for future challenges in structural engineering design.
Introduction
Objective:
The primary objective of this project is to apply the principles of structural engineering to design a multi-
storey building that meets all relevant safety and functionality criteria. This includes the design of
columns, shear walls, slabs, core walls, and a raft foundation to ensure the building's stability under
various load conditions.
Scope:
The project encompasses the comprehensive structural design of a multi-storey building. This involves:
• Designing the key structural components: columns, shear walls, slabs, core walls, and the raft
foundation.
• Performing detailed analysis and design calculations using industry-standard software tools.
Design Criteria
The design of the multi-storey building was carried out in compliance with the relevant standards and
codes to ensure structural safety, stability, and functionality. The following design criteria were applied:
1. Design Codes:
o ASCE 7-16: Used for the calculation of loads and load combinations, including dead load,
live load, wind load, and seismic load.
o ACI 318-19: Used for the design and detailing of reinforced concrete elements such as
columns, slabs, shear walls, and foundations.
2. Load Considerations:
o Dead Load (DL):
a) Self-Weight (SW): These loads include the self-weight of the building including
shear/basement walls, columns, slabs, and beams loads. These loads are constant
over time.
b) Super Imposed Dead Load (SDL): These loads include the partitioning walls,
interior walls, architectural finishes, aramid, floor finishes, ceiling loads, and
mechanical, electrical and plumbing (MEP) pipes.
In this project I will assume the following:
SDL= 5 KN/m2 for typical floors.
Figure 1 Screen Capture for Model Showing SDL on Typical Floors
o Live Load (LL): Variable loads, typically from occupancy and furniture, defined by ASCE 7-
16 based on the type of occupancy and usage of the building.
Figure 6 Screen Capture for Model Showing Live Load on Typical Floors
o Wind Load (WL): Calculated using the Robot Structural Analysis Wind Load Simulation
Tool. This tool was employed to model the building’s response to wind forces, taking into
account factors such as the building's height, location, exposure category, and terrain
type. The following assumptions are taken in this project:
Wind Speed = 33m/s
Figure 11 Table 7- Egyptian code for calculating loads and forces in construction and building works 201
Figure 12 Screen Capture Showing Steps to Simulate Wind Load in Robot Structural Analysis
Figure 13 Screen Capture Showing Steps to Simulate Wind Load in Robot Structural Analysis
Initially, I attempted to apply the Equivalent Lateral Force (ELF) method manually and
compared the results with those obtained from the software to ensure the accuracy and
reliability of software calculations. The following are the detailed calculations:
Based on Needed
Key factor Value what? for what?
Table 1.5-
Risk Category II- Residential 1 Ie
Table 1.5-
Importance factor (Ie) Ie=1 2 Cs
Max considered EQ spectral response
acceleration at 1 sec period (S1) 0.669 Location Sm1,Csmin
Max considered EQ spectral response
acceleration at short period (Ss) 1.88 Location Sms
Long period transition period (TL) 8.0 sec Location Cs max
Site class B Location Fa,Fv
Table
Short period site coefficient (Fa) 0.9 11.4-1 Sms
Table
Long period site coefficient (Fv) 0.8 11.4-2 Sm1
Max considered EQ spectral response Sms=Fa x Ss= Eq. 11.4-
acceleration for short periods (Sms) 0.9x1.88=1.692 1 SDS
Max considered EQ spectral response Sm1=Fv x S1 = 0.8x0.67= Eq. 11.4-
acceleration for 1 sec periods (Sm1) 0.536 2 SD1
Design spectral response acceleration Eq. 11.4-
for short periods (SDS) SDS= 2/3 Sms= 1.128 3 Cs
Design spectral response acceleration Eq. 11.4-
for 1 sec periods (SD1) SD1 = 2/3 Sm1 = 0.357 4 Cs
Table
Response modification factors (R) R= 3 12.2-1 Cs
Table
Ct for fundamental period Ct = 0.0466 12.8-2 T
Table
x for fundamental period x = 0.9 12.8-2 T
Ta=Ctxhn^x =
0.0466x(4x3.5)^0.9 = 0.501 Eq. 12.8-
Fundamental period (T) sec 7 Cs
Cs = SDS/(R/Ie) = Eq. 12.8-
Seismic response coefficient (Cs) 1.128/(3/1) = 0.376 2 V
Max. Seismic response coefficient (Cs Cs.max = SD1/T(R/Ie) = Eq. 12.8-
max) 0.357/(0.501x3/1) = 0.237 3 (T<TL) V
Min. Seismic response coefficient (Cs Cs min = 0.044SDS x Ie = Eq. 12.8-
min) 0.044x1.128x1= 0.049 5 V
V= Cs x W = 0.237 x
6542.2316= Eq.
Base shear 1550.51KN=1551KN 12.8.1.1 End
An exponent related to the structure period (K) By interpretation: T=0.613sec for T=0.5, K=1, for T=
2.5sec K=2 so, K=1.056
seismic lateral force at each story = Fx= Cvx*V Σwihi^k = 6140.5+12767+19590+26545= 65042.5
Cvx = (Wx*hx^k)/(Σwihi^k)
Table 1 Manual Calculations Results
• Coefficients:
o Seismic zone: zone 3 in ECP 201 which corresponds to medium seismic risk area
so, I can assume it to be zone C in ASCE 7
Figure 16 Mapped Seismic Zones in Egypt (ECP201)
Figure 17 Table of Seismic Zones in Egypt (ECP201)
Figure 21 Table 1.5-2 from ASCE 7-16 Figure 22 Table 1.5-1 from ASCE 7-16
• Software:
Figure 23 Coefficients Insertion in Robot Structural Analysis
3. Load Combinations
• Ultimate limit state Combinations according to LRFD (USD):
Used to check the strength of the structure and ensure that it can withstand extreme loads
Figure 24 Table C2.3-1 From ASCE 7-16
Used to test the structure's ability to perform under normal conditions, and to ensure that:
• Vibration arising from ordinary use-say, by people walking or operation of machinery-is not irritating or
injurious.
• Cracks or deformations do not affect the functional suitability or aesthetic appearance of the structure.
• Durability of the structure is maintained, ensuring a long service life with little maintenance.
Figure 25 Table C2.4-1 From ASCE 7-16
• Envelope:
Is the combination of the effect of all load combinations and taking the worst-case scenarios,
that is taking the maximum moment, shear, torsion, and axial forces from each combination. We
usually design beams using envelope only if we neglect torsion and this is because shear design
of beams is different from bending design (bending is resisted by longitudinal bars while shear is
resisted by stirrups) so if we took the maximum moment of any combination, it will not magnify
the shear design and vice-versa.
For columns and walls, we don’t use envelope.
For foundations, only if we assumed it to be pinned ➔ use envelope. In my case no.
4. Materials
a. Concrete:
Portland cement is used
5. 3D Model:
• Robot 3D Model:
Figure 26 Robot 3D Model
• Revit 3D Model:
Figure 27 Revit 3D Model
Table 2 Story Height
Story Height
1 3.07
2 2.93
3 3
4 3
5 3
6 3
7 3
8 3
9 3
10 3
11 3
12 3
13 3
14 4.1
15 1.98
6. Drift Analysis:
We check story drift according to SLS
Figure 28 Story Drift UX
Figure 29 Story Drift UY
Story height hsx= 3m for stories 1to13 and15 ➔ allowable story drift= 3x0.02=0.06
Story height hsx= 4.1m for story 14 ➔ allowable story drift= 4x0.02=0.082
7. Structural Components:
A. Columns: Designed for axial load and bending, with detailed reinforcement calculations
according to ACI 318-19.
Combinations:
1.40DL2+1.40DL21
1.20DL2+1.20DL21+1.60LL1
1.20DL2+1.20DL21
1.20DL2+1.20DL21+1.00LL1+1.00WIND1
1.20DL2+1.20DL21+1.00LL1+1.00WIND2
1.20DL2+1.20DL21+1.00LL1+1.00WIND3
1.20DL2+1.20DL21+1.00LL1+1.00WIND4
1.20DL2+1.20DL21+1.00LL1+1.00WIND5
1.20DL2+1.20DL21+1.00LL1+1.00WIND6
1.20DL2+1.20DL21+1.00LL1+1.00WIND7
1.20DL2+1.20DL21+1.00LL1+1.00WIND8
1.20DL2+1.20DL21+1.00WIND1
1.20DL2+1.20DL21+1.00WIND2
1.20DL2+1.20DL21+1.00WIND3
1.20DL2+1.20DL21+1.00WIND4
1.20DL2+1.20DL21+1.00WIND5
1.20DL2+1.20DL21+1.00WIND6
1.20DL2+1.20DL21+1.00WIND7
1.20DL2+1.20DL21+1.00WIND8
1.20DL2+1.20DL21+1.00LL1+1.00SEI_X9
1.20DL2+1.20DL21+1.00SEI_X9
1.20DL2+1.20DL21+1.00LL1+1.00SEI_Y17
1.20DL2+1.20DL21+1.00SEI_Y17
1.20DL2+1.20DL21+1.00LL1+1.00SEI_Y10
1.20DL2+1.20DL21+1.00SEI_Y10
1.20DL2+1.20DL21+1.00LL1+1.00SEI_X10
1.20DL2+1.20DL21+1.00SEI_X10
1.20DL2+1.20DL21+1.00LL1+1.00SEI_Y11
1.20DL2+1.20DL21+1.00SEI_Y11
1.20DL2+1.20DL21+1.00LL1+1.00SEI_X12
1.20DL2+1.20DL21+1.00SEI_X12
1.20DL2+1.20DL21+1.00LL1+1.00SEI_Y13
1.20DL2+1.20DL21+1.00SEI_Y13
1.20DL2+1.20DL21+1.00LL1+1.00SEI_X14
1.20DL2+1.20DL21+1.00SEI_X14
1.20DL2+1.20DL21+1.00LL1+1.00SEI_Y15
1.20DL2+1.20DL21+1.00SEI_Y15
1.20DL2+1.20DL21+1.00LL1+1.00SEI_X16
1.20DL2+1.20DL21+1.00SEI_X16
1.20DL2+1.20DL21+1.00LL1+-1.00SEI_X9
1.20DL2+1.20DL21+-1.00SEI_X9
1.20DL2+1.20DL21+1.00LL1+-1.00SEI_Y17
1.20DL2+1.20DL21+-1.00SEI_Y17
1.20DL2+1.20DL21+1.00LL1+-1.00SEI_Y10
1.20DL2+1.20DL21+-1.00SEI_Y10
1.20DL2+1.20DL21+1.00LL1+-1.00SEI_X10
1.20DL2+1.20DL21+-1.00SEI_X10
1.20DL2+1.20DL21+1.00LL1+-1.00SEI_Y11
1.20DL2+1.20DL21+-1.00SEI_Y11
1.20DL2+1.20DL21+1.00LL1+-1.00SEI_X12
1.20DL2+1.20DL21+-1.00SEI_X12
1.20DL2+1.20DL21+1.00LL1+-1.00SEI_Y13
1.20DL2+1.20DL21+-1.00SEI_Y13
1.20DL2+1.20DL21+1.00LL1+-1.00SEI_X14
1.20DL2+1.20DL21+-1.00SEI_X14
1.20DL2+1.20DL21+1.00LL1+-1.00SEI_Y15
1.20DL2+1.20DL21+-1.00SEI_Y15
1.20DL2+1.20DL21+1.00LL1+-1.00SEI_X16
1.20DL2+1.20DL21+-1.00SEI_X16
0.90DL2+0.90DL21
0.90DL2+0.90DL21+1.00WIND1
0.90DL2+0.90DL21+1.00WIND2
0.90DL2+0.90DL21+1.00WIND3
0.90DL2+0.90DL21+1.00WIND4
0.90DL2+0.90DL21+1.00WIND5
0.90DL2+0.90DL21+1.00WIND6
0.90DL2+0.90DL21+1.00WIND7
0.90DL2+0.90DL21+1.00WIND8
0.90DL2+0.90DL21+1.00SEI_X9
0.90DL2+0.90DL21+1.00SEI_Y17
0.90DL2+0.90DL21+1.00SEI_Y10
0.90DL2+0.90DL21+1.00SEI_X10
0.90DL2+0.90DL21+1.00SEI_Y11
0.90DL2+0.90DL21+1.00SEI_X12
0.90DL2+0.90DL21+1.00SEI_Y13
0.90DL2+0.90DL21+1.00SEI_X14
0.90DL2+0.90DL21+1.00SEI_Y15
0.90DL2+0.90DL21+1.00SEI_X16
0.90DL2+0.90DL21+-1.00SEI_X9
0.90DL2+0.90DL21+-1.00SEI_Y17
0.90DL2+0.90DL21+-1.00SEI_Y10
0.90DL2+0.90DL21+-1.00SEI_X10
0.90DL2+0.90DL21+-1.00SEI_Y11
0.90DL2+0.90DL21+-1.00SEI_X12
0.90DL2+0.90DL21+-1.00SEI_Y13
0.90DL2+0.90DL21+-1.00SEI_X14
0.90DL2+0.90DL21+-1.00SEI_Y15
0.90DL2+0.90DL21+-1.00SEI_X16
1.20DL2+1.20DL21+1.00LL1
1.20DL2+1.20DL21
0.90DL2+0.90DL21
Clear Cover:
Cc=40cm
Story 1
a) Column 1:
i. Geometry
Rectangular 30.0 x 100.0 (cm)
Height:L= 3.21 (m)
Slab thickness = 0.27 (m)
Beam height = 0.27 (m)
Cover = 4.0 (cm)
ii. Calculation Options
Calculations according to : ACI 318M-19
Slenderness taken into account :Y
Non-sway structure :Y
Ties : to slab
Story number (counted from top to bottom) : n = 1
Seismic design category : SDC A
iii. Loads
Case Nature N MyA MyB MyC MzA MzB MzC
(kN) (kN*m) (kN*m) (kN*m) (kN*m) (kN*m) (kN*m)
DL2 dead 2441.88 5.51 0.00 3.31 -2.69 0.00 -1.61 1.00
load
DL21 dead 1581.46 1.74 0.00 1.05 -0.93 0.00 -0.56 1.00
load
LL1 live load 628.27 1.71 0.00 1.03 -0.80 0.00 -0.48 1.00
SEI_X9 seismic 377.68 -19.57 0.00 -11.74 -1.93 0.00 -1.16 0.00
SEI_Y10 seismic -221.56 157.89 0.00 94.73 0.76 0.00 0.45 0.00
SEI_X10 seismic 377.68 -19.57 0.00 -11.74 -1.93 0.00 -1.16 0.00
SEI_Y11 seismic -215.90 154.49 0.00 92.69 1.05 0.00 0.63 0.00
SEI_X12 seismic 377.68 -19.57 0.00 -11.74 -1.93 0.00 -1.16 0.00
SEI_Y13 seismic -227.22 161.29 0.00 96.78 0.47 0.00 0.28 0.00
SEI_X14 seismic 374.77 -17.87 0.00 -10.72 -2.08 0.00 -1.25 0.00
SEI_Y15 seismic -221.56 157.89 0.00 94.73 0.76 0.00 0.45 0.00
SEI_X16 seismic 380.59 -21.26 0.00 -12.76 -1.78 0.00 -1.07 0.00
SEI_Y17 seismic -221.56 157.89 0.00 94.73 0.76 0.00 0.45 0.00
WIND1 wind 0.14 -0.03 0.00 -0.02 -0.00 0.00 -0.00 0.00
WIND2 wind -0.94 0.43 0.00 0.26 0.01 0.00 0.00 0.00
WIND3 wind -1.34 0.69 0.00 0.42 -0.00 0.00 -0.00 0.00
WIND4 wind -1.50 0.73 0.00 0.44 -0.00 0.00 -0.00 0.00
WIND5 wind -0.64 -0.03 0.00 -0.02 0.00 0.00 0.00 0.00
WIND6 wind 0.12 -0.62 0.00 -0.37 0.00 0.00 0.00 0.00
WIND7 wind 1.29 -0.74 0.00 -0.45 -0.00 0.00 -0.00 0.00
WIND8 wind 1.69 -0.70 0.00 -0.42 -0.01 0.00 -0.00 0.00
Internal forces:
N = 5836.86 (kN) My = -10.84 (kN*m) Mz = -6.92 (kN*m)
Design forces:
Upper node
Pu = 5836.86 (kN) Myu = -10.84 (kN*m) Mzu = -6.92 (kN*m) Mu = 12.86
(kN*m) U = 0.86
Safety factors:
U, Mu, Pu, Vu - required strength
*Sn = 0.87
*Mn = 67.07 (kN*m)
*Pn = 5894.49 (kN)
Detailed Analysis-Direction Y:
Critical force
Pc = 135217.51 (kN) (6.6.4.4.2)
k*lu = 3.07 (m)
EI = 129124.88 (kN*m2) (6.6.4.4.4b)
bdns = 0.93
Ec = 27805.57 (MPa)
Es = 200000.00 (MPa)
Ig = 2500000.0 (cm4)
Ise = 55401.1 (cm4)
Slenderness analysis
Non-sway structure
lu (m) k k*lu (m)
3.07 1.00 3.07
k*luy/ry = 10.63 < 34.00 Short column (6.2.5b)(6.2.5c)
Buckling analysis
Detailed analysis-Direction Z:
b. Reinforcement
Reinforcement area: 6237.63 (mm2) 2.079 (%)
Minimum reinforcement (code requirement): 3000.00 (mm2) 1.000 (%)
Maximum reinforcement (code requirement): 24000.00 (mm2) 8.000 (%)
c. Reinforcements detailing
• AutoCAD Detailing
Figure 35 Column 1 Reinforcements detailing
• Revit Detailing
Figure 36 Column 1 Reinforcements in Revit
b) Column 2:
i. Geometry
Rectangular 30.0 x 120.0 (cm)
Height: L = 2.93 (m)
Slab thickness = 0.27 (m)
Beam height = 0.27 (m)
Cover = 4.0 (cm)
ii. Calculation Options
Calculations according to : ACI 318M-19
Slenderness taken into account : Y
Non-sway structure :Y
Ties : to slab
Story number (counted from top to bottom) :n=1
Seismic design category : SDC A
iii. Loads
Case Nature N MyA MyB MyC MzA MzB MzC
(kN) (kN*m) (kN*m) (kN*m) (kN*m) (kN*m) (kN*m)
DL2 dead 1753.45 2.16 8.12 5.74 2.24 -13.83 -7.40 1.00
load
DL21 dead 1081.03 2.39 4.36 3.57 0.87 -8.13 -4.53 1.00
load
LL1 live 420.64 1.20 1.35 1.29 0.44 -3.17 -1.72 1.00
load
SEI_X9 seismic -599.71 665.66 82.88 432.55 -3.69 3.17 -0.95 0.00
SEI_Y10 seismic 571.93 302.11 -267.41 74.30 24.33 10.36 18.74 0.00
SEI_X10 seismic -599.71 665.66 82.88 432.55 -3.69 3.17 -0.95 0.00
SEI_Y11 seismic 657.70 355.80 -288.91 97.92 32.07 9.13 22.89 0.00
SEI_X12 seismic -599.71 665.66 82.88 432.55 -3.69 3.17 -0.95 0.00
SEI_Y13 seismic 486.16 248.42 -245.91 50.69 16.60 11.59 14.60 0.00
SEI_X14 seismic -643.52 638.18 93.81 420.43 -7.65 3.80 -3.07 0.00
SEI_Y15 seismic 571.93 302.11 -267.41 74.30 24.33 10.36 18.74 0.00
SEI_X16 seismic -555.89 693.14 71.95 444.66 0.27 2.53 1.63 0.00
SEI_Y17 seismic 571.93 302.11 -267.41 74.30 24.33 10.36 18.74 0.00
WIND1 wind -0.58 -0.15 0.19 0.07 -0.14 -0.11 0.03 0.00
WIND2 wind 2.26 0.22 -0.91 -0.46 0.12 0.02 0.08 0.00
WIND3 wind 1.13 -1.03 -0.77 -0.87 -0.05 0.06 0.01 0.00
WIND4 wind 0.99 -1.47 -0.69 -1.16 -0.06 0.06 -0.02 0.00
WIND5 wind 0.69 -1.74 -0.01 -1.15 0.11 0.26 -0.14 0.00
WIND6 wind 0.29 -1.80 0.57 -0.98 0.04 -0.07 -0.02 0.00
WIND7 wind -1.49 0.47 0.93 0.79 0.03 -0.07 -0.03 0.00
WIND8 wind -3.35 0.55 1.44 1.04 -0.18 -0.12 -0.06 0.00
a. ULS Analysis
Figure 37 Sketch showing Forces and Moments Directions
Internal forces:
N = 4377.90 (kN) My = -686.47 (kN*m) Mz = 3.91 (kN*m)
Design forces:
Upper node
Pu = 4377.90 (kN) Myu = -686.47 (kN*m) Mzu = 3.91 (kN*m) Mu = 686.48
(kN*m) U = 0.54
Safety factors:
U, Mu, Pu, Vu - required strength
*Sn = 0.71
*Mn = 1174.94 (kN*m)
*Pn = 6030.31 (kN)
Detailed analysis-Direction Y:
Critical force
Pc = 211072.72 (kN) (6.6.4.4.2)
k*lu = 2.93 (m)
EI = 183597.86 (kN*m2) (6.6.4.4.4b)
dns = 0.87
Ec = 27805.57 (MPa)
Es = 200000.00 (MPa)
Ig = 4320000.0 (cm4)
Ise = 51821.5 (cm4)
Slenderness analysis
Non-sway structure
lu (m) k k*lu (m)
2.93 1.00 2.93
k*luy/ry = 8.46 < 33.03 Short column (6.2.5b)(6.2.5c)
Buckling analysis
MA = -686.47 (kN*m) MB = -55.63 (kN*m)
Case: Cross-section at the column end (Upper node), Slenderness not taken into account
M = -686.47 (kN*m)
Mc = M = -686.47 (kN*m)
Detailed analysis-Direction Z:
MA = 3.91 (kN*m) MB = -32.04 (kN*m)
Case: Cross-section at the column end (Upper node), Slenderness not taken into account
M = 3.91 (kN*m)
Mc = M = 3.91 (kN*m)
b. Reinforcement
Reinforcement area : 3619.11 (mm2) 1.005 (%)
Minimum reinforcement (code requirement): 3600.00 (mm2) 1.000 (%)
Maximum reinforcement (code requirement): 28800.00 (mm2) 8.000 (%)
c. Reinforcement Detailing
• AutoCAD Detailing:
Figure 38 Column 2 Reinforcement Detailing
• Revit Detailing:
- In zone 1 the column is under pure axial load, so we use lap splicing of
compresion (Lsc).
- In zone 2 the column is under both axial load and bending moment, we can use
class A tension lap splices under certain conditions.
- In zone 3 the column is acting similar to beams, we have to use class B tension
lap splicing.
The column is axially loaded and under bending moment so we will use lap
splicing of tension.
Figure 41 Development Length in Tension Table 25.4.2.3 From ACI Code
Figure 42 Modification Factors Table 25.4.2.5 From ACI Code
Figure 44 Tension Lap Splicing Classes Table 10.7.5.2.2 From ACI Code
We will splice only 50% of the reinforcements on the first story. For column 1,
which has 20 bars, we will lap splice 10 bars on the first story. For column 2,
which has 18 bars, we will lap splice 9 bars on the first story. The remaining 50%
of the bars that are not spliced should be twice the length of the spliced bars,
and we will alternate this splicing method between stories.
Other columns detailing:
Figure 45 Column 1 - Story 2 Figure 46 Column 1 Story 3to7
B. Shear Walls: Designed to resist lateral loads (wind and seismic) as well as axial load,
considering the building's dynamic response and strength requirements.
• Geometry and location in model:
Nature N M H
(kN) (kN*m) (kN)
Dead (Self) 1566.62 88.67 97.64
Dead (SDL) 629.42 32.62 50.69
Live (LL1) 260.90 18.54 20.60
Seismic (ASCE 7-16 2482.26 -293.87 532.47
Direction_X)
Seismic (ASCE 7-16 693.61 8051.58 349.37
Direction_Y)
Seismic (ASCE 7-16 Ecc X- 2482.26 -293.87 532.47
Direction_X)
Seismic (ASCE 7-16 Ecc X- 445.90 7207.51 69.43
Direction_Y)
Seismic (ASCE 7-16 Ecc X+ 2482.26 -293.87 532.47
Direction_X)
Seismic (ASCE 7-16 Ecc X+ 941.33 8895.64 629.30
Direction_Y)
Seismic (ASCE 7-16 Ecc Y- 2608.73 134.85 675.66
Direction_X)
Seismic (ASCE 7-16 Ecc Y- 693.61 8051.58 349.37
Direction_Y)
Seismic (ASCE 7-16 Ecc Y+ 2355.79 -722.59 389.27
Direction_X)
Seismic (ASCE 7-16 Ecc Y+ 693.61 8051.58 349.37
Direction_Y)
Wind (Wind X+ 33 m/s (f 1.40 1.49 1.09
=1.00) Simulation)
Wind (Wind X+Y+ 33 m/s (f -1.99 19.31 -0.93
=1.00) Simulation)
Wind (Wind Y+ 33 m/s (f 3.23 50.77 5.17
=1.00) Simulation)
Wind (Wind X-Y+ 33 m/s (f 3.53 56.62 5.98
=1.00) Simulation)
Wind (Wind X- 33 m/s (f -4.29 -1.28 -0.45
=1.00) Simulation)
Wind (Wind X-Y- 33 m/s (f -9.73 -45.83 -5.27
=1.00) Simulation)
Wind (Wind Y- 33 m/s (f -3.02 -51.87 -4.07
=1.00) Simulation)
Wind (Wind X+Y- 33 m/s (f 2.98 -37.36 0.39
=1.00) Simulation)
• Calculation Results:
Diagram
Figure 55 Vertical Reinforcements Diagram
6000
[mm2]
5000
4000
3000
2000
1000
[m]
0
0 0.5 1 1.5 2 2.5 3 3.5 4
Reinforcement / Vertical Required Provided
700
[mm2]
600
500
400
300
200
100
[m]
0
0 0.5 1 1.5 2 2.5 3 3.5 4
Reinforcement / Horizontal Required Provided
Detailed Results
Combinations
Internal forces in ULS
Actions in ALS
Shear
Design combination: ULS.6
Vu = 208.17 (kN)
Mu = 254.67 (kN*m)
Nu = 2901.79 (kN)
Vc = 1877.23 (kN)
= 0.75
Vu < Vc
210.97 (kN) < 1407.92 (kN)
=> Shear reinforcement is not needed (11.9.9)
t = t min = 0.002 (14.3.3)
l = l min = 0.0012 (14.3.2)
Compression/bending
Left edge:
Design combination: ULS.1
Mu = 175.21 (kN*m)
Nu = 3052.69 (kN)
Right edge:
Design combination: ULS.1
Mu = 175.21 (kN*m)
Nu = 3052.69 (kN)
Right edge:
Design combination: ALS.59
Mu = -8786.48 (kN*m)
Nu = 1035.11 (kN)
Distance between the most compressed fiber and the natural axis (21.9.6.2.a)
c < lw/(600*(u/hw)) (21-8)
93.1 (cm) < 95.2 (cm)
Right edge
Design combination: ALS.16
Vu = 874.27 (kN)
Mu = 298.93 (kN*m)
Nu = 5504.88 (kN)
Distance between the most compressed fiber and the natural axis (21.9.6.2.a)
c > lw/(600*(u/hw)) (21-8)
114.6 (cm) > 95.2 (cm)
• Reinforcements:
Distributed reinforcement
Type Number of identical elements: Steel Diameter Spacing
(mm) (m)
Vertical reinforcement 10 Grade 420 20 0.45
Left edge:
Type Number of identical elements: Steel Diameter Spacing
(mm) (m)
Straight bars 8 Grade 420 25 0.15
Pins 60 Grade 420 10 0.10
Horizontal reinforcement 30 Grade 420 10 0.10
Right edge:
Type Number of identical elements: Steel Diameter Spacing
(mm) (m)
Straight bars 12 Grade 420 25 0.15
Pins 120 Grade 420 10 0.10
Horizontal reinforcement 30 Grade 420 10 0.10
Reinforcements Drawings
Figure 57 Distributed Reinforcements Detailing Figure 58 Edge Reinforcements Detailing
Figure 59 Story 2 -Distributed Reinforcements Detailing Figure 60 Story 2 Edge Reinforcements Detailing
Figure 61 Story 3 Distributed Reinforcements Detailing Figure 62 Story 3 Edge Reinforcements Detailing
Figure 63 Story 4 Distributed Reinforcements Detailing Figure 64 Story 4 Edge Reinforcements Detailing
Figure 65 Story 5 Distributed Reinforcements Detailing Figure 66 Story 5 Edge Reinforcements Detailing
Figure 67 Story 6 Distributed Reinforcements Detailing Figure 68 Story 6 Edge Reinforcements Detailing
Figure 69 Story 7to13 Distributed Reinforcements Detailing Figure 70 Story 7to13 Edge Reinforcements Detailing
Figure 71 Story 14 Distributed Reinforcements Detailing Figure 72 Story 14 Edge Reinforcements Detailing
C. Slabs: Designed for bending, shear, and deflection using appropriate load combinations.
Reinforcement and thickness were determined based on load and span.
Slab Deflection:
Figure 73 Slab Maximum Span (L)
Deflections Maps:
SLS
Mx(+) (kN*m/m) 71.51 3.90 41.22 3.90
Mx(-) (kN*m/m) 0.00 -2.22 0.00 -2.22
My(+) (kN*m/m) 29.95 1.42 60.22 1.42
My(-) (kN*m/m) 0.00 -4.70 0.00 -4.70
ULS
Mx(+) (kN*m/m) 90.01 5.03 51.92 5.03
Mx(-) (kN*m/m) 0.00 -3.14 0.00 -3.14
My(+) (kN*m/m) 37.77 2.32 75.86 2.32
My(-) (kN*m/m) 0.00 -5.85 0.00 -5.85
1.5.4. Deflection
|f(+)| = 0.00 (mm) <= fdop(+) = 37.50 (mm)
|f(-)| = 7.24 (mm) <= fdop(-) = 37.50 (mm)
SLS
Mx(+) (kN*m/m) 56.98 0.00 56.98 0.00
Mx(-) (kN*m/m) 0.00 -0.36 0.00 -0.36
My(+) (kN*m/m) 51.71 0.64 51.71 0.64
My(-) (kN*m/m) 0.00 0.00 0.00 0.00
ULS
Mx(+) (kN*m/m) 73.09 0.00 73.09 0.00
Mx(-) (kN*m/m) 0.00 -0.53 0.00 -0.53
My(+) (kN*m/m) 68.33 0.81 68.33 0.81
My(-) (kN*m/m) 0.00 0.00 0.00 0.00
2.5.4. Deflection
|f(+)| = 0.50 (mm) <= fdop(+) = 37.50 (mm)
|f(-)| = 19.62 (mm) <= fdop(-) = 37.50 (mm)
SLS
Mx(+) (kN*m/m) 67.72 18.89 67.72 18.89
Mx(-) (kN*m/m) 0.00 0.00 0.00 0.00
My(+) (kN*m/m) 45.00 20.34 45.00 20.34
My(-) (kN*m/m) 0.00 0.00 0.00 0.00
ULS
Mx(+) (kN*m/m) 86.22 23.94 86.22 23.94
Mx(-) (kN*m/m) 0.00 0.00 0.00 0.00
My(+) (kN*m/m) 58.80 26.04 58.80 26.04
My(-) (kN*m/m) 0.00 0.00 0.00 0.00
3.5.4. Deflection
|f(+)| = 0.00 (mm) <= fdop(+) = 37.50 (mm)
|f(-)| = 19.06 (mm) <= fdop(-) = 37.50 (mm)
SLS
Mx(+) (kN*m/m) 73.38 0.00 73.38 0.00
Mx(-) (kN*m/m) 0.00 -2.37 0.00 -2.37
My(+) (kN*m/m) 59.63 0.16 59.63 0.16
My(-) (kN*m/m) 0.00 -2.00 0.00 -2.00
ULS
Mx(+) (kN*m/m) 93.81 0.00 93.81 0.00
Mx(-) (kN*m/m) 0.00 -3.01 0.00 -3.01
My(+) (kN*m/m) 78.55 0.21 78.55 0.21
My(-) (kN*m/m) 0.00 -2.55 0.00 -2.55
4.5.4. Deflection
|f(+)| = 0.00 (mm) <= fdop(+) = 37.50 (mm)
|f(-)| = 15.22 (mm) <= fdop(-) = 37.50 (mm)
SLS
Mx(+) (kN*m/m) 13.46 13.46 13.46 13.46
Mx(-) (kN*m/m) 0.00 0.00 0.00 0.00
My(+) (kN*m/m) 5.01 5.01 5.01 5.01
My(-) (kN*m/m) 0.00 0.00 0.00 0.00
ULS
Mx(+) (kN*m/m) 17.00 17.00 17.00 17.00
Mx(-) (kN*m/m) 0.00 0.00 0.00 0.00
My(+) (kN*m/m) 6.29 6.29 6.29 6.29
My(-) (kN*m/m) 0.00 0.00 0.00 0.00
5.5.4. Deflection
|f(+)| = 1.90 (mm) <= fdop(+) = 37.50 (mm)
|f(-)| = 1.09 (mm) <= fdop(-) = 37.50 (mm)
SLS
Mx(+) (kN*m/m) 3.17 3.17 7.17 3.17
Mx(-) (kN*m/m) 0.00 0.00 0.00 0.00
My(+) (kN*m/m) 19.68 19.68 31.02 19.68
My(-) (kN*m/m) 0.00 0.00 0.00 0.00
ULS
Mx(+) (kN*m/m) 3.97 3.97 9.07 3.97
Mx(-) (kN*m/m) 0.00 0.00 0.00 0.00
My(+) (kN*m/m) 24.81 24.81 39.28 24.81
My(-) (kN*m/m) 0.00 0.00 0.00 0.00
6.5.4. Deflection
|f(+)| = 0.00 (mm) <= fdop(+) = 37.50 (mm)
|f(-)| = 7.00 (mm) <= fdop(-) = 37.50 (mm)
ULS
Mx(+) (kN*m/m) 260.40 0.00 113.40
0.00
Mx(-) (kN*m/m) 0.00 -85.79 0.00
-49.12
My(+) (kN*m/m) 163.57 55.07 287.81
0.00
My(-) (kN*m/m) 0.00 -28.77 0.00
-86.78
7.5.4. Deflection
|f(+)| = 2.54 (mm) <= fdop(+) = 37.50 (mm)
|f(-)| = 35.36 (mm) <= fdop(-) = 37.50 (mm)
SLS
Mx(+) (kN*m/m) 157.20 2.57 2.57 2.57
Mx(-) (kN*m/m) 0.00 0.00 0.00 0.00
My(+) (kN*m/m) 5.55 0.00 0.00 0.00
My(-) (kN*m/m) -14.65 -6.54 -6.54 -6.54
ULS
Mx(+) (kN*m/m) 198.51 3.23 3.23 3.23
Mx(-) (kN*m/m) 0.00 -0.02 -0.02 -0.02
My(+) (kN*m/m) 8.02 0.00 0.00 0.00
My(-) (kN*m/m) -20.27 -8.42 -8.42 -8.42
8.5.4. Deflection
|f(+)| = 1.77 (mm) <= fdop(+) = 37.50 (mm)
|f(-)| = 19.56 (mm) <= fdop(-) = 37.50 (mm)
SLS
Mx(+) (kN*m/m) 48.78 45.14 48.78 48.78
Mx(-) (kN*m/m) -50.41 0.00 -50.41 -50.41
My(+) (kN*m/m) 38.52 62.00 38.52 38.52
My(-) (kN*m/m) -60.67 0.00 -60.67 -60.67
ULS
Mx(+) (kN*m/m) 61.56 56.68 61.56 61.56
Mx(-) (kN*m/m) -62.84 0.00 -62.84 -62.84
My(+) (kN*m/m) 48.88 78.08 48.88 48.88
My(-) (kN*m/m) -75.51 0.00 -75.51 -75.51
9.5.4. Deflection
|f(+)| = 8.38 (mm) <= fdop(+) = 37.50 (mm)
|f(-)| = 0.19 (mm) <= fdop(-) = 37.50 (mm)
SLS
Mx(+) (kN*m/m) 70.30 30.30 70.30 30.30
Mx(-) (kN*m/m) -15.35 0.00 -15.35 0.00
My(+) (kN*m/m) 27.33 9.50 27.33 9.50
My(-) (kN*m/m) -58.32 -0.83 -58.32 -0.83
ULS
Mx(+) (kN*m/m) 89.03 38.00 89.03 38.00
Mx(-) (kN*m/m) -23.19 0.00 -23.19 0.00
My(+) (kN*m/m) 35.22 11.90 35.22 11.90
My(-) (kN*m/m) -75.49 -1.21 -75.49 -1.21
10.5.4. Deflection
|f(+)| = 9.68 (mm) <= fdop(+) = 37.50 (mm)
|f(-)| = 4.50 (mm) <= fdop(-) = 37.50 (mm)
11. Loads:
SDL=5KN/m2
LL= 1.92KNm2
LL= 2.88KN/m2 for Cantilever
Case 1 : Self
Case2 : SDL
Case3 : LL
Combination/Component Definition
SLS/30 (1+2+3)*1.00
ULS/4 (1x1.2)+(2x1.2)+(3x1.6)
12. Results - detailing
Reinforcement zones
Bottom reinforcement
Name coordinates Provided reinforcement At Ar
x1 y1 x2 y2 f (mm) / (cm) (mm2/m) (mm2/m)
7/7- Ax Main -18.36 0.00 27.80 24.00 20.0 / 40.0 721.93 < 785
7/17-(7/20-) Ay Perpendicular 21.00 1.26 21.93 2.43 20.0 / 20.0 1011.67 < 1570
7/19-(7/20-) Ay Perpendicular -13.11 11.67 -8.61 12.56 20.0 / 20.0 720.81 < 1570
7/20- Ay Perpendicular -18.36 0.00 27.80 24.00 20.0 / 40.0 722.19 < 785
9/180-(7/20-) Ay Perpendicular -11.87 1.26 -11.04 1.76 20.0 / 20.0 722.19 < 1570
7/165-(7/7-) Ax Main -9.58 0.01 -4.74 5.17 20.0 / 20.0 724.56 < 1570
7/166-(7/7-) Ax Main 5.07 19.33 6.05 20.58 20.0 / 20.0 955.57 < 1570
7/59-(7/20-) Ay Perpendicular -4.66 4.18 -2.70 5.75 20.0 / 20.0 892.47 < 1570
7/60-(7/20-) Ay Perpendicular 13.67 5.75 14.60 7.05 20.0 / 20.0 810.88 < 1570
Top reinforcement
Name coordinates Provided reinforcement At Ar
x1 y1 x2 y2 f (mm) / (cm) (mm2/m) (mm2/m)
7/9+ Ay Perpendicular -18.36 0.00 27.80 24.00 20.0 / 40.0 1016.91 < 785
7/10+(7/9+) Ay Perpendicular -7.60 19.33 -4.66 21.37 20.0 / 20.0 1392.99 < 1570
7/11+(7/9+) Ay Perpendicular -11.73 18.68 -8.58 20.58 20.0 / 20.0 1466.92 < 1570
1/12+(7/9+) Ay Perpendicular -16.16 14.45 -12.70 17.40 20.0 / 20.0 1218.33 < 1570
7/13+(7/9+) Ay Perpendicular -12.70 0.63 -9.58 3.10 20.0 / 13.3 1696.92 < 2355
7/14+(7/9+) Ay Perpendicular -18.36 4.18 -16.16 7.05 20.0 / 20.0 1110.38 < 1570
7/15+(7/9+) Ay Perpendicular -14.29 7.79 -8.61 10.42 20.0 / 13.3 2355.54 < 2355
7/16+(7/9+) Ay Perpendicular -13.55 10.97 -8.61 12.56 20.0 / 8.0 3718.82 < 3925
7/17+(7/9+) Ay Perpendicular -6.62 11.67 -3.77 13.45 20.0 / 20.0 1247.87 < 1570
7/18+(7/9+) Ay Perpendicular -6.62 7.05 -2.70 10.06 20.0 / 10.0 2755.17 < 3140
7/19+(7/9+) Ay Perpendicular -0.43 8.48 1.40 10.06 20.0 / 20.0 1194.75 < 1570
7/20+(7/9+) Ay Perpendicular 4.23 8.48 6.05 12.56 20.0 / 20.0 1060.23 < 1570
7/21+(7/9+) Ay Perpendicular 7.03 13.11 9.96 15.66 20.0 / 10.0 2793.39 < 3140
7/22+(7/9+) Ay Perpendicular 12.77 10.97 14.60 12.56 20.0 / 20.0 1331.84 < 1570
7/23+(7/9+) Ay Perpendicular 11.85 16.60 15.50 19.87 20.0 / 13.3 2138.28 < 2355
7/24+(7/9+) Ay Perpendicular 16.40 18.68 19.14 20.58 20.0 / 20.0 1490.13 < 1570
7/25+(7/9+) Ay Perpendicular 20.03 19.87 23.67 22.06 20.0 / 20.0 1176.58 < 1570
1/26+(7/9+) Ay Perpendicular 24.09 15.66 27.80 18.04 20.0 / 20.0 1354.24 < 1570
7/27+(7/9+) Ay Perpendicular 16.55 11.67 18.21 13.11 20.0 / 20.0 847.09 < 1570
7/28+(7/9+) Ay Perpendicular 16.40 1.26 23.28 3.10 20.0 / 13.3 1673.69 < 2355
7/29+(7/9+) Ay Perpendicular 11.85 0.01 15.50 3.10 20.0 / 20.0 1542.35 < 1570
7/30+(7/9+) Ay Perpendicular 7.03 5.17 9.96 7.79 20.0 / 10.0 2567.90 < 3140
7/31+(7/9+) Ay Perpendicular 13.67 6.32 14.64 8.48 20.0 / 13.3 1999.80 < 2355
7/32+(7/9+) Ay Perpendicular 3.38 0.88 7.03 3.10 20.0 / 20.0 1496.54 < 1570
7/33+(7/9+) Ay Perpendicular 0.00 3.10 1.40 4.18 20.0 / 20.0 841.18 < 1570
7/34+(7/9+) Ay Perpendicular 4.23 18.04 7.03 19.87 20.0 / 13.3 2084.91 < 2355
7/35+ Ax Main -18.36 0.00 27.80 24.00 20.0 / 40.0 818.70 < 785
7/36+(7/35+) Ax Main -11.73 18.68 -9.56 20.58 20.0 / 20.0 914.38 < 1570
7/37+(7/35+) Ax Main -6.62 19.87 -4.66 21.27 20.0 / 20.0 1194.43 < 1570
1/38+(7/35+) Ax Main -16.16 14.45 -12.70 17.40 20.0 / 13.3 1727.48 < 2355
7/39+(7/35+) Ax Main -11.04 11.67 -8.61 12.56 20.0 / 20.0 1279.44 < 1570
7/40+(7/35+) Ax Main -13.55 7.79 -8.61 10.06 20.0 / 20.0 1422.77 < 1570
7/41+(7/35+) Ax Main -6.62 7.79 -3.77 13.45 20.0 / 20.0 1489.02 < 1570
7/42+(7/35+) Ax Main -0.43 8.48 1.40 10.06 20.0 / 20.0 882.39 < 1570
7/43+(7/35+) Ax Main 4.23 7.79 6.05 12.56 20.0 / 20.0 1068.81 < 1570
7/44+(7/35+) Ax Main 7.03 4.33 9.96 7.79 20.0 / 13.3 1889.43 < 2355
7/45+(7/35+) Ax Main 12.77 7.05 14.64 12.56 20.0 / 10.0 3094.42 < 3140
7/46+(7/35+) Ax Main 7.03 13.11 9.96 16.60 20.0 / 13.3 1673.92 < 2355
7/47+(7/35+) Ax Main 3.38 17.40 7.03 19.87 20.0 / 10.0 2357.15 < 3140
7/48+(7/35+) Ax Main 11.85 16.60 15.50 19.87 20.0 / 13.3 2010.91 < 2355
7/49+(7/35+) Ax Main 17.31 18.68 19.14 20.58 20.0 / 20.0 1262.54 < 1570
7/50+(7/35+) Ax Main 20.94 20.60 23.67 22.06 20.0 / 20.0 836.17 < 1570
1/51+(7/35+) Ax Main 24.09 15.66 27.80 18.04 20.0 / 20.0 1268.60 < 1570
7/52+(7/35+) Ax Main 21.00 1.26 23.28 2.43 20.0 / 20.0 970.91 < 1570
7/53+(7/35+) Ax Main 17.31 1.26 19.14 2.43 20.0 / 20.0 1029.15 < 1570
7/54+(7/35+) Ax Main 11.85 0.01 14.60 3.10 20.0 / 13.3 1734.88 < 2355
7/55+(7/35+) Ax Main 4.23 0.26 7.03 3.10 20.0 / 13.3 1639.45 < 2355
7/56+(7/35+) Ax Main 0.00 1.76 0.49 2.43 20.0 / 20.0 995.67 < 1570
7/57+(7/35+) Ax Main -3.68 0.01 -2.70 3.49 20.0 / 20.0 1054.57 < 1570
7/58+(7/35+) Ax Main -11.87 0.01 -9.58 3.49 20.0 / 13.3 1651.80 < 2355
7/59+(7/35+) Ax Main -18.36 4.18 -16.16 7.05 20.0 / 20.0 1275.54 < 1570
Lap Splicing:
D. Core Walls: Designed for lateral force resistance, integrated shear walls to provide stability
against wind and seismic loads.
I have design Longitudinal reinforcements in CSI Column and Transverse reinforcements in RSA.
Load Combinations
Figure 92 Load Type Numbers
Table 5 Combinations
Geometry
Figure 95 Left/Right Wall Dimensions
Loads:
Reduced:
Nature N M H
(kN) (kN*m) (kN)
Dead (Self) 1365.05 62.11 -103.38
Dead (SDL) 658.62 29.36 -47.25
Live (LL1) 258.38 11.42 -19.09
Seismic (ASCE 7- -642.04 171.79 -614.42
16 Direction_X)
Seismic (ASCE 7- 4453.14 535.77 -565.12
16 Direction_Y)
Seismic (ASCE 7- -642.04 171.79 -614.42
16 Ecc X-
Direction_X)
Seismic (ASCE 7- 4850.31 588.12 -632.51
16 Ecc X-
Direction_Y)
Seismic (ASCE 7- -642.04 171.79 -614.42
16 Ecc X+
Direction_X)
Seismic (ASCE 7- 4055.97 483.42 -497.72
16 Ecc X+
Direction_Y)
Seismic (ASCE 7- -844.31 145.08 -579.99
16 Ecc Y-
Direction_X)
Seismic (ASCE 7- 4453.14 535.77 -565.12
16 Ecc Y-
Direction_Y)
Seismic (ASCE 7- -439.77 198.51 -648.86
16 Ecc Y+
Direction_X)
Seismic (ASCE 7- 4453.14 535.77 -565.12
16 Ecc Y+
Direction_Y)
Wind (Wind X+ -2.94 -0.29 0.26
33 m/s (f =1.00)
Simulation)
Wind (Wind X+Y+ 14.05 1.42 -0.86
33 m/s (f =1.00)
Simulation)
Wind (Wind Y+ 9.54 0.65 0.28
33 m/s (f =1.00)
Simulation)
Wind (Wind X-Y+ 8.14 0.34 0.78
33 m/s (f =1.00)
Simulation)
Wind (Wind X- 33 -2.38 -0.93 1.67
m/s (f =1.00)
Simulation)
Wind (Wind X-Y- -10.75 -1.75 2.24
33 m/s (f =1.00)
Simulation)
Wind (Wind Y- 33 -12.98 -1.09 0.21
m/s (f =1.00)
Simulation)
Wind (Wind X+Y- -19.68 -1.66 0.47
33 m/s (f =1.00)
Simulation)
Calculation results:
Diagrams
Figure 96 Vertical Reinforcements
5000
4500 [mm2]
4000
3500
3000
2500
2000
1500
1000
500 [m]
0
0 0.5 1 1.5 2
Reinforcement / Vertical Required Provided
800
[mm2]
700
600
500
400
300
200
100 [m]
0
0 0.5 1 1.5 2
Reinforcement / Horizontal Required Provided
Combinations
Actions in ALS
Shear
Vc = 1463.21 (kN)
= 0.75
Vu < Vc
211.31 (kN) < 1097.40 (kN)
=> Shear reinforcement is not needed (11.9.9)
t = t min = 0.002 (14.3.3)
l = l min = 0.0015 (14.3.2)
Compression/bending
Left edge:
Design combination: ULS.1
Mu = 128.04 (kN*m)
Nu = 2841.81 (kN)
Right edge:
Design combination: ULS.1
Mu = 128.04 (kN*m)
Nu = 2841.81 (kN)
Left edge:
Design combination: ALS.57
Mu = -505.80 (kN*m)
Nu = -3029.01 (kN)
Left edge
Design combination: ALS.36
Vu = 380.13 (kN)
Mu = -23.89 (kN*m)
Nu = 3531.09 (kN)
Distance between the most compressed fiber and the natural axis (21.9.6.2.a)
c < lw/(600*(u/hw)) (21-8)
54.4 (cm) < 54.8 (cm)
Right edge
Distance between the most compressed fiber and the natural axis (21.9.6.2.a)
c > lw/(600*(u/hw)) (21-8)
115.3 (cm) > 54.8 (cm)
Distributed reinforcement
Edge reinforcement
Left edge:
Type Number of identical elements: Steel Diameter Spacing
(mm) (m)
Straight bars 8 Grade 420 32.0
Pins 30 Grade 420 12.0 0.1
Horizontal reinforcement 30 Grade 420 12.0 0.1
Right edge:
Type Number of identical elements: Steel Diameter Spacing
(mm) (m)
Straight bars 10 Grade 420 32.0 0.11
Pins 30 Grade 420 12.0 0.1
Horizontal reinforcement 30 Grade 420 12.0 0.1
Mid Walls
Loads:
Reduced:
Nature N M H
(kN) (kN*m) (kN)
Dead (Self) 2812.07 -390.60 -124.96
Dead (SDL) 1418.89 -220.64 -73.04
Live (LL1) 552.58 -84.21 -30.05
Seismic (ASCE 7-16 Direction_X) -2916.73 -409.03 -234.28
Seismic (ASCE 7-16 Direction_Y) -4692.65 6259.02 338.81
Seismic (ASCE 7-16 Ecc X- Direction_X) -2916.73 -409.03 -234.28
Seismic (ASCE 7-16 Ecc X- Direction_Y) -5057.48 6747.29 559.85
Seismic (ASCE 7-16 Ecc X+ Direction_X) -2916.73 -409.03 -234.28
Seismic (ASCE 7-16 Ecc X+ Direction_Y) -4327.82 5770.74 117.77
Seismic (ASCE 7-16 Ecc Y- Direction_X) -2731.08 -657.24 -347.58
Seismic (ASCE 7-16 Ecc Y- Direction_Y) -4692.65 6259.02 338.81
Seismic (ASCE 7-16 Ecc Y+ Direction_X) -3102.38 -160.82 -120.97
Seismic (ASCE 7-16 Ecc Y+ Direction_Y) -4692.65 6259.02 338.81
Wind (Wind X+ 33 m/s (f =1.00) Simulation) 1.58 -3.55 -0.93
Wind (Wind X+Y+ 33 m/s (f =1.00) Simulation) -9.67 18.62 1.17
Wind (Wind Y+ 33 m/s (f =1.00) Simulation) -5.50 14.17 -3.75
Wind (Wind X-Y+ 33 m/s (f =1.00) Simulation) -3.03 12.50 -4.63
Wind (Wind X- 33 m/s (f =1.00) Simulation) 9.25 -3.56 -0.18
Wind (Wind X-Y- 33 m/s (f =1.00) Simulation) 17.56 -16.28 3.43
Wind (Wind Y- 33 m/s (f =1.00) Simulation) 8.85 -18.66 3.05
Wind (Wind X+Y- 33 m/s (f =1.00) Simulation) 10.77 -26.49 -0.43
Calculation results
Figure 100 Vertical Reinforcements
7000
[mm2]
6000
5000
4000
3000
2000
1000
[m]
0
0 0.5 1 1.5 2 2.5 3 3.5
Reinforcement / Vertical Required Provided
900
[mm2]
800
700
600
500
400
300
200
100 [m]
0
0 0.5 1 1.5 2 2.5 3 3.5
Reinforcement / Horizontal Required Provided
Distributed reinforcement
Edge reinforcement
Left edge:
Type Number of identical elements: Steel Diameter Spacing
(mm) (m)
Straight bars 12 Grade 420 32.0
Pins 30 Grade 420 12.0 0.1
Horizontal reinforcement 60 Grade 420 12.0 0.1
Right edge:
Type Number of identical elements: Steel Diameter Spacing
(mm) (m)
Straight bars 12 Grade 420 32.0
Pins 30 Grade 420 12.0 0.1
Horizontal reinforcement 60 Grade 420 12.0 0.1
Core Wall Drawings :
Figure 102 Story 1 2 3 4 Core Wall Reinforcement Detailing
Other Stories
Figure 104 Story 5 6 Core Wall Reinforcement Detailing
Figure 105 Story 7 Core Wall Reinforcement Detailing
Reinfrocements Shapes :
stories 6 stories 6
stories 7 stories 7
stories 8 stories 8
E. Foundation: Designed to distribute the building loads to the soil, with detailed checks for
settlement, stability, and load-bearing capacity.
Stresses at foundation exceeded soil bearing capacity so we have to use Piles at high stresses regions.
Conclusion
The project details the practical application of the principles of structural engineering, hence improving
my technical capabilities and preparing me for subsequent professional challenges.
Key Achievements:
Comprehensive Design: Designed the main structural elements made of column, shear walls, slabs, core
walls, and raft foundation, successfully, which are responsible for the stability and safety of the building
in different states of loads.
Compliance with Code: Ensured all design elements conform to relevant building codes and standards,
ASCE 7-16 for the calculations of the loads, ACI 318-19 for concrete design, ECP 201 regarding wind
velocity, and Lebanese norms concerning seismic coefficients.
Advanced Analysis: Did detailed analysis and design with industry-leading software tools, including but
not limited to AutoCAD, Revit, Robot Structural Analysis, and CSI Column, so that the intent of both
accuracy and efficiency can be met. The structure has been designed with much consideration to and
calculation of relevant loads like dead loads, live loads, wind loads, and seismic forces.
Challenges and Solutions: Solved main challenges on structural efficiency balancing with architectural
requirements, foundation settlement, and optimization of shear walls to achieve optimum building
performance.
Professional Development:
On-the-Job Experience: Had practical exposure to design the structure by implementing theories in real
practice.
Problem-solving Ability: Acquired essential problem-solving ability in solving day-to-day real engineering
life.
Technical Proficiency: Employed sophisticated tool usage in carrying out a structure's technical analysis;
therefore, developing this for other projects in the future as well.
Future Directions:
This project really laid the ground for a good career as a civil engineer. It is expected that the skills and
knowledge gained in this project will help in future professional undertakings that contribute toward
safe but efficient design of residential buildings, among other structures. The successful completion of
the project further testifies that I have effectively integrated theory with practice to ensure that I am
suitably prepared to meet the demands of the engineering profession.
The outcome of this final year project is that it was an experience that equipped me with the expertise
and confidence necessary to rise in the structural engineering field. I am excited about bringing these
skills into my future career and contributing to the development of safe, sustainable, and innovative
structural solutions.