0% found this document useful (0 votes)
28 views95 pages

Report

The document outlines a final year project focused on the structural design of a multi-storey building, detailing the design criteria, load considerations, and materials used. It emphasizes the application of engineering principles to ensure safety, stability, and functionality while utilizing advanced design tools like AutoCAD and Robot Structural Analysis. The project showcases hands-on experience in structural design and problem-solving skills essential for a career in civil engineering.

Uploaded by

jishi.business
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
28 views95 pages

Report

The document outlines a final year project focused on the structural design of a multi-storey building, detailing the design criteria, load considerations, and materials used. It emphasizes the application of engineering principles to ensure safety, stability, and functionality while utilizing advanced design tools like AutoCAD and Robot Structural Analysis. The project showcases hands-on experience in structural design and problem-solving skills essential for a career in civil engineering.

Uploaded by

jishi.business
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 95

Beirut Arab University

Faculty of Engineering - Civil Engineering


Final Year Project 2
Structural Design of a Multi-Storey Building

Supervisors: Prof. Yehya Temsah


Done By: Mohammad Jamal Al Jishi Fall 2024-2025
Prof. Wael Slika
Contents
Abstract......................................................................................................................................................... 2
Introduction .................................................................................................................................................. 2
Objective: .................................................................................................................................................. 2
Scope: ........................................................................................................................................................ 2
Design Criteria .............................................................................................................................................. 3
1. Design Codes: ................................................................................................................................... 3
2. Load Considerations: ........................................................................................................................ 3
3. Load Combinations ......................................................................................................................... 13
4. Materials ......................................................................................................................................... 15
5. 3D Model: ........................................................................................................................................... 15
6. Drift Analysis: ..................................................................................................................................... 16
7. Structural Components: ..................................................................................................................... 17
A. Columns: ..................................................................................................................................... 17
B. Shear Walls ................................................................................................................................. 30
Other Walls Drawings:........................................................................................................................ 36
............................................................................................................................................................ 37
............................................................................................................................................................ 37
............................................................................................................................................................ 37
............................................................................................................................................................ 38
............................................................................................................................................................ 38
............................................................................................................................................................ 38
C. Slabs ............................................................................................................................................ 38
Slab Deflection:................................................................................................................................... 38
............................................................................................................................................................ 39
Allowable Deflection= 9000/240= 37.5mm ....................................................................................... 39
............................................................................................................................................................ 39
D. Core Walls ................................................................................................................................... 71
E. Foundation.................................................................................................................................. 92
Abstract
This project focuses on the structural design of a multi-storey building, considering all aspects for safety,
stability, and functionality. The major structural components include columns, shear walls, core walls,
slabs, and a raft foundation.

Each member was designed for different load conditions like dead loads, live loads, wind loads, and
seismic forces with the help of appropriate building codes and standards.

Advanced design techniques and analysis tools were used throughout the project, including AutoCAD,
Revit, Robot Structural Analysis and CSI Column software to model the structure and perform
calculations necessary to provide the strength and stability of each member. This was done not only to
ensure that the building adheres to the required safety criteria but also to use materials most
economically.

Some of the challenges during the design process were trying to balance the structural efficiency with
the architectural layout, taking care of the foundation settlement, and optimization of shear wall
locations. The project epitomizes the application of basic principles in civil engineering into a real-life
experience for solving complicated structural problems.

This project has provided me with hands-on experience in structural design, reinforced my knowledge of
engineering principles, and developed the problem-solving skills that are essential for a successful career
in civil engineering. The successful design of the building showcases my ability to integrate theory with
practice and prepares me for future challenges in structural engineering design.

Introduction
Objective:
The primary objective of this project is to apply the principles of structural engineering to design a multi-
storey building that meets all relevant safety and functionality criteria. This includes the design of
columns, shear walls, slabs, core walls, and a raft foundation to ensure the building's stability under
various load conditions.

Scope:
The project encompasses the comprehensive structural design of a multi-storey building. This involves:

• Designing the key structural components: columns, shear walls, slabs, core walls, and the raft
foundation.

• Ensuring compliance with applicable design codes and standards.

• Performing detailed analysis and design calculations using industry-standard software tools.
Design Criteria
The design of the multi-storey building was carried out in compliance with the relevant standards and
codes to ensure structural safety, stability, and functionality. The following design criteria were applied:

1. Design Codes:
o ASCE 7-16: Used for the calculation of loads and load combinations, including dead load,
live load, wind load, and seismic load.

o ACI 318-19: Used for the design and detailing of reinforced concrete elements such as
columns, slabs, shear walls, and foundations.

o ECP 201: Used to determine wind speed

o LEBANESE STANDARD: Used to determine seismic coefficients

2. Load Considerations:
o Dead Load (DL):

a) Self-Weight (SW): These loads include the self-weight of the building including
shear/basement walls, columns, slabs, and beams loads. These loads are constant
over time.
b) Super Imposed Dead Load (SDL): These loads include the partitioning walls,
interior walls, architectural finishes, aramid, floor finishes, ceiling loads, and
mechanical, electrical and plumbing (MEP) pipes.
In this project I will assume the following:
SDL= 5 KN/m2 for typical floors.
Figure 1 Screen Capture for Model Showing SDL on Typical Floors

SDL= 3 KN/m2 for basements.


Figure 2 Screen Capture for Model Showing SDL on Basement

SDL= 0.5 KN/m2 for roof.


Figure 3 Screen Capture for Model Showing SDL on Roof

o Live Load (LL): Variable loads, typically from occupancy and furniture, defined by ASCE 7-
16 based on the type of occupancy and usage of the building.

In this project I will assume the following:

All slabs live load = 1.92 KN/m2


Figure 4 Table 4.3-1 Minimum Uniformly Distributed Live Loads, Lo, and Minimum Concentrated Live Loads (ASCE 7-16)
All balconies Live Load = 1.5*1.92 = 2.88KN/m2
Figure 5 Table 4.3-1 Minimum Uniformly Distributed Live Loads, Lo, and Minimum Concentrated Live Loads (ASCE 7-16)

Figure 6 Screen Capture for Model Showing Live Load on Typical Floors

Garage (parking) in 2 basements live load: 1.92KN/m2


Figure 7 Table 4.3-1 Minimum Uniformly Distributed Live Loads, Lo, and Minimum Concentrated Live Loads (ASCE 7-16)

Figure 8 Screen Capture for Model Showing Live Load on Basements

Roof live load: 0.96KN/m2


Figure 9 Table 4.3-1 Minimum Uniformly Distributed Live Loads, Lo, and Minimum Concentrated Live Loads (ASCE 7-16)

Figure 10 Screen Capture for Model Showing Live Load on Roof

o Wind Load (WL): Calculated using the Robot Structural Analysis Wind Load Simulation
Tool. This tool was employed to model the building’s response to wind forces, taking into
account factors such as the building's height, location, exposure category, and terrain
type. The following assumptions are taken in this project:
Wind Speed = 33m/s
Figure 11 Table 7- Egyptian code for calculating loads and forces in construction and building works 201
Figure 12 Screen Capture Showing Steps to Simulate Wind Load in Robot Structural Analysis

Figure 13 Screen Capture Showing Steps to Simulate Wind Load in Robot Structural Analysis

Figure 14 Wind Simulation Validation in Robot Structural Analysis


o Seismic Load (E): Calculated using the Equivalent Lateral Force Procedure as outlined in
ASCE 7-16. This method was used to determine the seismic forces on the structure,
considering the seismic risk of the building’s location, building height, and response
characteristics.

Initially, I attempted to apply the Equivalent Lateral Force (ELF) method manually and
compared the results with those obtained from the software to ensure the accuracy and
reliability of software calculations. The following are the detailed calculations:

element weight calculation value (KN)


Superimposed dead load (SDL) 10KN/m2 x 10m x 8m= 800
Beam self weight Beams length=3x8 + 3x10=54m
beam area=0.3x0.6=0.18m2
load= 0.18x54x23.61= 229.4892
Column self weight Columns length=9x3.5=31.5m
Column Area=0.3x0.6=0.18
load= 0.18x31.5x23.61= 133.8687
slab self weight Slab area=10x8=80m2
Slab thickness=0.25m
Load=0.25x80x23.61= 472.2
total weight per story 800+229.4892+133.8687+472.2= 1635.5579
total weight on the structure nb. of stories x total weight per story = 4x1635.558= 6542.2316

Based on Needed
Key factor Value what? for what?
Table 1.5-
Risk Category II- Residential 1 Ie
Table 1.5-
Importance factor (Ie) Ie=1 2 Cs
Max considered EQ spectral response
acceleration at 1 sec period (S1) 0.669 Location Sm1,Csmin
Max considered EQ spectral response
acceleration at short period (Ss) 1.88 Location Sms
Long period transition period (TL) 8.0 sec Location Cs max
Site class B Location Fa,Fv
Table
Short period site coefficient (Fa) 0.9 11.4-1 Sms
Table
Long period site coefficient (Fv) 0.8 11.4-2 Sm1
Max considered EQ spectral response Sms=Fa x Ss= Eq. 11.4-
acceleration for short periods (Sms) 0.9x1.88=1.692 1 SDS
Max considered EQ spectral response Sm1=Fv x S1 = 0.8x0.67= Eq. 11.4-
acceleration for 1 sec periods (Sm1) 0.536 2 SD1
Design spectral response acceleration Eq. 11.4-
for short periods (SDS) SDS= 2/3 Sms= 1.128 3 Cs
Design spectral response acceleration Eq. 11.4-
for 1 sec periods (SD1) SD1 = 2/3 Sm1 = 0.357 4 Cs
Table
Response modification factors (R) R= 3 12.2-1 Cs
Table
Ct for fundamental period Ct = 0.0466 12.8-2 T
Table
x for fundamental period x = 0.9 12.8-2 T
Ta=Ctxhn^x =
0.0466x(4x3.5)^0.9 = 0.501 Eq. 12.8-
Fundamental period (T) sec 7 Cs
Cs = SDS/(R/Ie) = Eq. 12.8-
Seismic response coefficient (Cs) 1.128/(3/1) = 0.376 2 V
Max. Seismic response coefficient (Cs Cs.max = SD1/T(R/Ie) = Eq. 12.8-
max) 0.357/(0.501x3/1) = 0.237 3 (T<TL) V
Min. Seismic response coefficient (Cs Cs min = 0.044SDS x Ie = Eq. 12.8-
min) 0.044x1.128x1= 0.049 5 V
V= Cs x W = 0.237 x
6542.2316= Eq.
Base shear 1550.51KN=1551KN 12.8.1.1 End

An exponent related to the structure period (K) By interpretation: T=0.613sec for T=0.5, K=1, for T=
2.5sec K=2 so, K=1.056

seismic lateral force at each story = Fx= Cvx*V Σwihi^k = 6140.5+12767+19590+26545= 65042.5
Cvx = (Wx*hx^k)/(Σwihi^k)
Table 1 Manual Calculations Results

Story number Wx*hx^k Cvx Fx Shear


1 1635.558x3.5^1.056=6140.5 0.095 147.3 1551
2 1635.558x7^1.056=12767 0.195 302.5 1403.7
3 1635.558x10.5^1.056=19590 0.302 468.4 1101.2
4 1635.558x14^1.056=26545 0.408 632.8 632.8
Sum 65042.5 1 1551

Figure 15 Software Calculations

Conclusion: I can rely on software for my seismic calculation.

• Coefficients:
o Seismic zone: zone 3 in ECP 201 which corresponds to medium seismic risk area
so, I can assume it to be zone C in ASCE 7
Figure 16 Mapped Seismic Zones in Egypt (ECP201)
Figure 17 Table of Seismic Zones in Egypt (ECP201)

Figure 18 Mapped Seismic Zones in Egypt (Website)

o Long Period Transition Period (TL)= 2sec


o Max Considered EQ Spectral Response Acceleration at 1 Sec Period (S1) = 0.4
o Max Considered EQ Spectral Response Acceleration at Short Period (Ss)=1.2
Figure 19 LEBANESE STANDARD Protection from Earthquakes: General Rules

o Response Modification Factor (R)=5


Figure 20 Table 12.2-1 from ASCE 7-16

o Importance Factor (Ie)=1 ➔ Assuming Risk Category II

Figure 21 Table 1.5-2 from ASCE 7-16 Figure 22 Table 1.5-1 from ASCE 7-16

• Software:
Figure 23 Coefficients Insertion in Robot Structural Analysis

o Load Mass Conversion:


a) I checked disregard density so that software doesn’t convert self-weight
two times as I added the self-weight load case.
b) I converted 0.2LL into seismic weight. The reasoning behind this is that,
while live loads (such as occupants, and furniture) vary and are
temporary, a portion of these loads still contributes to the dynamic
behavior of the building during seismic events, however ASCE code
doesn’t require that, but I saw that safer.

3. Load Combinations
• Ultimate limit state Combinations according to LRFD (USD):

Used to check the strength of the structure and ensure that it can withstand extreme loads
Figure 24 Table C2.3-1 From ASCE 7-16

• Service limit state Combinations ASD (SLS):

Used to test the structure's ability to perform under normal conditions, and to ensure that:

• Deflections are within acceptable limits.

• Vibration arising from ordinary use-say, by people walking or operation of machinery-is not irritating or
injurious.

• Cracks or deformations do not affect the functional suitability or aesthetic appearance of the structure.

• Durability of the structure is maintained, ensuring a long service life with little maintenance.
Figure 25 Table C2.4-1 From ASCE 7-16

• Envelope:
Is the combination of the effect of all load combinations and taking the worst-case scenarios,
that is taking the maximum moment, shear, torsion, and axial forces from each combination. We
usually design beams using envelope only if we neglect torsion and this is because shear design
of beams is different from bending design (bending is resisted by longitudinal bars while shear is
resisted by stirrups) so if we took the maximum moment of any combination, it will not magnify
the shear design and vice-versa.
For columns and walls, we don’t use envelope.
For foundations, only if we assumed it to be pinned ➔ use envelope. In my case no.
4. Materials
a. Concrete:
Portland cement is used

Unit weight: 2447.32kg/m3


Compressive strength target after 28 days is 35MPa
Modulus of elasticity Ec= 27,806 Mpa
b. Steel Reinforcement:
class B – medium-ductility steel
Fy=420 Mpa
Fyt=420 Mpa

5. 3D Model:
• Robot 3D Model:
Figure 26 Robot 3D Model

• Revit 3D Model:
Figure 27 Revit 3D Model
Table 2 Story Height

Story Height
1 3.07
2 2.93
3 3
4 3
5 3
6 3
7 3
8 3
9 3
10 3
11 3
12 3
13 3
14 4.1
15 1.98

6. Drift Analysis:
We check story drift according to SLS
Figure 28 Story Drift UX
Figure 29 Story Drift UY

Figure 30 Allowable Story Drift According to ASCE 7-16

We assumed before that we are in risk category II

Story height hsx= 3m for stories 1to13 and15 ➔ allowable story drift= 3x0.02=0.06

Story height hsx= 4.1m for story 14 ➔ allowable story drift= 4x0.02=0.082

➔ we are within limits in all stories and in both X and Y directions

7. Structural Components:
A. Columns: Designed for axial load and bending, with detailed reinforcement calculations
according to ACI 318-19.

Combinations:
1.40DL2+1.40DL21
1.20DL2+1.20DL21+1.60LL1
1.20DL2+1.20DL21
1.20DL2+1.20DL21+1.00LL1+1.00WIND1
1.20DL2+1.20DL21+1.00LL1+1.00WIND2
1.20DL2+1.20DL21+1.00LL1+1.00WIND3
1.20DL2+1.20DL21+1.00LL1+1.00WIND4
1.20DL2+1.20DL21+1.00LL1+1.00WIND5
1.20DL2+1.20DL21+1.00LL1+1.00WIND6
1.20DL2+1.20DL21+1.00LL1+1.00WIND7
1.20DL2+1.20DL21+1.00LL1+1.00WIND8
1.20DL2+1.20DL21+1.00WIND1
1.20DL2+1.20DL21+1.00WIND2
1.20DL2+1.20DL21+1.00WIND3
1.20DL2+1.20DL21+1.00WIND4
1.20DL2+1.20DL21+1.00WIND5
1.20DL2+1.20DL21+1.00WIND6
1.20DL2+1.20DL21+1.00WIND7
1.20DL2+1.20DL21+1.00WIND8
1.20DL2+1.20DL21+1.00LL1+1.00SEI_X9
1.20DL2+1.20DL21+1.00SEI_X9
1.20DL2+1.20DL21+1.00LL1+1.00SEI_Y17
1.20DL2+1.20DL21+1.00SEI_Y17
1.20DL2+1.20DL21+1.00LL1+1.00SEI_Y10
1.20DL2+1.20DL21+1.00SEI_Y10
1.20DL2+1.20DL21+1.00LL1+1.00SEI_X10
1.20DL2+1.20DL21+1.00SEI_X10
1.20DL2+1.20DL21+1.00LL1+1.00SEI_Y11
1.20DL2+1.20DL21+1.00SEI_Y11
1.20DL2+1.20DL21+1.00LL1+1.00SEI_X12
1.20DL2+1.20DL21+1.00SEI_X12
1.20DL2+1.20DL21+1.00LL1+1.00SEI_Y13
1.20DL2+1.20DL21+1.00SEI_Y13
1.20DL2+1.20DL21+1.00LL1+1.00SEI_X14
1.20DL2+1.20DL21+1.00SEI_X14
1.20DL2+1.20DL21+1.00LL1+1.00SEI_Y15
1.20DL2+1.20DL21+1.00SEI_Y15
1.20DL2+1.20DL21+1.00LL1+1.00SEI_X16
1.20DL2+1.20DL21+1.00SEI_X16
1.20DL2+1.20DL21+1.00LL1+-1.00SEI_X9
1.20DL2+1.20DL21+-1.00SEI_X9
1.20DL2+1.20DL21+1.00LL1+-1.00SEI_Y17
1.20DL2+1.20DL21+-1.00SEI_Y17
1.20DL2+1.20DL21+1.00LL1+-1.00SEI_Y10
1.20DL2+1.20DL21+-1.00SEI_Y10
1.20DL2+1.20DL21+1.00LL1+-1.00SEI_X10
1.20DL2+1.20DL21+-1.00SEI_X10
1.20DL2+1.20DL21+1.00LL1+-1.00SEI_Y11
1.20DL2+1.20DL21+-1.00SEI_Y11
1.20DL2+1.20DL21+1.00LL1+-1.00SEI_X12
1.20DL2+1.20DL21+-1.00SEI_X12
1.20DL2+1.20DL21+1.00LL1+-1.00SEI_Y13
1.20DL2+1.20DL21+-1.00SEI_Y13
1.20DL2+1.20DL21+1.00LL1+-1.00SEI_X14
1.20DL2+1.20DL21+-1.00SEI_X14
1.20DL2+1.20DL21+1.00LL1+-1.00SEI_Y15
1.20DL2+1.20DL21+-1.00SEI_Y15
1.20DL2+1.20DL21+1.00LL1+-1.00SEI_X16
1.20DL2+1.20DL21+-1.00SEI_X16
0.90DL2+0.90DL21
0.90DL2+0.90DL21+1.00WIND1
0.90DL2+0.90DL21+1.00WIND2
0.90DL2+0.90DL21+1.00WIND3
0.90DL2+0.90DL21+1.00WIND4
0.90DL2+0.90DL21+1.00WIND5
0.90DL2+0.90DL21+1.00WIND6
0.90DL2+0.90DL21+1.00WIND7
0.90DL2+0.90DL21+1.00WIND8
0.90DL2+0.90DL21+1.00SEI_X9
0.90DL2+0.90DL21+1.00SEI_Y17
0.90DL2+0.90DL21+1.00SEI_Y10
0.90DL2+0.90DL21+1.00SEI_X10
0.90DL2+0.90DL21+1.00SEI_Y11
0.90DL2+0.90DL21+1.00SEI_X12
0.90DL2+0.90DL21+1.00SEI_Y13
0.90DL2+0.90DL21+1.00SEI_X14
0.90DL2+0.90DL21+1.00SEI_Y15
0.90DL2+0.90DL21+1.00SEI_X16
0.90DL2+0.90DL21+-1.00SEI_X9
0.90DL2+0.90DL21+-1.00SEI_Y17
0.90DL2+0.90DL21+-1.00SEI_Y10
0.90DL2+0.90DL21+-1.00SEI_X10
0.90DL2+0.90DL21+-1.00SEI_Y11
0.90DL2+0.90DL21+-1.00SEI_X12
0.90DL2+0.90DL21+-1.00SEI_Y13
0.90DL2+0.90DL21+-1.00SEI_X14
0.90DL2+0.90DL21+-1.00SEI_Y15
0.90DL2+0.90DL21+-1.00SEI_X16
1.20DL2+1.20DL21+1.00LL1
1.20DL2+1.20DL21
0.90DL2+0.90DL21

Clear Cover:

Cc=40cm

Reduction in Moment of Inertia: 0.7xIg


Figure 31 Table 20.5.1.3.1 From ASCE 7-16

Columns Location in Model:


Figure 32 Column 1 Location in Model
Figure 33 Column 2 Location in Model

Story 1
a) Column 1:

i. Geometry
Rectangular 30.0 x 100.0 (cm)
Height:L= 3.21 (m)
Slab thickness = 0.27 (m)
Beam height = 0.27 (m)
Cover = 4.0 (cm)
ii. Calculation Options
Calculations according to : ACI 318M-19
Slenderness taken into account :Y
Non-sway structure :Y
Ties : to slab
Story number (counted from top to bottom) : n = 1
Seismic design category : SDC A
iii. Loads
Case Nature N MyA MyB MyC MzA MzB MzC 
(kN) (kN*m) (kN*m) (kN*m) (kN*m) (kN*m) (kN*m)
DL2 dead 2441.88 5.51 0.00 3.31 -2.69 0.00 -1.61 1.00
load
DL21 dead 1581.46 1.74 0.00 1.05 -0.93 0.00 -0.56 1.00
load
LL1 live load 628.27 1.71 0.00 1.03 -0.80 0.00 -0.48 1.00
SEI_X9 seismic 377.68 -19.57 0.00 -11.74 -1.93 0.00 -1.16 0.00
SEI_Y10 seismic -221.56 157.89 0.00 94.73 0.76 0.00 0.45 0.00
SEI_X10 seismic 377.68 -19.57 0.00 -11.74 -1.93 0.00 -1.16 0.00
SEI_Y11 seismic -215.90 154.49 0.00 92.69 1.05 0.00 0.63 0.00
SEI_X12 seismic 377.68 -19.57 0.00 -11.74 -1.93 0.00 -1.16 0.00
SEI_Y13 seismic -227.22 161.29 0.00 96.78 0.47 0.00 0.28 0.00
SEI_X14 seismic 374.77 -17.87 0.00 -10.72 -2.08 0.00 -1.25 0.00
SEI_Y15 seismic -221.56 157.89 0.00 94.73 0.76 0.00 0.45 0.00
SEI_X16 seismic 380.59 -21.26 0.00 -12.76 -1.78 0.00 -1.07 0.00
SEI_Y17 seismic -221.56 157.89 0.00 94.73 0.76 0.00 0.45 0.00
WIND1 wind 0.14 -0.03 0.00 -0.02 -0.00 0.00 -0.00 0.00
WIND2 wind -0.94 0.43 0.00 0.26 0.01 0.00 0.00 0.00
WIND3 wind -1.34 0.69 0.00 0.42 -0.00 0.00 -0.00 0.00
WIND4 wind -1.50 0.73 0.00 0.44 -0.00 0.00 -0.00 0.00
WIND5 wind -0.64 -0.03 0.00 -0.02 0.00 0.00 0.00 0.00
WIND6 wind 0.12 -0.62 0.00 -0.37 0.00 0.00 0.00 0.00
WIND7 wind 1.29 -0.74 0.00 -0.45 -0.00 0.00 -0.00 0.00
WIND8 wind 1.69 -0.70 0.00 -0.42 -0.01 0.00 -0.00 0.00

 = <0,1> , manually defined sustained axial loads part


dns, ratio for reduction of columns stiffness due to sustained axial loads
iv. Calculation Results
a. ULS Analysis
Figure 34 Sketch showing Forces and Moments Directions

Design combination: 1.20DL2+1.20DL21+1.00LL1+1.00SEI_X16 (A)

Section classification: Compression-controlled


 = 0.65 - strength reduction factor, =<0,65-0,90>
v = 0.75 - strength reduction factor for shear
c (*1000) = -3.00 - strain in concrete
t (*1000) = 0.00 - the extreme tensile strain in reinforcement

Internal forces:
N = 5836.86 (kN) My = -10.84 (kN*m) Mz = -6.92 (kN*m)

Design forces:
Upper node
Pu = 5836.86 (kN) Myu = -10.84 (kN*m) Mzu = -6.92 (kN*m) Mu = 12.86
(kN*m) U = 0.86

Safety factors:
U, Mu, Pu, Vu - required strength

 *Sn/U = 1.01 > 1.00


 *Mn/Mu = 5.22 > 1.00
 *Pn/Pu = 1.01 > 1.00
v *Vn/Vu = 134.31 > 1.00

 *Sn = 0.87
 *Mn = 67.07 (kN*m)
 *Pn = 5894.49 (kN)
Detailed Analysis-Direction Y:

Critical force
Pc = 135217.51 (kN) (6.6.4.4.2)
k*lu = 3.07 (m)
EI = 129124.88 (kN*m2) (6.6.4.4.4b)
bdns = 0.93
Ec = 27805.57 (MPa)
Es = 200000.00 (MPa)
Ig = 2500000.0 (cm4)
Ise = 55401.1 (cm4)

Slenderness analysis

Non-sway structure
lu (m) k k*lu (m)
3.07 1.00 3.07
k*luy/ry = 10.63 < 34.00 Short column (6.2.5b)(6.2.5c)

Buckling analysis

MA = -10.84 (kN*m) MB = 0.00 (kN*m)


Case: Cross-section at the column end (Upper node), Slenderness not taken into
account
M = -10.84 (kN*m)
Mc = M = -10.84 (kN*m)

Detailed analysis-Direction Z:

MA = -6.92 (kN*m) MB = 0.00 (kN*m)


Case: Cross-section at the column end (Upper node), Slenderness not taken into account
M = -6.92 (kN*m)
Mc = M = -6.92 (kN*m)

b. Reinforcement
Reinforcement area: 6237.63 (mm2) 2.079 (%)
Minimum reinforcement (code requirement): 3000.00 (mm2) 1.000 (%)
Maximum reinforcement (code requirement): 24000.00 (mm2) 8.000 (%)

Main bars (Grade 420):


• 20 20 l = 4.04 (m)

Transversal reinforcement (Grade 420):


stirrups: 11 10 l = 2.36 (m)
22 10 l = 0.99 (m)

c. Reinforcements detailing
• AutoCAD Detailing
Figure 35 Column 1 Reinforcements detailing

• Revit Detailing
Figure 36 Column 1 Reinforcements in Revit

b) Column 2:
i. Geometry
Rectangular 30.0 x 120.0 (cm)
Height: L = 2.93 (m)
Slab thickness = 0.27 (m)
Beam height = 0.27 (m)
Cover = 4.0 (cm)
ii. Calculation Options
Calculations according to : ACI 318M-19
Slenderness taken into account : Y
Non-sway structure :Y
Ties : to slab
Story number (counted from top to bottom) :n=1
Seismic design category : SDC A

iii. Loads
Case Nature N MyA MyB MyC MzA MzB MzC 
(kN) (kN*m) (kN*m) (kN*m) (kN*m) (kN*m) (kN*m)
DL2 dead 1753.45 2.16 8.12 5.74 2.24 -13.83 -7.40 1.00
load
DL21 dead 1081.03 2.39 4.36 3.57 0.87 -8.13 -4.53 1.00
load
LL1 live 420.64 1.20 1.35 1.29 0.44 -3.17 -1.72 1.00
load
SEI_X9 seismic -599.71 665.66 82.88 432.55 -3.69 3.17 -0.95 0.00
SEI_Y10 seismic 571.93 302.11 -267.41 74.30 24.33 10.36 18.74 0.00
SEI_X10 seismic -599.71 665.66 82.88 432.55 -3.69 3.17 -0.95 0.00
SEI_Y11 seismic 657.70 355.80 -288.91 97.92 32.07 9.13 22.89 0.00
SEI_X12 seismic -599.71 665.66 82.88 432.55 -3.69 3.17 -0.95 0.00
SEI_Y13 seismic 486.16 248.42 -245.91 50.69 16.60 11.59 14.60 0.00
SEI_X14 seismic -643.52 638.18 93.81 420.43 -7.65 3.80 -3.07 0.00
SEI_Y15 seismic 571.93 302.11 -267.41 74.30 24.33 10.36 18.74 0.00
SEI_X16 seismic -555.89 693.14 71.95 444.66 0.27 2.53 1.63 0.00
SEI_Y17 seismic 571.93 302.11 -267.41 74.30 24.33 10.36 18.74 0.00
WIND1 wind -0.58 -0.15 0.19 0.07 -0.14 -0.11 0.03 0.00
WIND2 wind 2.26 0.22 -0.91 -0.46 0.12 0.02 0.08 0.00
WIND3 wind 1.13 -1.03 -0.77 -0.87 -0.05 0.06 0.01 0.00
WIND4 wind 0.99 -1.47 -0.69 -1.16 -0.06 0.06 -0.02 0.00
WIND5 wind 0.69 -1.74 -0.01 -1.15 0.11 0.26 -0.14 0.00
WIND6 wind 0.29 -1.80 0.57 -0.98 0.04 -0.07 -0.02 0.00
WIND7 wind -1.49 0.47 0.93 0.79 0.03 -0.07 -0.03 0.00
WIND8 wind -3.35 0.55 1.44 1.04 -0.18 -0.12 -0.06 0.00

iv. Calculation Results

a. ULS Analysis
Figure 37 Sketch showing Forces and Moments Directions

Design combination : 1.20DL2+1.20DL21+1.00LL1+-1.00SEI_X16 (A)

Section classification : Compression-controlled


 = 0.65 - strength reduction factor, =<0,65-0,90>
v = 0.75 - strength reduction factor for shear
c (*1000) = -3.00 - strain in concrete
t (*1000) = 0.03 - the extreme tensile strain in reinforcement

Internal forces:
N = 4377.90 (kN) My = -686.47 (kN*m) Mz = 3.91 (kN*m)

Design forces:
Upper node
Pu = 4377.90 (kN) Myu = -686.47 (kN*m) Mzu = 3.91 (kN*m) Mu = 686.48
(kN*m) U = 0.54

Safety factors:
U, Mu, Pu, Vu - required strength

 *Sn/U = 1.32 > 1.00


 *Mn/Mu = 1.71 > 1.00
 *Pn/Pu = 1.38 > 1.00
v *Vn/Vu = 283.73 > 1.00

 *Sn = 0.71
 *Mn = 1174.94 (kN*m)
 *Pn = 6030.31 (kN)

Detailed analysis-Direction Y:

Critical force
Pc = 211072.72 (kN) (6.6.4.4.2)
k*lu = 2.93 (m)
EI = 183597.86 (kN*m2) (6.6.4.4.4b)
dns = 0.87
Ec = 27805.57 (MPa)
Es = 200000.00 (MPa)
Ig = 4320000.0 (cm4)
Ise = 51821.5 (cm4)

Slenderness analysis

Non-sway structure
lu (m) k k*lu (m)
2.93 1.00 2.93
k*luy/ry = 8.46 < 33.03 Short column (6.2.5b)(6.2.5c)

Buckling analysis
MA = -686.47 (kN*m) MB = -55.63 (kN*m)
Case: Cross-section at the column end (Upper node), Slenderness not taken into account
M = -686.47 (kN*m)
Mc = M = -686.47 (kN*m)

Detailed analysis-Direction Z:
MA = 3.91 (kN*m) MB = -32.04 (kN*m)
Case: Cross-section at the column end (Upper node), Slenderness not taken into account
M = 3.91 (kN*m)
Mc = M = 3.91 (kN*m)

b. Reinforcement
Reinforcement area : 3619.11 (mm2) 1.005 (%)
Minimum reinforcement (code requirement): 3600.00 (mm2) 1.000 (%)
Maximum reinforcement (code requirement): 28800.00 (mm2) 8.000 (%)

Main bars (Grade 420):


• 18 16 l = 3.93 (m)

Transversal reinforcement (Grade 420):


stirrups: 22 10 l = 2.76 (m)
66 10 l = 0.90 (m)

c. Reinforcement Detailing
• AutoCAD Detailing:
Figure 38 Column 2 Reinforcement Detailing

• Revit Detailing:

Figure 39 Column 2 Reinforcements in Revit

Columns Reinforcements Lap Splicing:


Generally:
Figure 40 Lap Splicing of Columns According to Interaction Diagram- R10.7.5.2 ACI Code

- In zone 1 the column is under pure axial load, so we use lap splicing of
compresion (Lsc).
- In zone 2 the column is under both axial load and bending moment, we can use
class A tension lap splices under certain conditions.
- In zone 3 the column is acting similar to beams, we have to use class B tension
lap splicing.
The column is axially loaded and under bending moment so we will use lap
splicing of tension.
Figure 41 Development Length in Tension Table 25.4.2.3 From ACI Code
Figure 42 Modification Factors Table 25.4.2.5 From ACI Code

For db= 20mm conservatively take it 1

And apply equation of > No.22

So, Ldt for column 1= 41.7db take it 42db


Ldt for column 2= 27.1*db take it 28db

Figure 43 Tension Lap Splicing Table 25.5.2.1 From ACI Code

Figure 44 Tension Lap Splicing Classes Table 10.7.5.2.2 From ACI Code

We will splice only 50% of the reinforcements on the first story. For column 1,
which has 20 bars, we will lap splice 10 bars on the first story. For column 2,
which has 18 bars, we will lap splice 9 bars on the first story. The remaining 50%
of the bars that are not spliced should be twice the length of the spliced bars,
and we will alternate this splicing method between stories.
Other columns detailing:
Figure 45 Column 1 - Story 2 Figure 46 Column 1 Story 3to7

Figure 47 Column 1 story 8to13 Figure 48 Column 1 Story 14

Figure 49 Column 2 Story 2 Figure 50 Column 2 Story 3


Figure 51 Column2 Story 4to13 Figure 52 Column2 Story 14

B. Shear Walls: Designed to resist lateral loads (wind and seismic) as well as axial load,
considering the building's dynamic response and strength requirements.
• Geometry and location in model:

Figure 53 Shear Wall Location in Model

Figure 54 Shear Wall Geometry

Height: 3.07 (m)


Length: 4.00 (m)
Thickness: 25.0 (cm)
Boundary elements:
BL: 25.0 (cm)
DL: 54 (cm)
BR: 25.0 (cm)
DR: 84 (cm)
Cover: 2 (cm)
Story: 1
• Loads:
Table 3 Shear Wall Loads

Nature N M H
(kN) (kN*m) (kN)
Dead (Self) 1566.62 88.67 97.64
Dead (SDL) 629.42 32.62 50.69
Live (LL1) 260.90 18.54 20.60
Seismic (ASCE 7-16 2482.26 -293.87 532.47
Direction_X)
Seismic (ASCE 7-16 693.61 8051.58 349.37
Direction_Y)
Seismic (ASCE 7-16 Ecc X- 2482.26 -293.87 532.47
Direction_X)
Seismic (ASCE 7-16 Ecc X- 445.90 7207.51 69.43
Direction_Y)
Seismic (ASCE 7-16 Ecc X+ 2482.26 -293.87 532.47
Direction_X)
Seismic (ASCE 7-16 Ecc X+ 941.33 8895.64 629.30
Direction_Y)
Seismic (ASCE 7-16 Ecc Y- 2608.73 134.85 675.66
Direction_X)
Seismic (ASCE 7-16 Ecc Y- 693.61 8051.58 349.37
Direction_Y)
Seismic (ASCE 7-16 Ecc Y+ 2355.79 -722.59 389.27
Direction_X)
Seismic (ASCE 7-16 Ecc Y+ 693.61 8051.58 349.37
Direction_Y)
Wind (Wind X+ 33 m/s (f 1.40 1.49 1.09
=1.00) Simulation)
Wind (Wind X+Y+ 33 m/s (f -1.99 19.31 -0.93
=1.00) Simulation)
Wind (Wind Y+ 33 m/s (f 3.23 50.77 5.17
=1.00) Simulation)
Wind (Wind X-Y+ 33 m/s (f 3.53 56.62 5.98
=1.00) Simulation)
Wind (Wind X- 33 m/s (f -4.29 -1.28 -0.45
=1.00) Simulation)
Wind (Wind X-Y- 33 m/s (f -9.73 -45.83 -5.27
=1.00) Simulation)
Wind (Wind Y- 33 m/s (f -3.02 -51.87 -4.07
=1.00) Simulation)
Wind (Wind X+Y- 33 m/s (f 2.98 -37.36 0.39
=1.00) Simulation)

• Calculation Results:
Diagram
Figure 55 Vertical Reinforcements Diagram

6000
[mm2]
5000

4000

3000

2000

1000
[m]
0
0 0.5 1 1.5 2 2.5 3 3.5 4
Reinforcement / Vertical Required Provided

Figure 56 Horizontal Reinforcement Diagram

700
[mm2]
600

500

400

300

200

100
[m]
0
0 0.5 1 1.5 2 2.5 3 3.5 4
Reinforcement / Horizontal Required Provided

Detailed Results
Combinations
Internal forces in ULS

ULS.1 - 1.2 Self +1.2 SDL +1.6 LL1


ULS.2 - 1.2 Self +1.2 SDL
ULS.3 - 1.2 Self +1.2 SDL +1 LL1 +1.6 Wind X+ 33 m/s (f =1.00) Simulation
ULS.4 - 1.2 Self +1.2 SDL +1 LL1 +1.6 Wind X+Y+ 33 m/s (f =1.00) Simulation
ULS.5 - 1.2 Self +1.2 SDL +1 LL1 +1.6 Wind Y+ 33 m/s (f =1.00) Simulation
ULS.6 - 1.2 Self +1.2 SDL +1 LL1 +1.6 Wind X-Y+ 33 m/s (f =1.00) Simulation
ULS.7 - 1.2 Self +1.2 SDL +1 LL1 +1.6 Wind X- 33 m/s (f =1.00) Simulation
ULS.8 - 1.2 Self +1.2 SDL +1 LL1 +1.6 Wind X-Y- 33 m/s (f =1.00) Simulation
ULS.9 - 1.2 Self +1.2 SDL +1 LL1 +1.6 Wind Y- 33 m/s (f =1.00) Simulation
ULS.10 - 1.2 Self +1.2 SDL +1 LL1 +1.6 Wind X+Y- 33 m/s (f =1.00) Simulation
ULS.11 - 1.2 Self +1.2 SDL +1.6 Wind X+ 33 m/s (f =1.00) Simulation
ULS.12 - 1.2 Self +1.2 SDL +1.6 Wind X+Y+ 33 m/s (f =1.00) Simulation
ULS.13 - 1.2 Self +1.2 SDL +1.6 Wind Y+ 33 m/s (f =1.00) Simulation
ULS.14 - 1.2 Self +1.2 SDL +1.6 Wind X-Y+ 33 m/s (f =1.00) Simulation
ULS.15 - 1.2 Self +1.2 SDL +1.6 Wind X- 33 m/s (f =1.00) Simulation
ULS.16 - 1.2 Self +1.2 SDL +1.6 Wind X-Y- 33 m/s (f =1.00) Simulation
ULS.17 - 1.2 Self +1.2 SDL +1.6 Wind Y- 33 m/s (f =1.00) Simulation
ULS.18 - 1.2 Self +1.2 SDL +1.6 Wind X+Y- 33 m/s (f =1.00) Simulation
ULS.19 - 1.4 Self +1.4 SDL
ULS.20 - 0.9 Self +0.9 SDL
ULS.21 - 1.2 Self +1.2 SDL +0.8 Wind X+ 33 m/s (f =1.00) Simulation
ULS.22 - 1.2 Self +1.2 SDL +0.8 Wind X+Y+ 33 m/s (f =1.00) Simulation
ULS.23 - 1.2 Self +1.2 SDL +0.8 Wind Y+ 33 m/s (f =1.00) Simulation
ULS.24 - 1.2 Self +1.2 SDL +0.8 Wind X-Y+ 33 m/s (f =1.00) Simulation
ULS.25 - 1.2 Self +1.2 SDL +0.8 Wind X- 33 m/s (f =1.00) Simulation
ULS.26 - 1.2 Self +1.2 SDL +0.8 Wind X-Y- 33 m/s (f =1.00) Simulation
ULS.27 - 1.2 Self +1.2 SDL +0.8 Wind Y- 33 m/s (f =1.00) Simulation
ULS.28 - 1.2 Self +1.2 SDL +0.8 Wind X+Y- 33 m/s (f =1.00) Simulation
ULS.29 - 0.9 Self +0.9 SDL +1 Wind X+ 33 m/s (f =1.00) Simulation
ULS.30 - 0.9 Self +0.9 SDL +1 Wind X+Y+ 33 m/s (f =1.00) Simulation
ULS.31 - 0.9 Self +0.9 SDL +1 Wind Y+ 33 m/s (f =1.00) Simulation
ULS.32 - 0.9 Self +0.9 SDL +1 Wind X-Y+ 33 m/s (f =1.00) Simulation
ULS.33 - 0.9 Self +0.9 SDL +1 Wind X- 33 m/s (f =1.00) Simulation
ULS.34 - 0.9 Self +0.9 SDL +1 Wind X-Y- 33 m/s (f =1.00) Simulation
ULS.35 - 0.9 Self +0.9 SDL +1 Wind Y- 33 m/s (f =1.00) Simulation
ULS.36 - 0.9 Self +0.9 SDL +1 Wind X+Y- 33 m/s (f =1.00) Simulation

Actions in ALS

ALS.1 - 1.2 Self +1.2 SDL +1 LL1 +1 ASCE 7-16 Direction_X


ALS.2 - 1.2 Self +1.2 SDL +1 ASCE 7-16 Direction_X
ALS.3 - 1.2 Self +1.2 SDL
ALS.4 - 1.2 Self +1.2 SDL +1 LL1 +1 ASCE 7-16 Ecc Y+ Direction_Y
ALS.5 - 1.2 Self +1.2 SDL +1 ASCE 7-16 Ecc Y+ Direction_Y
ALS.6 - 1.2 Self +1.2 SDL +1 LL1 +1 ASCE 7-16 Direction_Y
ALS.7 - 1.2 Self +1.2 SDL +1 ASCE 7-16 Direction_Y
ALS.8 - 1.2 Self +1.2 SDL +1 LL1 +1 ASCE 7-16 Ecc X- Direction_X
ALS.9 - 1.2 Self +1.2 SDL +1 ASCE 7-16 Ecc X- Direction_X
ALS.10 - 1.2 Self +1.2 SDL +1 LL1 +1 ASCE 7-16 Ecc X- Direction_Y
ALS.11 - 1.2 Self +1.2 SDL +1 ASCE 7-16 Ecc X- Direction_Y
ALS.12 - 1.2 Self +1.2 SDL +1 LL1 +1 ASCE 7-16 Ecc X+ Direction_X
ALS.13 - 1.2 Self +1.2 SDL +1 ASCE 7-16 Ecc X+ Direction_X
ALS.14 - 1.2 Self +1.2 SDL +1 LL1 +1 ASCE 7-16 Ecc X+ Direction_Y
ALS.15 - 1.2 Self +1.2 SDL +1 ASCE 7-16 Ecc X+ Direction_Y
ALS.16 - 1.2 Self +1.2 SDL +1 LL1 +1 ASCE 7-16 Ecc Y- Direction_X
ALS.17 - 1.2 Self +1.2 SDL +1 ASCE 7-16 Ecc Y- Direction_X
ALS.18 - 1.2 Self +1.2 SDL +1 LL1 +1 ASCE 7-16 Ecc Y- Direction_Y
ALS.19 - 1.2 Self +1.2 SDL +1 ASCE 7-16 Ecc Y- Direction_Y
ALS.20 - 1.2 Self +1.2 SDL +1 LL1 +1 ASCE 7-16 Ecc Y+ Direction_X
ALS.21 - 1.2 Self +1.2 SDL +1 ASCE 7-16 Ecc Y+ Direction_X
ALS.22 - 1.2 Self +1.2 SDL +1 LL1 -1 ASCE 7-16 Direction_X
ALS.23 - 1.2 Self +1.2 SDL -1 ASCE 7-16 Direction_X
ALS.24 - 1.2 Self +1.2 SDL +1 LL1 -1 ASCE 7-16 Ecc Y+ Direction_Y
ALS.25 - 1.2 Self +1.2 SDL -1 ASCE 7-16 Ecc Y+ Direction_Y
ALS.26 - 1.2 Self +1.2 SDL +1 LL1 -1 ASCE 7-16 Direction_Y
ALS.27 - 1.2 Self +1.2 SDL -1 ASCE 7-16 Direction_Y
ALS.28 - 1.2 Self +1.2 SDL +1 LL1 -1 ASCE 7-16 Ecc X- Direction_X
ALS.29 - 1.2 Self +1.2 SDL -1 ASCE 7-16 Ecc X- Direction_X
ALS.30 - 1.2 Self +1.2 SDL +1 LL1 -1 ASCE 7-16 Ecc X- Direction_Y
ALS.31 - 1.2 Self +1.2 SDL -1 ASCE 7-16 Ecc X- Direction_Y
ALS.32 - 1.2 Self +1.2 SDL +1 LL1 -1 ASCE 7-16 Ecc X+ Direction_X
ALS.33 - 1.2 Self +1.2 SDL -1 ASCE 7-16 Ecc X+ Direction_X
ALS.34 - 1.2 Self +1.2 SDL +1 LL1 -1 ASCE 7-16 Ecc X+ Direction_Y
ALS.35 - 1.2 Self +1.2 SDL -1 ASCE 7-16 Ecc X+ Direction_Y
ALS.36 - 1.2 Self +1.2 SDL +1 LL1 -1 ASCE 7-16 Ecc Y- Direction_X
ALS.37 - 1.2 Self +1.2 SDL -1 ASCE 7-16 Ecc Y- Direction_X
ALS.38 - 1.2 Self +1.2 SDL +1 LL1 -1 ASCE 7-16 Ecc Y- Direction_Y
ALS.39 - 1.2 Self +1.2 SDL -1 ASCE 7-16 Ecc Y- Direction_Y
ALS.40 - 1.2 Self +1.2 SDL +1 LL1 -1 ASCE 7-16 Ecc Y+ Direction_X
ALS.41 - 1.2 Self +1.2 SDL -1 ASCE 7-16 Ecc Y+ Direction_X
ALS.42 - 0.9 Self +0.9 SDL +1 ASCE 7-16 Direction_X
ALS.43 - 0.9 Self +0.9 SDL
ALS.44 - 0.9 Self +0.9 SDL +1 ASCE 7-16 Ecc Y+ Direction_Y
ALS.45 - 0.9 Self +0.9 SDL +1 ASCE 7-16 Direction_Y
ALS.46 - 0.9 Self +0.9 SDL +1 ASCE 7-16 Ecc X- Direction_X
ALS.47 - 0.9 Self +0.9 SDL +1 ASCE 7-16 Ecc X- Direction_Y
ALS.48 - 0.9 Self +0.9 SDL +1 ASCE 7-16 Ecc X+ Direction_X
ALS.49 - 0.9 Self +0.9 SDL +1 ASCE 7-16 Ecc X+ Direction_Y
ALS.50 - 0.9 Self +0.9 SDL +1 ASCE 7-16 Ecc Y- Direction_X
ALS.51 - 0.9 Self +0.9 SDL +1 ASCE 7-16 Ecc Y- Direction_Y
ALS.52 - 0.9 Self +0.9 SDL +1 ASCE 7-16 Ecc Y+ Direction_X
ALS.53 - 0.9 Self +0.9 SDL -1 ASCE 7-16 Direction_X
ALS.54 - 0.9 Self +0.9 SDL -1 ASCE 7-16 Ecc Y+ Direction_Y
ALS.55 - 0.9 Self +0.9 SDL -1 ASCE 7-16 Direction_Y
ALS.56 - 0.9 Self +0.9 SDL -1 ASCE 7-16 Ecc X- Direction_X
ALS.57 - 0.9 Self +0.9 SDL -1 ASCE 7-16 Ecc X- Direction_Y
ALS.58 - 0.9 Self +0.9 SDL -1 ASCE 7-16 Ecc X+ Direction_X
ALS.59 - 0.9 Self +0.9 SDL -1 ASCE 7-16 Ecc X+ Direction_Y
ALS.60 - 0.9 Self +0.9 SDL -1 ASCE 7-16 Ecc Y- Direction_X
ALS.61 - 0.9 Self +0.9 SDL -1 ASCE 7-16 Ecc Y- Direction_Y
ALS.62 - 0.9 Self +0.9 SDL -1 ASCE 7-16 Ecc Y+ Direction_X
ALS.63 - 1.2 Self +1.2 SDL +1 LL1

Shear
Design combination: ULS.6
Vu = 208.17 (kN)
Mu = 254.67 (kN*m)
Nu = 2901.79 (kN)

Acv = 1.00 (m2)


Vc1 = 1877.23 (kN) (11-27)

Mu/Vu - lw/2 < 0 (11-28)


Vc = Vc1

Vc = 1877.23 (kN)
 = 0.75

Vu <  Vc
210.97 (kN) < 1407.92 (kN)
=> Shear reinforcement is not needed (11.9.9)
 t =  t min = 0.002 (14.3.3)
 l =  l min = 0.0012 (14.3.2)

Compression/bending
Left edge:
Design combination: ULS.1
Mu = 175.21 (kN*m)
Nu = 3052.69 (kN)

AsL = 10.00 (mm2)

Right edge:
Design combination: ULS.1
Mu = 175.21 (kN*m)
Nu = 3052.69 (kN)

AsR = 10.00 (mm2)


Shear - Seismic requirements
Design combination: ALS.16
Vu = 874.27 (kN)
Mu = 298.93 (kN*m)
Nu = 5504.88 (kN)
Acv = 1.00 (m2)

Horizontal reinforcement for shear


 c = 3.00* (21.9.4.1)
*For concrete strength given in MPa, alpha coefficient should be multiplied by the square root of 6.895
 t = 0.0025 (21-7)

Vertical reinforcement for shear (21.9.4.3)


 l = 0.0025
Compression/bending - Seismic requirements
Left edge:
Design combination: ALS.49
Mu = 9004.80 (kN*m)
Nu = 2917.76 (kN)

AsL = 3391.33 (mm2)

Right edge:
Design combination: ALS.59
Mu = -8786.48 (kN*m)
Nu = 1035.11 (kN)

AsR = 5463.09 (mm2)


Edge reinforcement (21.9.6)
Left edge
Design combination: ALS.1
Vu = 731.07 (kN)
Mu = -129.78 (kN*m)
Nu = 5378.41 (kN)

Distance between the most compressed fiber and the natural axis (21.9.6.2.a)
c < lw/(600*(u/hw)) (21-8)
93.1 (cm) < 95.2 (cm)

Maximum compressive stress (21.9.6.3)


 c > 0.2 * fc'
12.14 (MPa) > 7.00 (MPa)

Reinforcement ratio in the boundary element (21.9.6.5.a)


 B > 400/fy
0.02 > 0.01

=> Detailed design of edge reinforcement zones is required

Range of edge reinforcement zones:


b = max (c-0.1lw;c/2) (21.9.6.4.a)
b = 53.1 (cm)

Right edge
Design combination: ALS.16
Vu = 874.27 (kN)
Mu = 298.93 (kN*m)
Nu = 5504.88 (kN)

Distance between the most compressed fiber and the natural axis (21.9.6.2.a)
c > lw/(600*(u/hw)) (21-8)
114.6 (cm) > 95.2 (cm)

Maximum compressive stress (21.9.6.3)


 c > 0.2 * fc'
17.43 (MPa) > 7.00 (MPa)

Reinforcement ratio in the boundary element (21.9.6.5.a)


 B > 400/fy
0.02 > 0.01

=> Detailed design of edge reinforcement zones is required

Range of edge reinforcement zones:


b = max (c-0.1lw;c/2) (21.9.6.4.a)
b = 74.6 (cm)

• Reinforcements:

Table 4 Shear Wall reinforcements

Distributed reinforcement
Type Number of identical elements: Steel Diameter Spacing
(mm) (m)
Vertical reinforcement 10 Grade 420 20 0.45

Horizontal reinforcement 20 Grade 420 12 0.3


Edge reinforcement

Left edge:
Type Number of identical elements: Steel Diameter Spacing
(mm) (m)
Straight bars 8 Grade 420 25 0.15
Pins 60 Grade 420 10 0.10
Horizontal reinforcement 30 Grade 420 10 0.10

Right edge:
Type Number of identical elements: Steel Diameter Spacing
(mm) (m)
Straight bars 12 Grade 420 25 0.15
Pins 120 Grade 420 10 0.10
Horizontal reinforcement 30 Grade 420 10 0.10

Reinforcements Drawings
Figure 57 Distributed Reinforcements Detailing Figure 58 Edge Reinforcements Detailing

Other Walls Drawings:

Figure 59 Story 2 -Distributed Reinforcements Detailing Figure 60 Story 2 Edge Reinforcements Detailing
Figure 61 Story 3 Distributed Reinforcements Detailing Figure 62 Story 3 Edge Reinforcements Detailing

Figure 63 Story 4 Distributed Reinforcements Detailing Figure 64 Story 4 Edge Reinforcements Detailing

Figure 65 Story 5 Distributed Reinforcements Detailing Figure 66 Story 5 Edge Reinforcements Detailing
Figure 67 Story 6 Distributed Reinforcements Detailing Figure 68 Story 6 Edge Reinforcements Detailing

Figure 69 Story 7to13 Distributed Reinforcements Detailing Figure 70 Story 7to13 Edge Reinforcements Detailing

Figure 71 Story 14 Distributed Reinforcements Detailing Figure 72 Story 14 Edge Reinforcements Detailing

C. Slabs: Designed for bending, shear, and deflection using appropriate load combinations.
Reinforcement and thickness were determined based on load and span.

Slab Deflection:
Figure 73 Slab Maximum Span (L)

Allowable Deflection= 9000/240= 37.5mm

Figure 74 Robot Inputs


Figure 75 Slab Deflection Limit Table 24.2.2 From ACI 318-19 Code

Deflections Maps:

Figure 76 -ve Deflection Map

Figure 77 +Ve Deflection Map

1. Slab: Slab4742...5868 - Panel no. 4742


1.5. Calculation results:
1.5.2. Maximum moments + reinforcement for bending

Ax(+) Ax(-) Ay(+) Ay(-)


Symbol: required area/provided area
Ax(+) (mm2/m) 900.30/2355 486.00/785 650.50/2355
486.00/785
Ax(-) (mm2/m) 486.00/785 486.00/785 486.00/785
486.00/785
Ay(+) (mm2/m) 552.56/1570 486.00/785 715.69/1570
486.00/785
Ay(-) (mm2/m) 486.00/785 486.00/785 486.00/785
486.00/785

SLS
Mx(+) (kN*m/m) 71.51 3.90 41.22 3.90
Mx(-) (kN*m/m) 0.00 -2.22 0.00 -2.22
My(+) (kN*m/m) 29.95 1.42 60.22 1.42
My(-) (kN*m/m) 0.00 -4.70 0.00 -4.70

Nxx (kN/m) -0.15 0.03 -0.14 0.03


Nyy (kN/m) -0.08 0.05 0.06 0.05
Nxy (kN/m) 0.03 -0.00 -0.12 -0.00

ULS
Mx(+) (kN*m/m) 90.01 5.03 51.92 5.03
Mx(-) (kN*m/m) 0.00 -3.14 0.00 -3.14
My(+) (kN*m/m) 37.77 2.32 75.86 2.32
My(-) (kN*m/m) 0.00 -5.85 0.00 -5.85

Nxx (kN/m) -0.19 0.04 -0.18 0.04


Nyy (kN/m) -0.10 0.06 0.08 0.06
Nxy (kN/m) 0.04 -0.00 -0.15 -0.00

1.5.3. Two-way shear


Support no. / Point Location (m) Geometry: (m)
x y a b d h
S1 (18) 5.07 1.76 Column 1.65 0.40 -
-

Support no. / Point Loads: (kN) Perimeter of critical section (m)


Vu *Vn bo *Vn / Vu
S1 (18) 632.13 1339.97 5.05 2.12 > 1

Expected results OK if phi*vn >= vu or phi*vnr >= vur


vu, vn - stress for a cross-section calculated without considering punching reinforcement
vur, vnr - stress for a cross-section calculated with considering punching reinforcement

Support no. / Point: S1 (18)


V= 509.04 (kN)
Mscx = 52.24 (kN*m)
Mscy = -62.13 (kN*m)
A= 1.20 (m2)
fx = 0.53
fy = 0.28
Cmaxx = 0.32
Cmaxy = 0.94
Cminx = -0.32
Cminy = -0.94
Jx = 53837676.7 (cm4)
Jy = 10235685.6 (cm4)
c = 4.13
= 1.00
s = 1.00
s = 40.00
= 0.75
S1 = 0.25
heff = 23.7 (cm)
*vn = 1.12 (MPa)
vu = 0.53 (MPa)
A= 1.20 (m2)

1.5.4. Deflection
|f(+)| = 0.00 (mm) <= fdop(+) = 37.50 (mm)
|f(-)| = 7.24 (mm) <= fdop(-) = 37.50 (mm)

2. Slab: Slab4742...5868 - Panel no. 4744


2.5. Calculation results:
2.5.2. Maximum moments + reinforcement for bending

Ax(+) Ax(-) Ay(+) Ay(-)


Symbol: required area/provided area
Ax(+) (mm2/m) 836.17/1570 486.00/785 836.17/1570
486.00/785
Ax(-) (mm2/m) 486.00/785 486.00/785 486.00/785
486.00/785
Ay(+) (mm2/m) 1176.58/1570 486.00/785 1176.58/1570
486.00/785
Ay(-) (mm2/m) 486.00/785 486.00/785 486.00/785
486.00/785

SLS
Mx(+) (kN*m/m) 56.98 0.00 56.98 0.00
Mx(-) (kN*m/m) 0.00 -0.36 0.00 -0.36
My(+) (kN*m/m) 51.71 0.64 51.71 0.64
My(-) (kN*m/m) 0.00 0.00 0.00 0.00

Nxx (kN/m) -0.02 0.00 -0.02 0.00


Nyy (kN/m) 0.02 0.00 0.02 0.00
Nxy (kN/m) 0.02 -0.00 0.02 -0.00

ULS
Mx(+) (kN*m/m) 73.09 0.00 73.09 0.00
Mx(-) (kN*m/m) 0.00 -0.53 0.00 -0.53
My(+) (kN*m/m) 68.33 0.81 68.33 0.81
My(-) (kN*m/m) 0.00 0.00 0.00 0.00

Nxx (kN/m) -0.02 0.00 -0.02 0.00


Nyy (kN/m) 0.02 0.00 0.02 0.00
Nxy (kN/m) 0.02 -0.00 0.02 -0.00

2.5.3. Two-way shear


Support no. / Point Location (m) Geometry: (m)
x y a b d h
S3 (9752) 21.93 21.37 Column 1.70 0.45 -
-
S5 (9754) 24.72 21.37 Column 0.80 0.40 -
-

Support no. / Point Loads: (kN) Perimeter of critical section (m)


Vu *Vn bo *Vn / Vu
S3 (9752) 401.47 1434.86 5.25 3.57 > 1
S5 (9754) 224.05 1161.83 3.35 5.19 > 1

Expected results OK if phi*vn >= vu or phi*vnr >= vur


vu, vn - stress for a cross-section calculated without considering punching reinforcement
vur, vnr - stress for a cross-section calculated with considering punching reinforcement

Support no. / Point: S3 (9752)


V= 347.50 (kN)
Mscx = 20.81 (kN*m)
Mscy = -32.11 (kN*m)
A= 1.24 (m2)
fx = 0.53
fy = 0.28
Cmaxx = 0.34
Cmaxy = 0.97
Cminx = -0.34
Cminy = -0.97
Jx = 59681227.1 (cm4)
Jy = 12266498.5 (cm4)
c = 3.78
= 1.00
s = 1.00
s = 40.00
= 0.75
S1 = 0.26
heff = 23.7 (cm)
*vn = 1.15 (MPa)
vu = 0.32 (MPa)
A= 1.24 (m2)

Support no. / Point: S5 (9754)


V= 160.42 (kN)
Mscx = 18.46 (kN*m)
Mscy = 25.36 (kN*m)
A= 0.79 (m2)
fx = 0.34
fy = 0.46
Cmaxx = 0.52
Cmaxy = 0.32
Cminx = -0.52
Cminy = -0.32
Jx = 6148577.4 (cm4)
Jy = 12752318.5 (cm4)
c = 2.00
= 1.00
s = 1.00
s = 40.00
= 0.75
S1 = 0.34
heff = 23.7 (cm)
*vn = 1.46 (MPa)
vu = 0.28 (MPa)
A= 0.79 (m2)

2.5.4. Deflection
|f(+)| = 0.50 (mm) <= fdop(+) = 37.50 (mm)
|f(-)| = 19.62 (mm) <= fdop(-) = 37.50 (mm)

3. Slab: Slab4742...5868 - Panel no. 4745


3.5. Calculation results:
3.5.2. Maximum moments + reinforcement for bending

Ax(+) Ax(-) Ay(+) Ay(-)


Symbol: required area/provided area
Ax(+) (mm2/m) 1262.54/1566.46 486.00/785 1262.54/1566.46
486.00/785
Ax(-) (mm2/m) 486.00/676.68 486.00/785 486.00/676.68
486.00/785
Ay(+) (mm2/m) 1490.13/1570 486.00/785 1490.13/1570
486.00/785
Ay(-) (mm2/m) 486.00/785 486.00/785 486.00/785
486.00/785

SLS
Mx(+) (kN*m/m) 67.72 18.89 67.72 18.89
Mx(-) (kN*m/m) 0.00 0.00 0.00 0.00
My(+) (kN*m/m) 45.00 20.34 45.00 20.34
My(-) (kN*m/m) 0.00 0.00 0.00 0.00

Nxx (kN/m) -0.07 -0.10 -0.07 -0.10


Nyy (kN/m) 0.00 -0.02 0.00 -0.02
Nxy (kN/m) -0.06 -0.09 -0.06 -0.09

ULS
Mx(+) (kN*m/m) 86.22 23.94 86.22 23.94
Mx(-) (kN*m/m) 0.00 0.00 0.00 0.00
My(+) (kN*m/m) 58.80 26.04 58.80 26.04
My(-) (kN*m/m) 0.00 0.00 0.00 0.00

Nxx (kN/m) -0.09 -0.13 -0.09 -0.13


Nyy (kN/m) 0.00 -0.03 0.00 -0.03
Nxy (kN/m) -0.07 -0.11 -0.07 -0.11

3.5.3. Two-way shear


Support no. / Point Location (m) Geometry: (m)
x y a b d h
S8 (11271) 18.21 19.87 Column 1.00 0.30 -
-

Support no. / Point Loads: (kN) Perimeter of critical section (m)


Vu *Vn bo *Vn / Vu
S8 (11271) 560.90 1014.84 3.55 1.81 > 1

Expected results OK if phi*vn >= vu or phi*vnr >= vur


vu, vn - stress for a cross-section calculated without considering punching reinforcement
vur, vnr - stress for a cross-section calculated with considering punching reinforcement

Support no. / Point: S8 (11271)


V= 443.80 (kN)
Mscx = 17.92 (kN*m)
Mscy = 64.97 (kN*m)
A= 0.84 (m2)
fx = 0.50
fy = 0.31
Cmaxx = 0.27
Cmaxy = 0.62
Cminx = -0.27
Cminy = -0.62
Jx = 17488239.3 (cm4)
Jy = 4957859.3 (cm4)
c = 3.33
= 1.00
s = 1.00
s = 40.00
= 0.75
S1 = 0.27
heff = 23.7 (cm)
*vn = 1.21 (MPa)
vu = 0.67 (MPa)
A= 0.84 (m2)

3.5.4. Deflection
|f(+)| = 0.00 (mm) <= fdop(+) = 37.50 (mm)
|f(-)| = 19.06 (mm) <= fdop(-) = 37.50 (mm)

4. Slab: Slab4742...5868 - Panel no. 4785


4.5. Calculation results:
4.5.2. Maximum moments + reinforcement for bending

Ax(+) Ax(-) Ay(+) Ay(-)


Symbol: required area/provided area
Ax(+) (mm2/m) 1194.43/1570 486.00/785 1194.43/1570
486.00/785
Ax(-) (mm2/m) 486.00/785 486.00/785 486.00/785
486.00/785
Ay(+) (mm2/m) 1392.99/1570 486.00/785 1392.99/1570
486.00/785
Ay(-) (mm2/m) 486.00/785 486.00/785 486.00/785
486.00/785

SLS
Mx(+) (kN*m/m) 73.38 0.00 73.38 0.00
Mx(-) (kN*m/m) 0.00 -2.37 0.00 -2.37
My(+) (kN*m/m) 59.63 0.16 59.63 0.16
My(-) (kN*m/m) 0.00 -2.00 0.00 -2.00

Nxx (kN/m) -0.06 0.01 -0.06 0.01


Nyy (kN/m) 0.06 0.01 0.06 0.01
Nxy (kN/m) -0.12 -0.08 -0.12 -0.08

ULS
Mx(+) (kN*m/m) 93.81 0.00 93.81 0.00
Mx(-) (kN*m/m) 0.00 -3.01 0.00 -3.01
My(+) (kN*m/m) 78.55 0.21 78.55 0.21
My(-) (kN*m/m) 0.00 -2.55 0.00 -2.55

Nxx (kN/m) -0.08 0.01 -0.08 0.01


Nyy (kN/m) 0.07 0.01 0.07 0.01
Nxy (kN/m) -0.15 -0.10 -0.15 -0.10

4.5.3. Two-way shear


Support no. / Point Location (m) Geometry: (m)
x y a b d h
S9 (4135) -5.83 20.58 Column 1.00 0.30 -
-

Support no. / Point Loads: (kN) Perimeter of critical section (m)


Vu *Vn bo *Vn / Vu
S9 (4135) 517.73 1014.84 3.55 1.96 > 1

Expected results OK if phi*vn >= vu or phi*vnr >= vur


vu, vn - stress for a cross-section calculated without considering punching reinforcement
vur, vnr - stress for a cross-section calculated with considering punching reinforcement

Support no. / Point: S9 (4135)


V= 430.76 (kN)
Mscx = 32.32 (kN*m)
Mscy = -27.79 (kN*m)
A= 0.84 (m2)
fx = 0.50
fy = 0.31
Cmaxx = 0.27
Cmaxy = 0.62
Cminx = -0.27
Cminy = -0.62
Jx = 17488239.3 (cm4)
Jy = 4957859.3 (cm4)
c = 3.33
= 1.00
s = 1.00
s = 40.00
= 0.75
S1 = 0.27
heff = 23.7 (cm)
*vn = 1.21 (MPa)
vu = 0.62 (MPa)
A= 0.84 (m2)

4.5.4. Deflection
|f(+)| = 0.00 (mm) <= fdop(+) = 37.50 (mm)
|f(-)| = 15.22 (mm) <= fdop(-) = 37.50 (mm)

5. Slab: Slab4742...5868 - Panel no. 4786


5.5. Calculation results:
5.5.2. Maximum moments + reinforcement for bending

Ax(+) Ax(-) Ay(+) Ay(-)


Symbol: required area/provided area
Ax(+) (mm2/m) 486.00/785 486.00/785 486.00/785
486.00/785
Ax(-) (mm2/m) 486.00/785 486.00/785 486.00/785
486.00/785
Ay(+) (mm2/m) 486.00/785 486.00/785 486.00/785
486.00/785
Ay(-) (mm2/m) 486.00/785 486.00/785 486.00/785
486.00/785

SLS
Mx(+) (kN*m/m) 13.46 13.46 13.46 13.46
Mx(-) (kN*m/m) 0.00 0.00 0.00 0.00
My(+) (kN*m/m) 5.01 5.01 5.01 5.01
My(-) (kN*m/m) 0.00 0.00 0.00 0.00

Nxx (kN/m) 0.04 0.04 0.04 0.04


Nyy (kN/m) -0.07 -0.07 -0.07 -0.07
Nxy (kN/m) 0.05 0.05 0.05 0.05

ULS
Mx(+) (kN*m/m) 17.00 17.00 17.00 17.00
Mx(-) (kN*m/m) 0.00 0.00 0.00 0.00
My(+) (kN*m/m) 6.29 6.29 6.29 6.29
My(-) (kN*m/m) 0.00 0.00 0.00 0.00

Nxx (kN/m) 0.05 0.05 0.05 0.05


Nyy (kN/m) -0.09 -0.09 -0.09 -0.09
Nxy (kN/m) 0.06 0.06 0.06 0.06

5.5.4. Deflection
|f(+)| = 1.90 (mm) <= fdop(+) = 37.50 (mm)
|f(-)| = 1.09 (mm) <= fdop(-) = 37.50 (mm)

6. Slab: Slab4742...5868 - Panel no. 5868


6.5. Calculation results:
6.5.2. Maximum moments + reinforcement for bending

Ax(+) Ax(-) Ay(+) Ay(-)


Symbol: required area/provided area
Ax(+) (mm2/m) 486.00/785 486.00/785 486.00/785
486.00/785
Ax(-) (mm2/m) 486.00/785 486.00/785 486.00/785
486.00/785
Ay(+) (mm2/m) 486.00/785 486.00/785 488.56/785
486.00/785
Ay(-) (mm2/m) 486.00/785 486.00/785 486.00/785
486.00/785

SLS
Mx(+) (kN*m/m) 3.17 3.17 7.17 3.17
Mx(-) (kN*m/m) 0.00 0.00 0.00 0.00
My(+) (kN*m/m) 19.68 19.68 31.02 19.68
My(-) (kN*m/m) 0.00 0.00 0.00 0.00

Nxx (kN/m) 0.03 0.03 -0.02 0.03


Nyy (kN/m) 0.16 0.16 0.16 0.16
Nxy (kN/m) 0.09 0.09 0.16 0.09

ULS
Mx(+) (kN*m/m) 3.97 3.97 9.07 3.97
Mx(-) (kN*m/m) 0.00 0.00 0.00 0.00
My(+) (kN*m/m) 24.81 24.81 39.28 24.81
My(-) (kN*m/m) 0.00 0.00 0.00 0.00

Nxx (kN/m) 0.04 0.04 -0.02 0.04


Nyy (kN/m) 0.20 0.20 0.20 0.20
Nxy (kN/m) 0.11 0.11 0.20 0.11

6.5.4. Deflection
|f(+)| = 0.00 (mm) <= fdop(+) = 37.50 (mm)
|f(-)| = 7.00 (mm) <= fdop(-) = 37.50 (mm)

7. Slab: Slab4742...5868 - Panel no. 4839


7.5. Calculation results:
7.5.2. Maximum moments + reinforcement for bending

Ax(+) Ax(-) Ay(+) Ay(-)


Symbol: required area/provided area
Ax(+) (mm2/m) 3094.42/3140 562.94/3140 1279.44/1570
970.91/1294.65
Ax(-) (mm2/m) 486.00/785 955.57/1570 486.00/744.17
533.60/0.00
Ay(+) (mm2/m) 1999.80/2355 618.35/2479.84 3718.82/3925
1673.69/2355
Ay(-) (mm2/m) 486.00/785 486.00/785 539.56/1570
1011.67/1570
SLS
Mx(+) (kN*m/m) 207.20 0.00 90.24
0.00
Mx(-) (kN*m/m) 0.00 -68.20 0.00
-39.11
My(+) (kN*m/m) 130.17 43.75 229.09
0.00
My(-) (kN*m/m) 0.00 -22.89 0.00
-69.07

Nxx (kN/m) 0.00 0.03 0.49


-0.03
Nyy (kN/m) 0.13 0.10 0.02
-0.04
Nxy (kN/m) 0.04 0.03 0.03
-0.11

ULS
Mx(+) (kN*m/m) 260.40 0.00 113.40
0.00
Mx(-) (kN*m/m) 0.00 -85.79 0.00
-49.12
My(+) (kN*m/m) 163.57 55.07 287.81
0.00
My(-) (kN*m/m) 0.00 -28.77 0.00
-86.78

Nxx (kN/m) 0.00 0.04 0.61


-0.03
Nyy (kN/m) 0.17 0.12 0.02
-0.05
Nxy (kN/m) 0.04 0.04 0.03
-0.13

7.5.3. Two-way shear


Support no. / Point Location Geometry: (m)
(m)
x y a b
S1 (18) 5.07 1.76 1.65 0.40
S3 (9752) 21.93 21.37 1.70 0.45
S5 (9754) 24.72 21.37 0.80 0.40
S8 (11271) 18.21 19.87 1.00 0.30
S9 (4135) -5.83 20.58 1.00 0.30
S12 (6) 13.69 7.79 1.65 0.40
S13 (19) -11.04 1.76 1.70 0.45
S16 (11288) 8.17 6.28 1.00 0.30
S18 (11303) 8.17 14.56 1.00 0.30
S19 (10619) 21.93 1.76 1.60 0.40
S21 (10630) 25.78 16.60 1.20 0.30
S23 (10652) -10.04 11.67 1.00 0.30
S25 (10656) 0.00 9.30 1.40 0.30
S27 (9733) 5.07 9.30 1.40 0.35
S29 (9734) 5.07 11.54 1.40 0.35
S31 (9735) 13.69 1.76 1.70 0.45
S33 (9741) -17.81 5.17 1.10 0.40
S35 (9743) -10.04 9.17 1.00 0.30
S37 (9746) -14.29 15.66 1.20 0.30
S39 (9749) 5.07 19.33 1.65 0.40
S41 (9750) 13.69 18.33 2.00 0.50
S43 (9771) 13.69 11.67 1.65 0.40
S46 (63) 18.21 1.76 1.00 0.30
-
Support no. / Point Loads: (kN) Perimeter of critical section (m)
Vu *Vn bo *Vn / Vu
S1 (18) 632.13 1339.97 5.05 2.12 > 1
S3 (9752) 401.47 1434.86 5.25 3.57 > 1
S5 (9754) 224.05 1161.83 3.35 5.19 > 1
S8 (11271) 560.90 1014.84 3.55 1.81 > 1
S9 (4135) 517.73 1014.84 3.55 1.96 > 1
S12 (6) 469.25 1339.97 5.05 2.86 > 1
S13 (19) 911.19 1434.86 5.25 1.57 > 1
S16 (11288) 684.68 761.13 2.66 1.11 > 1
S18 (11303) 634.99 761.39 2.66 1.20 > 1
S19 (10619) 422.86 797.49 2.97 1.89 > 1
S21 (10630) 540.85 794.00 2.96 1.47 > 1
S23 (10652) 428.25 1014.84 3.55 2.37 > 1
S25 (10656) 479.91 1110.41 4.35 2.31 > 1
S27 (9733) 432.06 1192.75 4.45 2.76 > 1
S29 (9734) 408.17 1192.75 4.45 2.92 > 1
S31 (9735) 724.34 1434.86 5.25 1.98 > 1
S33 (9741) 663.17 779.37 2.52 1.18 > 1
S35 (9743) 573.79 1014.84 3.55 1.77 > 1
S37 (9746) 536.36 794.00 2.96 1.48 > 1
S39 (9749) 657.27 991.70 3.74 1.51 > 1
S41 (9750) 716.93 1594.98 5.95 2.22 > 1
S43 (9771) 228.73 1004.98 3.79 4.39 > 1
S46 (63) 576.23 1014.84 3.55 1.76 > 1

Expected results OK if phi*vn >= vu or phi*vnr >= vur


vu, vn - stress for a cross-section calculated without considering punching reinforcement
vur, vnr - stress for a cross-section calculated with considering punching reinforcement

Support no. / Point: S1 (18)


V= 509.04 (kN)
Mscx = 52.24 (kN*m)
Mscy = -62.13 (kN*m)
A= 1.20 (m2)
fx = 0.53
fy = 0.28
Cmaxx = 0.32
Cmaxy = 0.94
Cminx = -0.32
Cminy = -0.94
Jx = 53837676.7 (cm4)
Jy = 10235685.6 (cm4)
c = 4.13
= 1.00
s = 1.00
s = 40.00
= 0.75
S1 = 0.25
heff = 23.7 (cm)
*vn = 1.12 (MPa)
vu = 0.53 (MPa)
A= 1.20 (m2)

Support no. / Point: S3 (9752)


V= 347.50 (kN)
Mscx = 20.81 (kN*m)
Mscy = -32.11 (kN*m)
A= 1.24 (m2)
fx = 0.53
fy = 0.28
Cmaxx = 0.34
Cmaxy = 0.97
Cminx = -0.34
Cminy = -0.97
Jx = 59681227.1 (cm4)
Jy = 12266498.5 (cm4)
c = 3.78
= 1.00
s = 1.00
s = 40.00
= 0.75
S1 = 0.26
heff = 23.7 (cm)
*vn = 1.15 (MPa)
vu = 0.32 (MPa)
A= 1.24 (m2)

Support no. / Point: S5 (9754)


V= 160.42 (kN)
Mscx = 18.46 (kN*m)
Mscy = 25.36 (kN*m)
A= 0.79 (m2)
fx = 0.34
fy = 0.46
Cmaxx = 0.52
Cmaxy = 0.32
Cminx = -0.52
Cminy = -0.32
Jx = 6148577.4 (cm4)
Jy = 12752318.5 (cm4)
c = 2.00
= 1.00
s = 1.00
s = 40.00
= 0.75
S1 = 0.34
heff = 23.7 (cm)
*vn = 1.46 (MPa)
vu = 0.28 (MPa)
A= 0.79 (m2)

Support no. / Point: S8 (11271)


V= 443.80 (kN)
Mscx = 17.92 (kN*m)
Mscy = 64.97 (kN*m)
A= 0.84 (m2)
fx = 0.50
fy = 0.31
Cmaxx = 0.27
Cmaxy = 0.62
Cminx = -0.27
Cminy = -0.62
Jx = 17488239.3 (cm4)
Jy = 4957859.3 (cm4)
c = 3.33
= 1.00
s = 1.00
s = 40.00
= 0.75
S1 = 0.27
heff = 23.7 (cm)
*vn = 1.21 (MPa)
vu = 0.67 (MPa)
A= 0.84 (m2)

Support no. / Point: S9 (4135)


V= 430.76 (kN)
Mscx = 32.32 (kN*m)
Mscy = -27.79 (kN*m)
A= 0.84 (m2)
fx = 0.50
fy = 0.31
Cmaxx = 0.27
Cmaxy = 0.62
Cminx = -0.27
Cminy = -0.62
Jx = 17488239.3 (cm4)
Jy = 4957859.3 (cm4)
c = 3.33
= 1.00
s = 1.00
s = 40.00
= 0.75
S1 = 0.27
heff = 23.7 (cm)
*vn = 1.21 (MPa)
vu = 0.62 (MPa)
A= 0.84 (m2)

Support no. / Point: S12 (6)


V= 281.50 (kN)
Mscx = 108.85 (kN*m)
Mscy = 63.31 (kN*m)
A= 1.20 (m2)
fx = 0.53
fy = 0.28
Cmaxx = 0.32
Cmaxy = 0.94
Cminx = -0.32
Cminy = -0.94
Jx = 53837676.7 (cm4)
Jy = 10235685.6 (cm4)
c = 4.13
= 1.00
s = 1.00
s = 40.00
= 0.75
S1 = 0.25
heff = 23.7 (cm)
*vn = 1.12 (MPa)
vu = 0.39 (MPa)
A= 1.20 (m2)

Support no. / Point: S13 (19)


V= 588.17 (kN)
Mscx = -155.90 (kN*m)
Mscy = 158.44 (kN*m)
A= 1.24 (m2)
fx = 0.53
fy = 0.28
Cmaxx = 0.34
Cmaxy = 0.97
Cminx = -0.34
Cminy = -0.97
Jx = 59681227.1 (cm4)
Jy = 12266498.5 (cm4)
c = 3.78
= 1.00
s = 1.00
s = 40.00
= 0.75
S1 = 0.26
heff = 23.7 (cm)
*vn = 1.15 (MPa)
vu = 0.73 (MPa)
A= 1.24 (m2)

Support no. / Point: S16 (11288)


V= 414.06 (kN)
Mscx = 90.21 (kN*m)
Mscy = 46.32 (kN*m)
A= 0.63 (m2)
fx = 0.31
fy = 0.50
Cmaxx = 0.75
Cmaxy = 0.34
Cminx = -0.48
Cminy = -0.19
Jx = 3354567.6 (cm4)
Jy = 11978911.4 (cm4)
c = 3.33
= 1.00
s = 1.00
s = 40.00
= 0.75
S1 = 0.27
heff = 23.7 (cm)
*vn = 1.21 (MPa)
vu = 1.09 (MPa)
A= 0.63 (m2)

Support no. / Point: S18 (11303)


V= 427.27 (kN)
Mscx = -42.04 (kN*m)
Mscy = -112.21 (kN*m)
A= 0.63 (m2)
fx = 0.50
fy = 0.31
Cmaxx = 0.34
Cmaxy = 0.48
Cminx = -0.19
Cminy = -0.75
Jx = 11991126.9 (cm4)
Jy = 3354795.4 (cm4)
c = 3.33
= 1.00
s = 1.00
s = 40.00
= 0.75
S1 = 0.27
heff = 23.7 (cm)
*vn = 1.21 (MPa)
vu = 1.01 (MPa)
A= 0.63 (m2)

Support no. / Point: S19 (10619)


V= 220.40 (kN)
Mscx = -22.05 (kN*m)
Mscy = -150.92 (kN*m)
A= 0.70 (m2)
fx = 0.50
fy = 0.31
Cmaxx = 0.37
Cmaxy = 0.48
Cminx = -0.26
Cminy = -0.94
Jx = 12681250.7 (cm4)
Jy = 5997622.4 (cm4)
c = 4.00
= 1.00
s = 1.00
s = 40.00
= 0.75
S1 = 0.26
heff = 23.7 (cm)
*vn = 1.13 (MPa)
vu = 0.60 (MPa)
A= 0.70 (m2)

Support no. / Point: S21 (10630)


V= 294.86 (kN)
Mscx = 36.74 (kN*m)
Mscy = 96.49 (kN*m)
A= 0.70 (m2)
fx = 0.29
fy = 0.52
Cmaxx = 0.87
Cmaxy = 0.35
Cminx = -0.57
Cminy = -0.19
Jx = 3811364.1 (cm4)
Jy = 17256858.9 (cm4)
c = 4.00
= 1.00
s = 1.00
s = 40.00
= 0.75
S1 = 0.26
heff = 23.7 (cm)
*vn = 1.13 (MPa)
vu = 0.77 (MPa)
A= 0.70 (m2)

Support no. / Point: S23 (10652)


V= 227.48 (kN)
Mscx = -118.74 (kN*m)
Mscy = -23.90 (kN*m)
A= 0.84 (m2)
fx = 0.31
fy = 0.50
Cmaxx = 0.62
Cmaxy = 0.27
Cminx = -0.62
Cminy = -0.27
Jx = 4957859.3 (cm4)
Jy = 17488239.3 (cm4)
c = 3.33
= 1.00
s = 1.00
s = 40.00
= 0.75
S1 = 0.27
heff = 23.7 (cm)
*vn = 1.21 (MPa)
vu = 0.51 (MPa)
A= 0.84 (m2)

Support no. / Point: S25 (10656)


V= 365.44 (kN)
Mscx = 53.52 (kN*m)
Mscy = 36.88 (kN*m)
A= 1.03 (m2)
fx = 0.54
fy = 0.28
Cmaxx = 0.27
Cmaxy = 0.82
Cminx = -0.27
Cminy = -0.82
Jx = 34743561.5 (cm4)
Jy = 6324728.4 (cm4)
c = 4.67
= 1.00
s = 1.00
s = 40.00
= 0.75
S1 = 0.24
heff = 23.7 (cm)
*vn = 1.08 (MPa)
vu = 0.47 (MPa)
A= 1.03 (m2)

Support no. / Point: S27 (9733)


V= 348.57 (kN)
Mscx = 56.42 (kN*m)
Mscy = 14.45 (kN*m)
A= 1.05 (m2)
fx = 0.29
fy = 0.53
Cmaxx = 0.82
Cmaxy = 0.29
Cminx = -0.82
Cminy = -0.29
Jx = 7613275.7 (cm4)
Jy = 36331324.7 (cm4)
c = 4.00
= 1.00
s = 1.00
s = 40.00
= 0.75
S1 = 0.26
heff = 23.7 (cm)
*vn = 1.13 (MPa)
vu = 0.41 (MPa)
A= 1.05 (m2)

Support no. / Point: S29 (9734)


V= 337.49 (kN)
Mscx = -51.85 (kN*m)
Mscy = 8.44 (kN*m)
A= 1.05 (m2)
fx = 0.29
fy = 0.53
Cmaxx = 0.82
Cmaxy = 0.29
Cminx = -0.82
Cminy = -0.29
Jx = 7613275.7 (cm4)
Jy = 36331324.7 (cm4)
c = 4.00
= 1.00
s = 1.00
s = 40.00
= 0.75
S1 = 0.26
heff = 23.7 (cm)
*vn = 1.13 (MPa)
vu = 0.39 (MPa)
A= 1.05 (m2)

Support no. / Point: S31 (9735)


V= 518.35 (kN)
Mscx = 83.11 (kN*m)
Mscy = 118.59 (kN*m)
A= 1.24 (m2)
fx = 0.53
fy = 0.28
Cmaxx = 0.34
Cmaxy = 0.97
Cminx = -0.34
Cminy = -0.97
Jx = 59681227.1 (cm4)
Jy = 12266498.5 (cm4)
c = 3.78
= 1.00
s = 1.00
s = 40.00
= 0.75
S1 = 0.26
heff = 23.7 (cm)
*vn = 1.15 (MPa)
vu = 0.58 (MPa)
A= 1.24 (m2)

Support no. / Point: S33 (9741)


V= 229.56 (kN)
Mscx = -53.86 (kN*m)
Mscy = -118.05 (kN*m)
A= 0.60 (m2)
fx = 0.33
fy = 0.48
Cmaxx = 0.38
Cmaxy = 0.25
Cminx = -0.84
Cminy = -0.39
Jx = 4829703.0 (cm4)
Jy = 8102901.9 (cm4)
c = 2.75
= 1.00
s = 1.00
s = 40.00
= 0.75
S1 = 0.29
heff = 23.7 (cm)
*vn = 1.30 (MPa)
vu = 1.11 (MPa)
A= 0.60 (m2)

Support no. / Point: S35 (9743)


V= 249.56 (kN)
Mscx = 224.42 (kN*m)
Mscy = 8.24 (kN*m)
A= 0.84 (m2)
fx = 0.31
fy = 0.50
Cmaxx = 0.62
Cmaxy = 0.27
Cminx = -0.62
Cminy = -0.27
Jx = 4957859.3 (cm4)
Jy = 17488239.3 (cm4)
c = 3.33
= 1.00
s = 1.00
s = 40.00
= 0.75
S1 = 0.27
heff = 23.7 (cm)
*vn = 1.21 (MPa)
vu = 0.68 (MPa)
A= 0.84 (m2)

Support no. / Point: S37 (9746)


V= 302.53 (kN)
Mscx = 38.44 (kN*m)
Mscy = -88.22 (kN*m)
A= 0.70 (m2)
fx = 0.29
fy = 0.52
Cmaxx = 0.57
Cmaxy = 0.35
Cminx = -0.87
Cminy = -0.19
Jx = 3811364.1 (cm4)
Jy = 17256858.9 (cm4)
c = 4.00
= 1.00
s = 1.00
s = 40.00
= 0.75
S1 = 0.26
heff = 23.7 (cm)
*vn = 1.13 (MPa)
vu = 0.76 (MPa)
A= 0.70 (m2)

Support no. / Point: S39 (9749)


V= 378.13 (kN)
Mscx = 121.08 (kN*m)
Mscy = 113.85 (kN*m)
A= 0.89 (m2)
fx = 0.53
fy = 0.28
Cmaxx = 0.22
Cmaxy = 1.16
Cminx = -0.41
Cminy = -0.73
Jx = 35336415.6 (cm4)
Jy = 6893236.0 (cm4)
c = 4.13
= 1.00
s = 1.00
s = 40.00
= 0.75
S1 = 0.25
heff = 23.7 (cm)
*vn = 1.12 (MPa)
vu = 0.74 (MPa)
A= 0.89 (m2)

Support no. / Point: S41 (9750)


V= 625.93 (kN)
Mscx = 76.38 (kN*m)
Mscy = -20.00 (kN*m)
A= 1.41 (m2)
fx = 0.54
fy = 0.28
Cmaxx = 0.37
Cmaxy = 1.12
Cminx = -0.37
Cminy = -1.12
Jx = 88417565.4 (cm4)
Jy = 16143331.1 (cm4)
c = 4.00
= 1.00
s = 1.00
s = 40.00
= 0.75
S1 = 0.26
heff = 23.7 (cm)
*vn = 1.13 (MPa)
vu = 0.51 (MPa)
A= 1.41 (m2)

Support no. / Point: S43 (9771)


V= 220.82 (kN)
Mscx = -7.47 (kN*m)
Mscy = -1.21 (kN*m)
A= 0.90 (m2)
fx = 0.28
fy = 0.53
Cmaxx = 0.75
Cmaxy = 0.41
Cminx = -1.14
Cminy = -0.23
Jx = 6904546.2 (cm4)
Jy = 36898247.4 (cm4)
c = 4.13
= 1.00
s = 1.00
s = 40.00
= 0.75
S1 = 0.25
heff = 23.7 (cm)
*vn = 1.12 (MPa)
vu = 0.25 (MPa)
A= 0.90 (m2)

Support no. / Point: S46 (63)


V= 330.55 (kN)
Mscx = -155.40 (kN*m)
Mscy = 19.87 (kN*m)
A= 0.84 (m2)
fx = 0.31
fy = 0.50
Cmaxx = 0.62
Cmaxy = 0.27
Cminx = -0.62
Cminy = -0.27
Jx = 4957859.3 (cm4)
Jy = 17488239.3 (cm4)
c = 3.33
= 1.00
s = 1.00
s = 40.00
= 0.75
S1 = 0.27
heff = 23.7 (cm)
*vn = 1.21 (MPa)
vu = 0.69 (MPa)
A= 0.84 (m2)

7.5.4. Deflection
|f(+)| = 2.54 (mm) <= fdop(+) = 37.50 (mm)
|f(-)| = 35.36 (mm) <= fdop(-) = 37.50 (mm)

8. Slab: Slab4742...5868 - Panel no. 4902


8.5. Calculation results:
8.5.2. Maximum moments + reinforcement for bending

Ax(+) Ax(-) Ay(+) Ay(-)


Symbol: required area/provided area
Ax(+) (mm2/m) 1275.54/1570 1110.38^/1570 1110.38^/1570
1110.38^/1570
Ax(-) (mm2/m) 486.00/785 486.00/785 486.00/785
486.00/785
Ay(+) (mm2/m) 1110.38^/1570 1110.38^/1570 1110.38^/1570
1110.38^/1570
Ay(-) (mm2/m) 486.00/785 486.00/785 486.00/785
486.00/785
^ - Reinforcement area enlarged due to punching

SLS
Mx(+) (kN*m/m) 157.20 2.57 2.57 2.57
Mx(-) (kN*m/m) 0.00 0.00 0.00 0.00
My(+) (kN*m/m) 5.55 0.00 0.00 0.00
My(-) (kN*m/m) -14.65 -6.54 -6.54 -6.54

Nxx (kN/m) 0.34 0.01 0.01 0.01


Nyy (kN/m) 0.01 -0.05 -0.05 -0.05
Nxy (kN/m) -0.17 0.01 0.01 0.01

ULS
Mx(+) (kN*m/m) 198.51 3.23 3.23 3.23
Mx(-) (kN*m/m) 0.00 -0.02 -0.02 -0.02
My(+) (kN*m/m) 8.02 0.00 0.00 0.00
My(-) (kN*m/m) -20.27 -8.42 -8.42 -8.42

Nxx (kN/m) 0.43 0.02 0.02 0.02


Nyy (kN/m) 0.01 -0.07 -0.07 -0.07
Nxy (kN/m) -0.21 0.01 0.01 0.01

8.5.3. Two-way shear


Support no. / Point Location (m) Geometry: (m)
x y a b d h
S33 (9741) -17.81 5.17 Column 1.10 0.40 -
-

Support no. / Point Loads: (kN) Perimeter of critical section (m)


Vu *Vn bo *Vn / Vu
S33 (9741) 663.17 779.37 2.52 1.18 > 1

Expected results OK if phi*vn >= vu or phi*vnr >= vur


vu, vn - stress for a cross-section calculated without considering punching reinforcement
vur, vnr - stress for a cross-section calculated with considering punching reinforcement

Support no. / Point: S33 (9741)


V= 229.56 (kN)
Mscx = -53.86 (kN*m)
Mscy = -118.05 (kN*m)
A= 0.60 (m2)
fx = 0.33
fy = 0.48
Cmaxx = 0.38
Cmaxy = 0.25
Cminx = -0.84
Cminy = -0.39
Jx = 4829703.0 (cm4)
Jy = 8102901.9 (cm4)
c = 2.75
= 1.00
s = 1.00
s = 40.00
= 0.75
S1 = 0.29
heff = 23.7 (cm)
*vn = 1.30 (MPa)
vu = 1.11 (MPa)
A= 0.60 (m2)

8.5.4. Deflection
|f(+)| = 1.77 (mm) <= fdop(+) = 37.50 (mm)
|f(-)| = 19.56 (mm) <= fdop(-) = 37.50 (mm)

9. Slab: Slab4742...5868 - Panel no. 4908


9.5. Calculation results:
9.5.2. Maximum moments + reinforcement for bending

Ax(+) Ax(-) Ay(+) Ay(-)


Symbol: required area/provided area
Ax(+) (mm2/m) 1639.15/2355 1639.15/1861.24 1639.15/2355
1639.15/2355
Ax(-) (mm2/m) 539.41/785 539.41/785 539.41/785
486.00/785
Ay(+) (mm2/m) 1620.00/2355 1620.00/2355 1620.00/2355
1620.00/2355
Ay(-) (mm2/m) 530.05/1570 530.05/1570 530.05/1570
722.19/1570

SLS
Mx(+) (kN*m/m) 48.78 45.14 48.78 48.78
Mx(-) (kN*m/m) -50.41 0.00 -50.41 -50.41
My(+) (kN*m/m) 38.52 62.00 38.52 38.52
My(-) (kN*m/m) -60.67 0.00 -60.67 -60.67

Nxx (kN/m) 0.07 0.08 0.07 0.07


Nyy (kN/m) -0.59 -0.18 -0.59 -0.59
Nxy (kN/m) 0.02 0.13 0.02 0.02

ULS
Mx(+) (kN*m/m) 61.56 56.68 61.56 61.56
Mx(-) (kN*m/m) -62.84 0.00 -62.84 -62.84
My(+) (kN*m/m) 48.88 78.08 48.88 48.88
My(-) (kN*m/m) -75.51 0.00 -75.51 -75.51

Nxx (kN/m) 0.09 0.10 0.09 0.09


Nyy (kN/m) -0.75 -0.23 -0.75 -0.75
Nxy (kN/m) 0.03 0.16 0.03 0.03

9.5.3. Two-way shear


Support no. / Point Location (m) Geometry: (m)
x y a b d h
S13 (19) -11.04 1.76 Column 1.70 0.45 -
-

Support no. / Point Loads: (kN) Perimeter of critical section (m)


Vu *Vn bo *Vn / Vu
S13 (19) 911.19 1434.86 5.25 1.57 > 1

Expected results OK if phi*vn >= vu or phi*vnr >= vur


vu, vn - stress for a cross-section calculated without considering punching reinforcement
vur, vnr - stress for a cross-section calculated with considering punching reinforcement

Support no. / Point: S13 (19)


V= 588.17 (kN)
Mscx = -155.90 (kN*m)
Mscy = 158.44 (kN*m)
A= 1.24 (m2)
fx = 0.53
fy = 0.28
Cmaxx = 0.34
Cmaxy = 0.97
Cminx = -0.34
Cminy = -0.97
Jx = 59681227.1 (cm4)
Jy = 12266498.5 (cm4)
c = 3.78
= 1.00
s = 1.00
s = 40.00
= 0.75
S1 = 0.26
heff = 23.7 (cm)
*vn = 1.15 (MPa)
vu = 0.73 (MPa)
A= 1.24 (m2)

9.5.4. Deflection
|f(+)| = 8.38 (mm) <= fdop(+) = 37.50 (mm)
|f(-)| = 0.19 (mm) <= fdop(-) = 37.50 (mm)

10. Slab: Slab4742...5868 - Panel no. 4909


10.5. Calculation results:
10.5.2. Maximum moments + reinforcement for bending

Ax(+) Ax(-) Ay(+) Ay(-)


Symbol: required area/provided area
Ax(+) (mm2/m) 1734.88/2355 562.12/2355 1734.88/2355
562.12/2355
Ax(-) (mm2/m) 486.00/785 486.00/785 486.00/785
486.00/785
Ay(+) (mm2/m) 1542.35/1570 486.00/1570 1542.35/1570
486.00/1570
Ay(-) (mm2/m) 486.00/785 486.00/785 486.00/785
486.00/785

SLS
Mx(+) (kN*m/m) 70.30 30.30 70.30 30.30
Mx(-) (kN*m/m) -15.35 0.00 -15.35 0.00
My(+) (kN*m/m) 27.33 9.50 27.33 9.50
My(-) (kN*m/m) -58.32 -0.83 -58.32 -0.83

Nxx (kN/m) -0.07 0.01 -0.07 0.01


Nyy (kN/m) -0.01 0.01 -0.01 0.01
Nxy (kN/m) 0.11 0.02 0.11 0.02

ULS
Mx(+) (kN*m/m) 89.03 38.00 89.03 38.00
Mx(-) (kN*m/m) -23.19 0.00 -23.19 0.00
My(+) (kN*m/m) 35.22 11.90 35.22 11.90
My(-) (kN*m/m) -75.49 -1.21 -75.49 -1.21

Nxx (kN/m) -0.09 0.02 -0.09 0.02


Nyy (kN/m) -0.01 0.01 -0.01 0.01
Nxy (kN/m) 0.13 0.03 0.13 0.03

10.5.3. Two-way shear


Support no. / Point Location (m) Geometry: (m)
x y a b d h
S31 (9735) 13.69 1.76 Column 1.70 0.45 -
-
S46 (63) 18.21 1.76 Column 1.00 0.30 -
-

Support no. / Point Loads: (kN) Perimeter of critical section (m)


Vu *Vn bo *Vn / Vu
S31 (9735) 724.34 1434.86 5.25 1.98 > 1
S46 (63) 576.23 1014.84 3.55 1.76 > 1

Expected results OK if phi*vn >= vu or phi*vnr >= vur


vu, vn - stress for a cross-section calculated without considering punching reinforcement
vur, vnr - stress for a cross-section calculated with considering punching reinforcement

Support no. / Point: S31 (9735)


V= 518.35 (kN)
Mscx = 83.11 (kN*m)
Mscy = 118.59 (kN*m)
A= 1.24 (m2)
fx = 0.53
fy = 0.28
Cmaxx = 0.34
Cmaxy = 0.97
Cminx = -0.34
Cminy = -0.97
Jx = 59681227.1 (cm4)
Jy = 12266498.5 (cm4)
c = 3.78
= 1.00
s = 1.00
s = 40.00
= 0.75
S1 = 0.26
heff = 23.7 (cm)
*vn = 1.15 (MPa)
vu = 0.58 (MPa)
A= 1.24 (m2)

Support no. / Point: S46 (63)


V= 330.55 (kN)
Mscx = -155.40 (kN*m)
Mscy = 19.87 (kN*m)
A= 0.84 (m2)
fx = 0.31
fy = 0.50
Cmaxx = 0.62
Cmaxy = 0.27
Cminx = -0.62
Cminy = -0.27
Jx = 4957859.3 (cm4)
Jy = 17488239.3 (cm4)
c = 3.33
= 1.00
s = 1.00
s = 40.00
= 0.75
S1 = 0.27
heff = 23.7 (cm)
*vn = 1.21 (MPa)
vu = 0.69 (MPa)
A= 0.84 (m2)

10.5.4. Deflection
|f(+)| = 9.68 (mm) <= fdop(+) = 37.50 (mm)
|f(-)| = 4.50 (mm) <= fdop(-) = 37.50 (mm)

11. Loads:
SDL=5KN/m2
LL= 1.92KNm2
LL= 2.88KN/m2 for Cantilever
Case 1 : Self
Case2 : SDL
Case3 : LL
Combination/Component Definition
SLS/30 (1+2+3)*1.00
ULS/4 (1x1.2)+(2x1.2)+(3x1.6)
12. Results - detailing

Reinforcement zones
Bottom reinforcement
Name coordinates Provided reinforcement At Ar
x1 y1 x2 y2 f (mm) / (cm) (mm2/m) (mm2/m)
7/7- Ax Main -18.36 0.00 27.80 24.00 20.0 / 40.0 721.93 < 785
7/17-(7/20-) Ay Perpendicular 21.00 1.26 21.93 2.43 20.0 / 20.0 1011.67 < 1570
7/19-(7/20-) Ay Perpendicular -13.11 11.67 -8.61 12.56 20.0 / 20.0 720.81 < 1570
7/20- Ay Perpendicular -18.36 0.00 27.80 24.00 20.0 / 40.0 722.19 < 785
9/180-(7/20-) Ay Perpendicular -11.87 1.26 -11.04 1.76 20.0 / 20.0 722.19 < 1570
7/165-(7/7-) Ax Main -9.58 0.01 -4.74 5.17 20.0 / 20.0 724.56 < 1570
7/166-(7/7-) Ax Main 5.07 19.33 6.05 20.58 20.0 / 20.0 955.57 < 1570
7/59-(7/20-) Ay Perpendicular -4.66 4.18 -2.70 5.75 20.0 / 20.0 892.47 < 1570
7/60-(7/20-) Ay Perpendicular 13.67 5.75 14.60 7.05 20.0 / 20.0 810.88 < 1570

Top reinforcement
Name coordinates Provided reinforcement At Ar
x1 y1 x2 y2 f (mm) / (cm) (mm2/m) (mm2/m)
7/9+ Ay Perpendicular -18.36 0.00 27.80 24.00 20.0 / 40.0 1016.91 < 785
7/10+(7/9+) Ay Perpendicular -7.60 19.33 -4.66 21.37 20.0 / 20.0 1392.99 < 1570
7/11+(7/9+) Ay Perpendicular -11.73 18.68 -8.58 20.58 20.0 / 20.0 1466.92 < 1570
1/12+(7/9+) Ay Perpendicular -16.16 14.45 -12.70 17.40 20.0 / 20.0 1218.33 < 1570
7/13+(7/9+) Ay Perpendicular -12.70 0.63 -9.58 3.10 20.0 / 13.3 1696.92 < 2355
7/14+(7/9+) Ay Perpendicular -18.36 4.18 -16.16 7.05 20.0 / 20.0 1110.38 < 1570
7/15+(7/9+) Ay Perpendicular -14.29 7.79 -8.61 10.42 20.0 / 13.3 2355.54 < 2355
7/16+(7/9+) Ay Perpendicular -13.55 10.97 -8.61 12.56 20.0 / 8.0 3718.82 < 3925
7/17+(7/9+) Ay Perpendicular -6.62 11.67 -3.77 13.45 20.0 / 20.0 1247.87 < 1570
7/18+(7/9+) Ay Perpendicular -6.62 7.05 -2.70 10.06 20.0 / 10.0 2755.17 < 3140
7/19+(7/9+) Ay Perpendicular -0.43 8.48 1.40 10.06 20.0 / 20.0 1194.75 < 1570
7/20+(7/9+) Ay Perpendicular 4.23 8.48 6.05 12.56 20.0 / 20.0 1060.23 < 1570
7/21+(7/9+) Ay Perpendicular 7.03 13.11 9.96 15.66 20.0 / 10.0 2793.39 < 3140
7/22+(7/9+) Ay Perpendicular 12.77 10.97 14.60 12.56 20.0 / 20.0 1331.84 < 1570
7/23+(7/9+) Ay Perpendicular 11.85 16.60 15.50 19.87 20.0 / 13.3 2138.28 < 2355
7/24+(7/9+) Ay Perpendicular 16.40 18.68 19.14 20.58 20.0 / 20.0 1490.13 < 1570
7/25+(7/9+) Ay Perpendicular 20.03 19.87 23.67 22.06 20.0 / 20.0 1176.58 < 1570
1/26+(7/9+) Ay Perpendicular 24.09 15.66 27.80 18.04 20.0 / 20.0 1354.24 < 1570
7/27+(7/9+) Ay Perpendicular 16.55 11.67 18.21 13.11 20.0 / 20.0 847.09 < 1570
7/28+(7/9+) Ay Perpendicular 16.40 1.26 23.28 3.10 20.0 / 13.3 1673.69 < 2355
7/29+(7/9+) Ay Perpendicular 11.85 0.01 15.50 3.10 20.0 / 20.0 1542.35 < 1570
7/30+(7/9+) Ay Perpendicular 7.03 5.17 9.96 7.79 20.0 / 10.0 2567.90 < 3140
7/31+(7/9+) Ay Perpendicular 13.67 6.32 14.64 8.48 20.0 / 13.3 1999.80 < 2355
7/32+(7/9+) Ay Perpendicular 3.38 0.88 7.03 3.10 20.0 / 20.0 1496.54 < 1570
7/33+(7/9+) Ay Perpendicular 0.00 3.10 1.40 4.18 20.0 / 20.0 841.18 < 1570
7/34+(7/9+) Ay Perpendicular 4.23 18.04 7.03 19.87 20.0 / 13.3 2084.91 < 2355
7/35+ Ax Main -18.36 0.00 27.80 24.00 20.0 / 40.0 818.70 < 785
7/36+(7/35+) Ax Main -11.73 18.68 -9.56 20.58 20.0 / 20.0 914.38 < 1570
7/37+(7/35+) Ax Main -6.62 19.87 -4.66 21.27 20.0 / 20.0 1194.43 < 1570
1/38+(7/35+) Ax Main -16.16 14.45 -12.70 17.40 20.0 / 13.3 1727.48 < 2355
7/39+(7/35+) Ax Main -11.04 11.67 -8.61 12.56 20.0 / 20.0 1279.44 < 1570
7/40+(7/35+) Ax Main -13.55 7.79 -8.61 10.06 20.0 / 20.0 1422.77 < 1570
7/41+(7/35+) Ax Main -6.62 7.79 -3.77 13.45 20.0 / 20.0 1489.02 < 1570
7/42+(7/35+) Ax Main -0.43 8.48 1.40 10.06 20.0 / 20.0 882.39 < 1570
7/43+(7/35+) Ax Main 4.23 7.79 6.05 12.56 20.0 / 20.0 1068.81 < 1570
7/44+(7/35+) Ax Main 7.03 4.33 9.96 7.79 20.0 / 13.3 1889.43 < 2355
7/45+(7/35+) Ax Main 12.77 7.05 14.64 12.56 20.0 / 10.0 3094.42 < 3140
7/46+(7/35+) Ax Main 7.03 13.11 9.96 16.60 20.0 / 13.3 1673.92 < 2355
7/47+(7/35+) Ax Main 3.38 17.40 7.03 19.87 20.0 / 10.0 2357.15 < 3140
7/48+(7/35+) Ax Main 11.85 16.60 15.50 19.87 20.0 / 13.3 2010.91 < 2355
7/49+(7/35+) Ax Main 17.31 18.68 19.14 20.58 20.0 / 20.0 1262.54 < 1570
7/50+(7/35+) Ax Main 20.94 20.60 23.67 22.06 20.0 / 20.0 836.17 < 1570
1/51+(7/35+) Ax Main 24.09 15.66 27.80 18.04 20.0 / 20.0 1268.60 < 1570
7/52+(7/35+) Ax Main 21.00 1.26 23.28 2.43 20.0 / 20.0 970.91 < 1570
7/53+(7/35+) Ax Main 17.31 1.26 19.14 2.43 20.0 / 20.0 1029.15 < 1570
7/54+(7/35+) Ax Main 11.85 0.01 14.60 3.10 20.0 / 13.3 1734.88 < 2355
7/55+(7/35+) Ax Main 4.23 0.26 7.03 3.10 20.0 / 13.3 1639.45 < 2355
7/56+(7/35+) Ax Main 0.00 1.76 0.49 2.43 20.0 / 20.0 995.67 < 1570
7/57+(7/35+) Ax Main -3.68 0.01 -2.70 3.49 20.0 / 20.0 1054.57 < 1570
7/58+(7/35+) Ax Main -11.87 0.01 -9.58 3.49 20.0 / 13.3 1651.80 < 2355
7/59+(7/35+) Ax Main -18.36 4.18 -16.16 7.05 20.0 / 20.0 1275.54 < 1570

13. Mapped Results

Figure 78 Bottom X Required Reinforcements


Figure 79 Bottom X Provided Reinforcements

Figure 80 Top X Required Reinforcements

Figure 81 Top X Provided Reinforcements

Figure 82 Bottom Y Required Reinforcements


Figure 83 Bottom Y Provided Reinforcements

Figure 84 Top Y Required Reinforcements

Figure 85 Top Y Provided Reinforcements

14. Slab Reinforcements Drawings


Figure 86 Bottom X Reinforcements

Figure 87 Top X Reinfrocements


Figure 88 Bottom Y Reinforcements

Figure 89 Top Y Reinforcements

Lap Splicing:

Tension ➔ Ld= (420*1*1*1)/(1.7*1*(35)0.5 ) ∗ 𝑑𝑏 = 41.7𝑑𝑏=42*20= 840mm ➔


Lst=1.3*840=1092mm=1100mm
Compression➔ Lsc=0.071*420*db=29.82*db=29.82*20=596.4mm=600mm
Figure 91 Compression Lap Splicing Figure 90 Tension Lap Splicing

D. Core Walls: Designed for lateral force resistance, integrated shear walls to provide stability
against wind and seismic loads.
I have design Longitudinal reinforcements in CSI Column and Transverse reinforcements in RSA.
Load Combinations
Figure 92 Load Type Numbers

Table 5 Combinations

Combination Name Combination Coefficients


28 (C) ULS/1=1*1.40 + 2*1.40
29 (C) ULS/2=1*1.20 + 2*1.20 + 3*1.60
30 (C) ULS/3=1*1.20 + 2*1.20
31 (C) ULS/4=1*1.20 + 2*1.20 + 3*1.00 + 18*1.00
32 (C) ULS/5=1*1.20 + 2*1.20 + 3*1.00 + 19*1.00
33 (C) ULS/6=1*1.20 + 2*1.20 + 3*1.00 + 20*1.00
34 (C) ULS/7=1*1.20 + 2*1.20 + 3*1.00 + 21*1.00
35 (C) ULS/8=1*1.20 + 2*1.20 + 3*1.00 + 22*1.00
36 (C) ULS/9=1*1.20 + 2*1.20 + 3*1.00 + 23*1.00
37 (C) ULS/10=1*1.20 + 2*1.20 + 3*1.00 + 24*1.00
38 (C) ULS/11=1*1.20 + 2*1.20 + 3*1.00 + 25*1.00
39 (C) ULS/12=1*1.20 + 2*1.20 + 18*1.00
40 (C) ULS/13=1*1.20 + 2*1.20 + 19*1.00
41 (C) ULS/14=1*1.20 + 2*1.20 + 20*1.00
42 (C) ULS/15=1*1.20 + 2*1.20 + 21*1.00
43 (C) ULS/16=1*1.20 + 2*1.20 + 22*1.00
44 (C) ULS/17=1*1.20 + 2*1.20 + 23*1.00
45 (C) ULS/18=1*1.20 + 2*1.20 + 24*1.00
46 (C) ULS/19=1*1.20 + 2*1.20 + 25*1.00
47 (C) ULS/20=1*1.20 + 2*1.20
48 (C) ULS/21=1*0.90 + 2*0.90
49 (C) ULS/22=1*0.90 + 2*0.90 + 18*1.00
50 (C) ULS/23=1*0.90 + 2*0.90 + 19*1.00
51 (C) ULS/24=1*0.90 + 2*0.90 + 20*1.00
52 (C) ULS/25=1*0.90 + 2*0.90 + 21*1.00
53 (C) ULS/26=1*0.90 + 2*0.90 + 22*1.00
54 (C) ULS/27=1*0.90 + 2*0.90 + 23*1.00
55 (C) ULS/28=1*0.90 + 2*0.90 + 24*1.00
56 (C) ULS/29=1*0.90 + 2*0.90 + 25*1.00
57 (C) (CQC) ULS/30=1*1.20 + 2*1.20 + 3*1.00 + 8*1.00
58 (C) (CQC) ULS/31=1*1.20 + 2*1.20 + 8*1.00
59 (C) ULS/32=1*1.20 + 2*1.20
60 (C) (CQC) ULS/33=1*1.20 + 2*1.20 + 3*1.00 + 17*1.00
61 (C) (CQC) ULS/34=1*1.20 + 2*1.20 + 17*1.00
62 (C) (CQC) ULS/35=1*1.20 + 2*1.20 + 3*1.00 + 9*1.00
63 (C) (CQC) ULS/36=1*1.20 + 2*1.20 + 9*1.00
64 (C) (CQC) ULS/37=1*1.20 + 2*1.20 + 3*1.00 + 10*1.00
65 (C) (CQC) ULS/38=1*1.20 + 2*1.20 + 10*1.00
66 (C) (CQC) ULS/39=1*1.20 + 2*1.20 + 3*1.00 + 11*1.00
67 (C) (CQC) ULS/40=1*1.20 + 2*1.20 + 11*1.00
68 (C) (CQC) ULS/41=1*1.20 + 2*1.20 + 3*1.00 + 12*1.00
69 (C) (CQC) ULS/42=1*1.20 + 2*1.20 + 12*1.00
70 (C) (CQC) ULS/43=1*1.20 + 2*1.20 + 3*1.00 + 13*1.00
71 (C) (CQC) ULS/44=1*1.20 + 2*1.20 + 13*1.00
72 (C) (CQC) ULS/45=1*1.20 + 2*1.20 + 3*1.00 + 14*1.00
73 (C) (CQC) ULS/46=1*1.20 + 2*1.20 + 14*1.00
74 (C) (CQC) ULS/47=1*1.20 + 2*1.20 + 3*1.00 + 15*1.00
75 (C) (CQC) ULS/48=1*1.20 + 2*1.20 + 15*1.00
76 (C) (CQC) ULS/49=1*1.20 + 2*1.20 + 3*1.00 + 16*1.00
77 (C) (CQC) ULS/50=1*1.20 + 2*1.20 + 16*1.00
78 (C) (CQC) ULS/51=1*1.20 + 2*1.20 + 3*1.00 + 8*-1.00
79 (C) (CQC) ULS/52=1*1.20 + 2*1.20 + 8*-1.00
80 (C) (CQC) ULS/53=1*1.20 + 2*1.20 + 3*1.00 + 17*-1.00
81 (C) (CQC) ULS/54=1*1.20 + 2*1.20 + 17*-1.00
82 (C) (CQC) ULS/55=1*1.20 + 2*1.20 + 3*1.00 + 9*-1.00
83 (C) (CQC) ULS/56=1*1.20 + 2*1.20 + 9*-1.00
84 (C) (CQC) ULS/57=1*1.20 + 2*1.20 + 3*1.00 + 10*-1.00
85 (C) (CQC) ULS/58=1*1.20 + 2*1.20 + 10*-1.00
86 (C) (CQC) ULS/59=1*1.20 + 2*1.20 + 3*1.00 + 11*-1.00
87 (C) (CQC) ULS/60=1*1.20 + 2*1.20 + 11*-1.00
88 (C) (CQC) ULS/61=1*1.20 + 2*1.20 + 3*1.00 + 12*-1.00
89 (C) (CQC) ULS/62=1*1.20 + 2*1.20 + 12*-1.00
90 (C) (CQC) ULS/63=1*1.20 + 2*1.20 + 3*1.00 + 13*-1.00
91 (C) (CQC) ULS/64=1*1.20 + 2*1.20 + 13*-1.00
92 (C) (CQC) ULS/65=1*1.20 + 2*1.20 + 3*1.00 + 14*-1.00
93 (C) (CQC) ULS/66=1*1.20 + 2*1.20 + 14*-1.00
94 (C) (CQC) ULS/67=1*1.20 + 2*1.20 + 3*1.00 + 15*-1.00
95 (C) (CQC) ULS/68=1*1.20 + 2*1.20 + 15*-1.00
96 (C) (CQC) ULS/69=1*1.20 + 2*1.20 + 3*1.00 + 16*-1.00
97 (C) (CQC) ULS/70=1*1.20 + 2*1.20 + 16*-1.00
98 (C) (CQC) ULS/71=1*0.90 + 2*0.90 + 8*1.00
99 (C) ULS/72=1*0.90 + 2*0.90
100 (C) (CQC) ULS/73=1*0.90 + 2*0.90 + 17*1.00
101 (C) (CQC) ULS/74=1*0.90 + 2*0.90 + 9*1.00
102 (C) (CQC) ULS/75=1*0.90 + 2*0.90 + 10*1.00
103 (C) (CQC) ULS/76=1*0.90 + 2*0.90 + 11*1.00
104 (C) (CQC) ULS/77=1*0.90 + 2*0.90 + 12*1.00
105 (C) (CQC) ULS/78=1*0.90 + 2*0.90 + 13*1.00
106 (C) (CQC) ULS/79=1*0.90 + 2*0.90 + 14*1.00
107 (C) (CQC) ULS/80=1*0.90 + 2*0.90 + 15*1.00
108 (C) (CQC) ULS/81=1*0.90 + 2*0.90 + 16*1.00
109 (C) (CQC) ULS/82=1*0.90 + 2*0.90 + 8*-1.00
110 (C) (CQC) ULS/83=1*0.90 + 2*0.90 + 17*-1.00
111 (C) (CQC) ULS/84=1*0.90 + 2*0.90 + 9*-1.00
112 (C) (CQC) ULS/85=1*0.90 + 2*0.90 + 10*-1.00
113 (C) (CQC) ULS/86=1*0.90 + 2*0.90 + 11*-1.00
114 (C) (CQC) ULS/87=1*0.90 + 2*0.90 + 12*-1.00
115 (C) (CQC) ULS/88=1*0.90 + 2*0.90 + 13*-1.00
116 (C) (CQC) ULS/89=1*0.90 + 2*0.90 + 14*-1.00
117 (C) (CQC) ULS/90=1*0.90 + 2*0.90 + 15*-1.00
118 (C) (CQC) ULS/91=1*0.90 + 2*0.90 + 16*-1.00
Table 6 Capacity Calculation Results

Load Load, Pu Mux Muy Muxy Max Capacity


Combination (kN) (kN-m) (kN-m) (kN-m) Ratio Remarks
Comb28 12214.44 -3053.12 626.41 3116.718021 0.240825251 OK
Comb29 12306.35 -3110.22 632.65 3173.911541 0.2426374 OK
Comb30 10469.52 -2616.96 536.92 2671.472015 0.206421643 OK
Comb31 11621.92 -2940.64 596.56 3000.541192 0.229142874 OK
Comb32 11592.59 -2847.46 596.94 2909.358317 0.22856459 OK
Comb33 11600.12 -2868.96 598.89 2930.80206 0.22871305 OK
Comb34 11603.91 -2876.3 600.39 2938.293696 0.22878778 OK
Comb35 11629.84 -2939.59 603.42 3000.884047 0.229299024 OK
Comb36 11649.06 -2989.89 604.46 3050.379338 0.229677975 OK
Comb37 11642.09 -3000.56 595.46 3059.073867 0.229540542 OK
Comb38 11650.26 -3035.29 593.58 3092.785573 0.229701638 OK
Comb39 10473.9 -2632.35 536.73 2686.511793 0.206508 OK
Comb40 10444.57 -2539.17 537.11 2595.355745 0.205929711 OK
Comb41 10452.11 -2560.67 539.06 2616.795088 0.20607838 OK
Comb42 10455.89 -2568 540.56 2624.276874 0.206152916 OK
Comb43 10481.83 -2631.3 543.59 2686.862441 0.206664354 OK
Comb44 10501.04 -2681.6 544.63 2736.348004 0.207043111 OK
Comb45 10494.07 -2692.27 535.64 2745.036969 0.206905678 OK
Comb46 10502.25 -2727 533.75 2778.743972 0.207066968 OK
Comb47 10469.52 -2616.96 536.92 2671.472015 0.206421643 OK
Comb48 7852.14 -1962.72 402.69 2003.604011 0.15481624 OK
Comb49 7856.52 -1978.11 402.5 2018.644452 0.154902592 OK
Comb50 7827.19 -1884.93 402.88 1927.504449 0.154324308 OK
Comb51 7834.73 -1906.43 404.83 1948.938858 0.154472977 OK
Comb52 7838.51 -1913.76 406.33 1956.42056 0.1545475 OK
Comb53 7864.45 -1977.06 409.36 2018.995258 0.155058935 OK
Comb54 7883.66 -2027.36 410.4 2068.481745 0.1554377 OK
Comb55 7876.69 -2038.03 401.41 2077.184698 0.155300274 OK
Comb56 7884.87 -2072.76 399.52 2110.912184 0.15546155 OK
Comb57 8634.25 -4941.15 -1987.49 5325.887703 0.170236662 OK
Comb58 7486.23 -4632.86 -2047.32 5065.067715 0.1476018 OK
Comb59 10469.52 -2616.96 536.92 2671.472015 0.206421643 OK
Comb60 1371.12 23126.92 -348.38 23129.54382 0.565591156 OK
Comb61 223.1 23435.21 -408.2 23438.76479 0.5990127 OK
Comb62 1371.12 23126.92 -348.38 23129.54382 0.565591156 OK
Comb63 223.1 23435.21 -408.2 23438.76479 0.5990127 OK
Comb64 8634.25 -4941.15 -1987.49 5325.887703 0.170236662 OK
Comb65 7486.23 -4632.86 -2047.32 5065.067715 0.1476018 OK
Comb66 584.3 25288.7 -429.91 25292.35399 0.637331963 OK
Comb67 -563.72 25596.99 -489.73 25601.67441 0.672462761 OK
Comb68 8634.25 -4941.15 -1987.49 5325.887703 0.170236662 OK
Comb69 7486.23 -4632.86 -2047.32 5065.067715 0.1476018 OK
Comb70 2157.93 20965.15 -266.85 20966.8482 0.4980388 OK
Comb71 1009.91 21273.44 -326.68 21275.94814 0.527362645 OK
Comb72 9035.18 -6042.33 -1946.41 6348.091344 0.178141564 OK
Comb73 7887.16 -5734.04 -2006.23 6074.880537 0.1555067 OK
Comb74 1371.12 23126.92 -348.38 23129.54382 0.565591156 OK
Comb75 223.1 23435.21 -408.2 23438.76479 0.5990127 OK
Comb76 8233.32 -3839.97 -2028.58 4342.868455 0.162331745 OK
Comb77 7085.3 -3531.68 -2088.41 4102.952589 0.139696881 OK
Comb78 14600.83 -909.35 3180.99 3308.415754 0.287876368 OK
Comb79 13452.81 -601.06 3121.17 3178.517782 0.2652415 OK
Comb80 21863.96 -28977.42 1541.88 29018.4125 0.431079417 OK
Comb81 20715.94 -28669.13 1482.05 28707.41171 0.4188166 OK
Comb82 21863.96 -28977.42 1541.88 29018.4125 0.431079417 OK
Comb83 20715.94 -28669.13 1482.05 28707.41171 0.4188166 OK
Comb84 14600.83 -909.35 3180.99 3308.415754 0.287876368 OK
Comb85 13452.81 -601.06 3121.17 3178.517782 0.2652415 OK
Comb86 22650.78 -31139.19 1623.41 31181.4787 0.446592718 OK
Comb87 21502.76 -30830.9 1563.58 30870.52279 0.5703402 OK
Comb88 14600.83 -909.35 3180.99 3308.415754 0.287876368 OK
Comb89 13452.81 -601.06 3121.17 3178.517782 0.2652415 OK
Comb90 21077.15 -26815.65 1460.35 26855.38507 0.415566325 OK
Comb91 19929.13 -26507.35 1400.53 26544.32309 0.392931461 OK
Comb92 14199.9 191.83 3139.91 3145.764384 0.279971451 OK
Comb93 13051.88 500.12 3080.08 3120.418693 0.2573366 OK
Comb94 21863.96 -28977.42 1541.88 29018.4125 0.431079417 OK
Comb95 20715.94 -28669.13 1482.05 28707.41171 0.4188166 OK
Comb96 15001.75 -2010.53 3222.08 3797.898157 0.295781076 OK
Comb97 13853.74 -1702.24 3162.26 3591.310252 0.273146421 OK
Comb98 4868.85 -3978.62 -2181.55 4537.463775 0.130029619 OK
Comb99 7852.14 -1962.72 402.69 2003.604011 0.15481624 OK
Comb100 -2394.28 24089.45 -542.44 24095.55649 0.6861478 OK
Comb101 -2394.28 24089.45 -542.44 24095.55649 0.6861478 OK
Comb102 4868.85 -3978.62 -2181.55 4537.463775 0.130029619 OK
Comb103 -3181.1 26251.23 -623.96 26258.64434 0.7763392 OK
Comb104 4868.85 -3978.62 -2181.55 4537.463775 0.130029619 OK
Comb105 -1607.47 21927.68 -460.91 21932.52353 0.6026038 OK
Comb106 5269.78 -5079.8 -2140.46 5512.344061 0.142687947 OK
Comb107 -2394.28 24089.45 -542.44 24095.55649 0.6861478 OK
Comb108 4467.92 -2877.44 -2222.64 3635.902848 0.116370268 OK
Comb109 10835.43 53.18 2986.94 2987.413375 0.213636085 OK
Comb110 18098.56 -28014.89 1347.82 28047.29364 0.4284519 OK
Comb111 18098.56 -28014.89 1347.82 28047.29364 0.4284519 OK
Comb112 10835.43 53.18 2986.94 2987.413375 0.213636085 OK
Comb113 18885.38 -30176.66 1429.35 30210.49239 0.455629677 OK
Comb114 10835.43 53.18 2986.94 2987.413375 0.213636085 OK
Comb115 17311.75 -25853.11 1266.3 25884.10347 0.400527328 OK
Comb116 10434.5 1154.36 2945.85 3163.949941 0.205731168 OK
Comb117 18098.56 -28014.89 1347.82 28047.29364 0.4284519 OK
Comb118 11236.36 -1048 3028.03 3204.258055 0.221541 OK

Figure 93 CSI Column Results


Robot Design:
Left/Right walls

Figure 94 Right and Left Wall Location

Geometry
Figure 95 Left/Right Wall Dimensions

Height: 3.07 (m)


Length: 2.30 (m)
Thickness: 30.0 (cm)
Boundary elements:
BL: 30.0 (cm)
DL: 59.0 (cm)
BR: 30.0 (cm)
DR: 57.5 (cm)
Cover: 2 (cm)

Loads:
Reduced:
Nature N M H
(kN) (kN*m) (kN)
Dead (Self) 1365.05 62.11 -103.38
Dead (SDL) 658.62 29.36 -47.25
Live (LL1) 258.38 11.42 -19.09
Seismic (ASCE 7- -642.04 171.79 -614.42
16 Direction_X)
Seismic (ASCE 7- 4453.14 535.77 -565.12
16 Direction_Y)
Seismic (ASCE 7- -642.04 171.79 -614.42
16 Ecc X-
Direction_X)
Seismic (ASCE 7- 4850.31 588.12 -632.51
16 Ecc X-
Direction_Y)
Seismic (ASCE 7- -642.04 171.79 -614.42
16 Ecc X+
Direction_X)
Seismic (ASCE 7- 4055.97 483.42 -497.72
16 Ecc X+
Direction_Y)
Seismic (ASCE 7- -844.31 145.08 -579.99
16 Ecc Y-
Direction_X)
Seismic (ASCE 7- 4453.14 535.77 -565.12
16 Ecc Y-
Direction_Y)
Seismic (ASCE 7- -439.77 198.51 -648.86
16 Ecc Y+
Direction_X)
Seismic (ASCE 7- 4453.14 535.77 -565.12
16 Ecc Y+
Direction_Y)
Wind (Wind X+ -2.94 -0.29 0.26
33 m/s (f =1.00)
Simulation)
Wind (Wind X+Y+ 14.05 1.42 -0.86
33 m/s (f =1.00)
Simulation)
Wind (Wind Y+ 9.54 0.65 0.28
33 m/s (f =1.00)
Simulation)
Wind (Wind X-Y+ 8.14 0.34 0.78
33 m/s (f =1.00)
Simulation)
Wind (Wind X- 33 -2.38 -0.93 1.67
m/s (f =1.00)
Simulation)
Wind (Wind X-Y- -10.75 -1.75 2.24
33 m/s (f =1.00)
Simulation)
Wind (Wind Y- 33 -12.98 -1.09 0.21
m/s (f =1.00)
Simulation)
Wind (Wind X+Y- -19.68 -1.66 0.47
33 m/s (f =1.00)
Simulation)

Calculation results:
Diagrams
Figure 96 Vertical Reinforcements

5000
4500 [mm2]

4000
3500
3000
2500
2000
1500
1000
500 [m]
0
0 0.5 1 1.5 2
Reinforcement / Vertical Required Provided

Figure 97 Horizontal Reinforcements

800
[mm2]
700

600

500

400

300

200

100 [m]
0
0 0.5 1 1.5 2
Reinforcement / Horizontal Required Provided

Combinations

Internal forces in ULS

ULS.1 - 1.2 Self +1.2 SDL +1.6 LL1


ULS.2 - 1.2 Self +1.2 SDL
ULS.3 - 1.2 Self +1.2 SDL +1 LL1 +1.6 Wind X+ 33 m/s (f =1.00) Simulation
ULS.4 - 1.2 Self +1.2 SDL +1 LL1 +1.6 Wind X+Y+ 33 m/s (f =1.00) Simulation
ULS.5 - 1.2 Self +1.2 SDL +1 LL1 +1.6 Wind Y+ 33 m/s (f =1.00) Simulation
ULS.6 - 1.2 Self +1.2 SDL +1 LL1 +1.6 Wind X-Y+ 33 m/s (f =1.00) Simulation
ULS.7 - 1.2 Self +1.2 SDL +1 LL1 +1.6 Wind X- 33 m/s (f =1.00) Simulation
ULS.8 - 1.2 Self +1.2 SDL +1 LL1 +1.6 Wind X-Y- 33 m/s (f =1.00) Simulation
ULS.9 - 1.2 Self +1.2 SDL +1 LL1 +1.6 Wind Y- 33 m/s (f =1.00) Simulation
ULS.10 - 1.2 Self +1.2 SDL +1 LL1 +1.6 Wind X+Y- 33 m/s (f =1.00) Simulation
ULS.11 - 1.2 Self +1.2 SDL +1.6 Wind X+ 33 m/s (f =1.00) Simulation
ULS.12 - 1.2 Self +1.2 SDL +1.6 Wind X+Y+ 33 m/s (f =1.00) Simulation
ULS.13 - 1.2 Self +1.2 SDL +1.6 Wind Y+ 33 m/s (f =1.00) Simulation
ULS.14 - 1.2 Self +1.2 SDL +1.6 Wind X-Y+ 33 m/s (f =1.00) Simulation
ULS.15 - 1.2 Self +1.2 SDL +1.6 Wind X- 33 m/s (f =1.00) Simulation
ULS.16 - 1.2 Self +1.2 SDL +1.6 Wind X-Y- 33 m/s (f =1.00) Simulation
ULS.17 - 1.2 Self +1.2 SDL +1.6 Wind Y- 33 m/s (f =1.00) Simulation
ULS.18 - 1.2 Self +1.2 SDL +1.6 Wind X+Y- 33 m/s (f =1.00) Simulation
ULS.19 - 1.4 Self +1.4 SDL
ULS.20 - 0.9 Self +0.9 SDL
ULS.21 - 1.2 Self +1.2 SDL +0.8 Wind X+ 33 m/s (f =1.00) Simulation
ULS.22 - 1.2 Self +1.2 SDL +0.8 Wind X+Y+ 33 m/s (f =1.00) Simulation
ULS.23 - 1.2 Self +1.2 SDL +0.8 Wind Y+ 33 m/s (f =1.00) Simulation
ULS.24 - 1.2 Self +1.2 SDL +0.8 Wind X-Y+ 33 m/s (f =1.00) Simulation
ULS.25 - 1.2 Self +1.2 SDL +0.8 Wind X- 33 m/s (f =1.00) Simulation
ULS.26 - 1.2 Self +1.2 SDL +0.8 Wind X-Y- 33 m/s (f =1.00) Simulation
ULS.27 - 1.2 Self +1.2 SDL +0.8 Wind Y- 33 m/s (f =1.00) Simulation
ULS.28 - 1.2 Self +1.2 SDL +0.8 Wind X+Y- 33 m/s (f =1.00) Simulation
ULS.29 - 0.9 Self +0.9 SDL +1 Wind X+ 33 m/s (f =1.00) Simulation
ULS.30 - 0.9 Self +0.9 SDL +1 Wind X+Y+ 33 m/s (f =1.00) Simulation
ULS.31 - 0.9 Self +0.9 SDL +1 Wind Y+ 33 m/s (f =1.00) Simulation
ULS.32 - 0.9 Self +0.9 SDL +1 Wind X-Y+ 33 m/s (f =1.00) Simulation
ULS.33 - 0.9 Self +0.9 SDL +1 Wind X- 33 m/s (f =1.00) Simulation
ULS.34 - 0.9 Self +0.9 SDL +1 Wind X-Y- 33 m/s (f =1.00) Simulation
ULS.35 - 0.9 Self +0.9 SDL +1 Wind Y- 33 m/s (f =1.00) Simulation
ULS.36 - 0.9 Self +0.9 SDL +1 Wind X+Y- 33 m/s (f =1.00) Simulation

Actions in ALS

ALS.1 - 1.2 Self +1.2 SDL +1 LL1 +1 ASCE 7-16 Direction_X


ALS.2 - 1.2 Self +1.2 SDL +1 ASCE 7-16 Direction_X
ALS.3 - 1.2 Self +1.2 SDL
ALS.4 - 1.2 Self +1.2 SDL +1 LL1 +1 ASCE 7-16 Ecc Y+ Direction_Y
ALS.5 - 1.2 Self +1.2 SDL +1 ASCE 7-16 Ecc Y+ Direction_Y
ALS.6 - 1.2 Self +1.2 SDL +1 LL1 +1 ASCE 7-16 Direction_Y
ALS.7 - 1.2 Self +1.2 SDL +1 ASCE 7-16 Direction_Y
ALS.8 - 1.2 Self +1.2 SDL +1 LL1 +1 ASCE 7-16 Ecc X- Direction_X
ALS.9 - 1.2 Self +1.2 SDL +1 ASCE 7-16 Ecc X- Direction_X
ALS.10 - 1.2 Self +1.2 SDL +1 LL1 +1 ASCE 7-16 Ecc X- Direction_Y
ALS.11 - 1.2 Self +1.2 SDL +1 ASCE 7-16 Ecc X- Direction_Y
ALS.12 - 1.2 Self +1.2 SDL +1 LL1 +1 ASCE 7-16 Ecc X+ Direction_X
ALS.13 - 1.2 Self +1.2 SDL +1 ASCE 7-16 Ecc X+ Direction_X
ALS.14 - 1.2 Self +1.2 SDL +1 LL1 +1 ASCE 7-16 Ecc X+ Direction_Y
ALS.15 - 1.2 Self +1.2 SDL +1 ASCE 7-16 Ecc X+ Direction_Y
ALS.16 - 1.2 Self +1.2 SDL +1 LL1 +1 ASCE 7-16 Ecc Y- Direction_X
ALS.17 - 1.2 Self +1.2 SDL +1 ASCE 7-16 Ecc Y- Direction_X
ALS.18 - 1.2 Self +1.2 SDL +1 LL1 +1 ASCE 7-16 Ecc Y- Direction_Y
ALS.19 - 1.2 Self +1.2 SDL +1 ASCE 7-16 Ecc Y- Direction_Y
ALS.20 - 1.2 Self +1.2 SDL +1 LL1 +1 ASCE 7-16 Ecc Y+ Direction_X
ALS.21 - 1.2 Self +1.2 SDL +1 ASCE 7-16 Ecc Y+ Direction_X
ALS.22 - 1.2 Self +1.2 SDL +1 LL1 -1 ASCE 7-16 Direction_X
ALS.23 - 1.2 Self +1.2 SDL -1 ASCE 7-16 Direction_X
ALS.24 - 1.2 Self +1.2 SDL +1 LL1 -1 ASCE 7-16 Ecc Y+ Direction_Y
ALS.25 - 1.2 Self +1.2 SDL -1 ASCE 7-16 Ecc Y+ Direction_Y
ALS.26 - 1.2 Self +1.2 SDL +1 LL1 -1 ASCE 7-16 Direction_Y
ALS.27 - 1.2 Self +1.2 SDL -1 ASCE 7-16 Direction_Y
ALS.28 - 1.2 Self +1.2 SDL +1 LL1 -1 ASCE 7-16 Ecc X- Direction_X
ALS.29 - 1.2 Self +1.2 SDL -1 ASCE 7-16 Ecc X- Direction_X
ALS.30 - 1.2 Self +1.2 SDL +1 LL1 -1 ASCE 7-16 Ecc X- Direction_Y
ALS.31 - 1.2 Self +1.2 SDL -1 ASCE 7-16 Ecc X- Direction_Y
ALS.32 - 1.2 Self +1.2 SDL +1 LL1 -1 ASCE 7-16 Ecc X+ Direction_X
ALS.33 - 1.2 Self +1.2 SDL -1 ASCE 7-16 Ecc X+ Direction_X
ALS.34 - 1.2 Self +1.2 SDL +1 LL1 -1 ASCE 7-16 Ecc X+ Direction_Y
ALS.35 - 1.2 Self +1.2 SDL -1 ASCE 7-16 Ecc X+ Direction_Y
ALS.36 - 1.2 Self +1.2 SDL +1 LL1 -1 ASCE 7-16 Ecc Y- Direction_X
ALS.37 - 1.2 Self +1.2 SDL -1 ASCE 7-16 Ecc Y- Direction_X
ALS.38 - 1.2 Self +1.2 SDL +1 LL1 -1 ASCE 7-16 Ecc Y- Direction_Y
ALS.39 - 1.2 Self +1.2 SDL -1 ASCE 7-16 Ecc Y- Direction_Y
ALS.40 - 1.2 Self +1.2 SDL +1 LL1 -1 ASCE 7-16 Ecc Y+ Direction_X
ALS.41 - 1.2 Self +1.2 SDL -1 ASCE 7-16 Ecc Y+ Direction_X
ALS.42 - 0.9 Self +0.9 SDL +1 ASCE 7-16 Direction_X
ALS.43 - 0.9 Self +0.9 SDL
ALS.44 - 0.9 Self +0.9 SDL +1 ASCE 7-16 Ecc Y+ Direction_Y
ALS.45 - 0.9 Self +0.9 SDL +1 ASCE 7-16 Direction_Y
ALS.46 - 0.9 Self +0.9 SDL +1 ASCE 7-16 Ecc X- Direction_X
ALS.47 - 0.9 Self +0.9 SDL +1 ASCE 7-16 Ecc X- Direction_Y
ALS.48 - 0.9 Self +0.9 SDL +1 ASCE 7-16 Ecc X+ Direction_X
ALS.49 - 0.9 Self +0.9 SDL +1 ASCE 7-16 Ecc X+ Direction_Y
ALS.50 - 0.9 Self +0.9 SDL +1 ASCE 7-16 Ecc Y- Direction_X
ALS.51 - 0.9 Self +0.9 SDL +1 ASCE 7-16 Ecc Y- Direction_Y
ALS.52 - 0.9 Self +0.9 SDL +1 ASCE 7-16 Ecc Y+ Direction_X
ALS.53 - 0.9 Self +0.9 SDL -1 ASCE 7-16 Direction_X
ALS.54 - 0.9 Self +0.9 SDL -1 ASCE 7-16 Ecc Y+ Direction_Y
ALS.55 - 0.9 Self +0.9 SDL -1 ASCE 7-16 Direction_Y
ALS.56 - 0.9 Self +0.9 SDL -1 ASCE 7-16 Ecc X- Direction_X
ALS.57 - 0.9 Self +0.9 SDL -1 ASCE 7-16 Ecc X- Direction_Y
ALS.58 - 0.9 Self +0.9 SDL -1 ASCE 7-16 Ecc X+ Direction_X
ALS.59 - 0.9 Self +0.9 SDL -1 ASCE 7-16 Ecc X+ Direction_Y
ALS.60 - 0.9 Self +0.9 SDL -1 ASCE 7-16 Ecc Y- Direction_X
ALS.61 - 0.9 Self +0.9 SDL -1 ASCE 7-16 Ecc Y- Direction_Y
ALS.62 - 0.9 Self +0.9 SDL -1 ASCE 7-16 Ecc Y+ Direction_X
ALS.63 - 1.2 Self +1.2 SDL +1 LL1

Shear

Design combination: ULS.1


Vu = -211.31 (kN)
Mu = 128.04 (kN*m)
Nu = 2841.81 (kN)

Acv = 0.69 (m2)


Vc1 = 1463.21 (kN) (11-27)

Mu/Vu - lw/2 < 0 (11-28)


Vc = Vc1

Vc = 1463.21 (kN)
 = 0.75

Vu <  Vc
211.31 (kN) < 1097.40 (kN)
=> Shear reinforcement is not needed (11.9.9)
 t =  t min = 0.002 (14.3.3)
 l =  l min = 0.0015 (14.3.2)

Compression/bending
Left edge:
Design combination: ULS.1
Mu = 128.04 (kN*m)
Nu = 2841.81 (kN)

AsL = 10.00 (mm2)

Right edge:
Design combination: ULS.1
Mu = 128.04 (kN*m)
Nu = 2841.81 (kN)

AsR = 10.00 (mm2)

Shear - Seismic requirements

Design combination: ALS.20


Vu = -848.71 (kN)
Mu = 319.70 (kN*m)
Nu = 2247.01 (kN)
Acv = 0.69 (m2)

Horizontal reinforcement for shear


 c = 3.00* (21.9.4.1)
*For concrete strength given in MPa, alpha coefficient should be multiplied by the square root of 6.895
 t = 0.0025 (21-7)

Vertical reinforcement for shear (21.9.4.3)


 l = 0.0025

Compression/bending - Seismic requirements

Left edge:
Design combination: ALS.57
Mu = -505.80 (kN*m)
Nu = -3029.01 (kN)

AsL = 3210.04 (mm2)


Right edge:
Design combination: ALS.57
Mu = -505.80 (kN*m)
Nu = -3029.01 (kN)

AsR = 4803.21 (mm2)

Edge reinforcement (21.9.6)

Left edge
Design combination: ALS.36
Vu = 380.13 (kN)
Mu = -23.89 (kN*m)
Nu = 3531.09 (kN)

Distance between the most compressed fiber and the natural axis (21.9.6.2.a)
c < lw/(600*(u/hw)) (21-8)
54.4 (cm) < 54.8 (cm)

Maximum compressive stress (21.9.6.3)


 c < 0.2 * fc'
6.30 (MPa) < 7.00 (MPa)

Reinforcement ratio in the boundary element (21.9.6.5.a)


 B > 400/fy
0.02 > 0.01

=> Detailed design of edge reinforcement zones is required

Range of edge reinforcement zones:


b = max (c-0.1lw;c/2) (21.9.6.4.a)
b = 31.4 (cm)

Right edge

Design combination: ALS.10


Vu = -832.37 (kN)
Mu = 709.31 (kN*m)
Nu = 7537.09 (kN)

Distance between the most compressed fiber and the natural axis (21.9.6.2.a)
c > lw/(600*(u/hw)) (21-8)
115.3 (cm) > 54.8 (cm)

Maximum compressive stress (21.9.6.3)


 c > 0.2 * fc'
13.61 (MPa) > 7.00 (MPa)

Reinforcement ratio in the boundary element (21.9.6.5.a)


 B > 400/fy
0.03 > 0.01

=> Detailed design of edge reinforcement zones is required

Range of edge reinforcement zones:


b = max (c-0.1lw;c/2) (21.9.6.4.a)
b = 92.3 (cm)
Reinforcement:

Distributed reinforcement

Type Number of identical elements: Steel Diameter Spacing


(mm) (m)
Vertical reinforcement 32 Grade 420 25 0.13

Horizontal reinforcement 14 Grade 420 16 0.4

Edge reinforcement

Left edge:
Type Number of identical elements: Steel Diameter Spacing
(mm) (m)
Straight bars 8 Grade 420 32.0
Pins 30 Grade 420 12.0 0.1
Horizontal reinforcement 30 Grade 420 12.0 0.1

Right edge:
Type Number of identical elements: Steel Diameter Spacing
(mm) (m)
Straight bars 10 Grade 420 32.0 0.11
Pins 30 Grade 420 12.0 0.1
Horizontal reinforcement 30 Grade 420 12.0 0.1

Mid Walls

Figure 98 Mid Wall Location


Figure 99 Mid Wall Dimensions

Height: 3.07 (m)


Length: 3.80 (m)
Thickness: 35.0 (cm)
Boundary elements:
BL: 35.0 (cm)
DL: 81.0 (cm)
BR: 35.0 (cm)
DR: 81.0 (cm)
Cover: 2.0 (cm)

Loads:
Reduced:

Nature N M H
(kN) (kN*m) (kN)
Dead (Self) 2812.07 -390.60 -124.96
Dead (SDL) 1418.89 -220.64 -73.04
Live (LL1) 552.58 -84.21 -30.05
Seismic (ASCE 7-16 Direction_X) -2916.73 -409.03 -234.28
Seismic (ASCE 7-16 Direction_Y) -4692.65 6259.02 338.81
Seismic (ASCE 7-16 Ecc X- Direction_X) -2916.73 -409.03 -234.28
Seismic (ASCE 7-16 Ecc X- Direction_Y) -5057.48 6747.29 559.85
Seismic (ASCE 7-16 Ecc X+ Direction_X) -2916.73 -409.03 -234.28
Seismic (ASCE 7-16 Ecc X+ Direction_Y) -4327.82 5770.74 117.77
Seismic (ASCE 7-16 Ecc Y- Direction_X) -2731.08 -657.24 -347.58
Seismic (ASCE 7-16 Ecc Y- Direction_Y) -4692.65 6259.02 338.81
Seismic (ASCE 7-16 Ecc Y+ Direction_X) -3102.38 -160.82 -120.97
Seismic (ASCE 7-16 Ecc Y+ Direction_Y) -4692.65 6259.02 338.81
Wind (Wind X+ 33 m/s (f =1.00) Simulation) 1.58 -3.55 -0.93
Wind (Wind X+Y+ 33 m/s (f =1.00) Simulation) -9.67 18.62 1.17
Wind (Wind Y+ 33 m/s (f =1.00) Simulation) -5.50 14.17 -3.75
Wind (Wind X-Y+ 33 m/s (f =1.00) Simulation) -3.03 12.50 -4.63
Wind (Wind X- 33 m/s (f =1.00) Simulation) 9.25 -3.56 -0.18
Wind (Wind X-Y- 33 m/s (f =1.00) Simulation) 17.56 -16.28 3.43
Wind (Wind Y- 33 m/s (f =1.00) Simulation) 8.85 -18.66 3.05
Wind (Wind X+Y- 33 m/s (f =1.00) Simulation) 10.77 -26.49 -0.43

Calculation results
Figure 100 Vertical Reinforcements

7000
[mm2]
6000

5000

4000

3000

2000

1000
[m]
0
0 0.5 1 1.5 2 2.5 3 3.5
Reinforcement / Vertical Required Provided

Figure 101 Horizontal Reinforcements

900
[mm2]
800
700
600
500
400
300
200
100 [m]
0
0 0.5 1 1.5 2 2.5 3 3.5
Reinforcement / Horizontal Required Provided

Distributed reinforcement

Type Number of identical elements: Steel Diameter Spacing


(mm) (m)
Vertical reinforcement 20 Grade 420 25 0.22

Horizontal reinforcement 14 Grade 420 16 0.4

Edge reinforcement

Left edge:
Type Number of identical elements: Steel Diameter Spacing
(mm) (m)
Straight bars 12 Grade 420 32.0
Pins 30 Grade 420 12.0 0.1
Horizontal reinforcement 60 Grade 420 12.0 0.1

Right edge:
Type Number of identical elements: Steel Diameter Spacing
(mm) (m)
Straight bars 12 Grade 420 32.0
Pins 30 Grade 420 12.0 0.1
Horizontal reinforcement 60 Grade 420 12.0 0.1
Core Wall Drawings :
Figure 102 Story 1 2 3 4 Core Wall Reinforcement Detailing

Figure 103 Story 1 Transverse Reinforcements

Other Stories
Figure 104 Story 5 6 Core Wall Reinforcement Detailing
Figure 105 Story 7 Core Wall Reinforcement Detailing

Figure 106 Story 8 Core Wall Reinforcement Detailing

Figure 107 Story 9 Core Wall Reinforcement Detailing


Figure 108 Story 10 11 12 13 Core Wall Reinforcement Detailing

Figure 109 Story 14 Core Wall Reinforcement Detailing

Reinfrocements Shapes :

Other walls Transverse Reinforcements :


stories 3 stories 3 4 5 6 7 8 9 10 11
12 13
stories 4 5 stories 4 5

stories 6 stories 6
stories 7 stories 7

stories 8 stories 8
E. Foundation: Designed to distribute the building loads to the soil, with detailed checks for
settlement, stability, and load-bearing capacity.

Assume bearing capacity= 250KN/m2= 25t/m2


Subgrade modulus= 120Qall(t/m3)= 120x25=3000t/m2= 300KN/m2
Thickness of Foundation= 0.1xN where N=nb of stories
0.1x15=1.5m=150cm
Figure 110 Raft Thickness
Figure 111 Subgrade Modulus

Figure 112 Stresses on Foundation

Figure 113 Stresses on Foundation

Stresses at foundation exceeded soil bearing capacity so we have to use Piles at high stresses regions.

Conclusion
The project details the practical application of the principles of structural engineering, hence improving
my technical capabilities and preparing me for subsequent professional challenges.
Key Achievements:

Comprehensive Design: Designed the main structural elements made of column, shear walls, slabs, core
walls, and raft foundation, successfully, which are responsible for the stability and safety of the building
in different states of loads.

Compliance with Code: Ensured all design elements conform to relevant building codes and standards,
ASCE 7-16 for the calculations of the loads, ACI 318-19 for concrete design, ECP 201 regarding wind
velocity, and Lebanese norms concerning seismic coefficients.

Advanced Analysis: Did detailed analysis and design with industry-leading software tools, including but
not limited to AutoCAD, Revit, Robot Structural Analysis, and CSI Column, so that the intent of both
accuracy and efficiency can be met. The structure has been designed with much consideration to and
calculation of relevant loads like dead loads, live loads, wind loads, and seismic forces.

Challenges and Solutions: Solved main challenges on structural efficiency balancing with architectural
requirements, foundation settlement, and optimization of shear walls to achieve optimum building
performance.

Professional Development:

On-the-Job Experience: Had practical exposure to design the structure by implementing theories in real
practice.

Problem-solving Ability: Acquired essential problem-solving ability in solving day-to-day real engineering
life.

Technical Proficiency: Employed sophisticated tool usage in carrying out a structure's technical analysis;
therefore, developing this for other projects in the future as well.

Future Directions:

This project really laid the ground for a good career as a civil engineer. It is expected that the skills and
knowledge gained in this project will help in future professional undertakings that contribute toward
safe but efficient design of residential buildings, among other structures. The successful completion of
the project further testifies that I have effectively integrated theory with practice to ensure that I am
suitably prepared to meet the demands of the engineering profession.

The outcome of this final year project is that it was an experience that equipped me with the expertise
and confidence necessary to rise in the structural engineering field. I am excited about bringing these
skills into my future career and contributing to the development of safe, sustainable, and innovative
structural solutions.

You might also like