0% found this document useful (0 votes)
19 views26 pages

Part B

The document contains a student list for the second year, fourth semester of the Artificial Intelligence and Data Science department at Suguna College of Engineering, along with an assignment on Machine Learning. It includes a detailed explanation of Gradient Descent, a code example for linear regression, and an introduction to Multilayer Perceptron (MLP) with a Keras implementation. Additionally, there are visualizations and training results for a sample dataset used in the MLP model.

Uploaded by

rajanayaki
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOC, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
19 views26 pages

Part B

The document contains a student list for the second year, fourth semester of the Artificial Intelligence and Data Science department at Suguna College of Engineering, along with an assignment on Machine Learning. It includes a detailed explanation of Gradient Descent, a code example for linear regression, and an introduction to Multilayer Perceptron (MLP) with a Keras implementation. Additionally, there are visualizations and training results for a sample dataset used in the MLP model.

Uploaded by

rajanayaki
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOC, PDF, TXT or read online on Scribd
You are on page 1/ 26

SCE/Dept /SUB.CODE/ SUB.

NAME/Academic Year

SUGUNA COLLEGE OF ENGINEERING


(Approved by AICTE New Delhi, Affiliated to Anna University, Chennai)
Nehru Nagar (W), Kalapatti Road, Civil Aerodrome Post, Coimbatore – 641 014.

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

COURSE STUDENT LIST

YEAR:II SEMESTER:IV BRANCH:AI&DS


S.No REGISTER NO NAME OF STUDENT
1. 715023243001 AADHEESH S
2. 715023243002 AARTHI M
3. 715023243003 ABISHEK R
4. 715023243004 AHISH S M
5. 715023243005 AJAY P
6. 715023243006 AJAY SAMUVEL C
7. 715023243007 AKALYA A
8. 715023243008 AKASH M
9. 715023243009 AKASH S
10. 715023243010 AKIN R
11. 715023243011 AKSHAYA R
12. 715023243012 ALLEN J WESSLEY D
13. 715023243014 ANISHKUMAR S
14. 715023243015 ARCHANASRI V
15. 715023243016 ARCHUNA R
16. 715023243017 ASHWIN M
17.
1. 715023243018
715023243025 ATHIKESAVAN
CHANDRU R S
18.
2. 715023243019
715023243026 AVINATHAN
DEEPAK J A
19.
3. 715023243020
715023243027 BALAMURUGAN
DHARSHINI R C
20.
4. 715023243021
715023243028 BAVADHARANI
DHARUNYA P C
21.
5. 715023243022
715023243029 BHARATH KS
DHIVYADHARSHINI D
22.
6. 715023243023
715023243030 BHAVANI
DINESH R P
23.
7. 715023243024
715023243031 CATHRIN A
DURKESH MARIYA A
8. 715023243032 EDWIN JOBY J
9. 715023243033 ELAKIYA R
10. 715023243034 EMMANUVEL E
11. 715023243035 GUNASEKAR S
12. 715023243036 HARINI A
13. 715023243037 HEMANTH KUMAR R
14. 715023243038 JACCO JAFFRY S
15. 715023243039 JAYASRI R
16. 715023243040 JENIFAR STELLA J
17. 715023243041 KAMAL S
18. 715023243042 KANIMOZHI G
19. 715023243043 KARTHIKEYAN B
20. 715023243044 KAVYA SHREE B
21. 715023243045 KESAVA ADHITHIYA C
22. 715023243046 KRISHNA KUMAR M
SCE/Dept /SUB.CODE/ SUB.NAME/Academic Year

SUGUNA COLLEGE OF ENGINEERING


(Approved by AICTE New Delhi, Affiliated to Anna University, Chennai)
Nehru Nagar (W), Kalapatti Road, Civil Aerodrome Post, Coimbatore – 641 014.

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

COURSE STUDENT LIST

YEAR:II SEMESTER:IV BRANCH:AI&DS


S.No REGISTER NO NAME OF STUDENT
24. 715023243047 KULOYHUNGAN S
25. 715023243048 LOGESH V
26. 715023243049 LUKESH R
27. 715023243050 MADHAN R
28. 715023243051 MANIKANDAN PS
SCE/Dept /SUB.CODE/ SUB.NAME/Academic Year

SUGUNA COLLEGE OF ENGINEERING


(Approved by AICTE New Delhi, Affiliated to Anna University, Chennai)
Nehru Nagar (W), Kalapatti Road, Civil Aerodrome Post, Coimbatore – 641 014.

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

29. 715023243052 MANISH KUMAR M


30. 715023243053 MANOJ T
31. 715023243054 MANOJ KUMAR S
32. 715023243055 MOGESHWARAN N
33. 715023243056 MOHAMED AJIM J
34. 715023243057 MOHITH RB
35. 715023243058 MONESH C
36. 715023243059 MOULEESWARAN R
37. 715023243060 MUKESH KUMAR R
38. 715023243061 NAVEEN MS
39. 715023243062 NIRANJAN S
40. 715023243063 NITHEESWARAN J
41. 715023243064 NITHISH A
42. 715023243065 PAVITHRAN J
43. 715023243066 POOJA SRINITHI N
44. 715023243067 PRABHAKARAN G
45. 715023243068 PRAKASH K
46. 715023243069 PRASANTH S
47. 715023243071 PRITHIKA M
48. 715023243072 PRIYADHARSHINI J
49. 715023243073 RAJA M
50. 715023243074 RAMAN K
51. 715023243075 ROSHAN R
52. 715023243076 SARATHI R
53. 715023243077 SHALINI P
54. 715023243078 SHARON J THADIKKARAN
55. 715023243079 SIVA M
23.
56. 715023243081
715023243080 SUBALAKSHMI
SRI SABITHA A N
24. 715023243082 SUBASH S
25. 715023243083 SURENDHAR S
26. 715023243084 SURIYAKUMAARAN M
27. 715023243085 TANISHA G
28. 715023243086 THANGAM V
29. 715023243087 VIGNESH R
30. 715023243088 VISHALI B
31. 715023243089 VISHNUPRIYAN S
32. 715023243090 VISHWANATHAN B
33. 715023243701 SADHANA GAYATHRI
SCE/Dept /SUB.CODE/ SUB.NAME/Academic Year

SUGUNA COLLEGE OF ENGINEERING


(Approved by AICTE New Delhi, Affiliated to Anna University, Chennai)
Nehru Nagar (W), Kalapatti Road, Civil Aerodrome Post, Coimbatore – 641 014.

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

ASSIGNMENT

Subject : MACHINE LEARNING Subject Code : AL3451


Faculty Name : Faculty Code : 7150046
Year / Semester / Section: II/IV/AI&DS

Gradient Descent
 Descent is like walking downhill to find the lowest point
SCE/Dept /SUB.CODE/ SUB.NAME/Academic Year

SUGUNA COLLEGE OF ENGINEERING


(Approved by AICTE New Delhi, Affiliated to Anna University, Chennai)
Nehru Nagar (W), Kalapatti Road, Civil Aerodrome Post, Coimbatore – 641 014.

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

 It ML models reduce error a Gradient nd become more accurate.


 Used in many real-world apps like recommendations, banking, vision, and more.
 Requires careful tuning of parameters like learning rate

import numpy as np
import matplotlib.pyplot as plt

# Step 1: Training data


X = np.array([1, 2, 3, 4, 5])
Y = np.array([2, 4, 6, 8, 10])

# Step 2: Initialize parameters


m = 0 # slope
c = 0 # intercept

# Step 3: Set learning rate and iterations


lr = 0.01 # learning rate
epochs = 1000 # number of iterations
n = len(X) # number of data points

# Step 4: Gradient Descent Loop


for i in range(epochs):
Y_pred = m * X + c # predicted values
error = Y - Y_pred # difference between actual and predicted

# Calculate gradients
dm = (-2/n) * np.sum(X * error)
dc = (-2/n) * np.sum(error)

# Update m and c
m = m - lr * dm
c = c - lr * dc

# Print progress every 100 steps


if i % 100 == 0:
loss = np.mean(error**2)
print(f"Epoch {i}, Loss: {loss:.4f}, m: {m:.4f}, c: {c:.4f}")
SCE/Dept /SUB.CODE/ SUB.NAME/Academic Year

SUGUNA COLLEGE OF ENGINEERING


(Approved by AICTE New Delhi, Affiliated to Anna University, Chennai)
Nehru Nagar (W), Kalapatti Road, Civil Aerodrome Post, Coimbatore – 641 014.

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

# Final model
print(f"\nFinal equation: Y = {m:.2f}X + {c:.2f}")

# Step 5: Plot the results


plt.scatter(X, Y, color='red', label='Actual Data')
plt.plot(X, m * X + c, color='blue', label='Fitted Line')
plt.title("Linear Regression using Gradient Descent")
plt.xlabel("Hours Studied")
plt.ylabel("Marks Scored")
plt.legend()
plt.grid(True)
plt.show()

Epoch 0, Loss: 44.0000, m: 0.4400, c: 0.1200


Epoch 100, Loss: 0.0245, m: 1.8988, c: 0.3655
Epoch 200, Loss: 0.0124, m: 1.9279, c: 0.2605
Epoch 300, Loss: 0.0063, m: 1.9486, c: 0.1856
Epoch 400, Loss: 0.0032, m: 1.9634, c: 0.1323
Epoch 500, Loss: 0.0016, m: 1.9739, c: 0.0943
Epoch 600, Loss: 0.0008, m: 1.9814, c: 0.0672
Epoch 700, Loss: 0.0004, m: 1.9867, c: 0.0479
Epoch 800, Loss: 0.0002, m: 1.9905, c: 0.0341
Epoch 900, Loss: 0.0001, m: 1.9933, c: 0.0243
Final equation: Y = 2.00X + 0.02
SCE/Dept /SUB.CODE/ SUB.NAME/Academic Year

SUGUNA COLLEGE OF ENGINEERING


(Approved by AICTE New Delhi, Affiliated to Anna University, Chennai)
Nehru Nagar (W), Kalapatti Road, Civil Aerodrome Post, Coimbatore – 641 014.

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

 

Multilayer Perceptron (MLP):


A Multilayer Perceptron is a network of multiple perceptrons organized in layers.
Each layer is made of neurons (perceptrons), and each neuron connects to all neurons in the
next layer — hence called a fully connected layer.
MLPs can learn complex patterns by stacking layers.
# Simple MLP using Keras
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.datasets import make_moons
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import Adam
SCE/Dept /SUB.CODE/ SUB.NAME/Academic Year

SUGUNA COLLEGE OF ENGINEERING


(Approved by AICTE New Delhi, Affiliated to Anna University, Chennai)
Nehru Nagar (W), Kalapatti Road, Civil Aerodrome Post, Coimbatore – 641 014.

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

# Generate sample data (2D classification problem)


X, y = make_moons(n_samples=1000, noise=0.1, random_state=42)
# Visualize the data
plt.scatter(X[:, 0], X[:, 1], c=y, cmap='bwr')
plt.title("Sample Dataset")
plt.xlabel("Feature 1")
plt.ylabel("Feature 2")
plt.grid(True)
plt.show()
# Split into train/test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Build MLP model
model = Sequential([
Dense(8, input_shape=(2,), activation='relu'), # Hidden Layer
Dense(4, activation='relu'), # Another Hidden Layer
Dense(1, activation='sigmoid') # Output Layer
])
# Compile the model
model.compile(
optimizer=Adam(),
loss='binary_crossentropy',
metrics=['accuracy']
)
SCE/Dept /SUB.CODE/ SUB.NAME/Academic Year

SUGUNA COLLEGE OF ENGINEERING


(Approved by AICTE New Delhi, Affiliated to Anna University, Chennai)
Nehru Nagar (W), Kalapatti Road, Civil Aerodrome Post, Coimbatore – 641 014.

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

# Train the model


model.fit(
X_train, y_train,
epochs=50,
verbose=1,
validation_data=(X_test, y_test)
)
# Evaluate the model
loss, acc = model.evaluate(X_test, y_test)
print(f"Test Accuracy: {acc:.2f}")
output:
Epoch 1/50
25/25 [==============================] - 1s 11ms/step - loss: 0.6925 - accuracy:
0.5075 - val_loss: 0.6883 - val_accuracy: 0.5450
Epoch 2/50
25/25 [==============================] - 0s 3ms/step - loss: 0.6831 - accuracy:
0.6037 - val_loss: 0.6790 - val_accuracy: 0.5850
...
Epoch 50/50
25/25 [==============================] - 0s 3ms/step - loss: 0.1090 - accuracy:
0.9663 - val_loss: 0.1140 - val_accuracy: 0.9650
7/7 [==============================] - 0s 2ms/step - loss: 0.1140 - accuracy:
0.9650
Test Accuracy: 0.97
SCE/Dept /SUB.CODE/ SUB.NAME/Academic Year

SUGUNA COLLEGE OF ENGINEERING


(Approved by AICTE New Delhi, Affiliated to Anna University, Chennai)
Nehru Nagar (W), Kalapatti Road, Civil Aerodrome Post, Coimbatore – 641 014.

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

Probabilistic Discriminative Model


Learns to directly estimate P(Y|X), i.e., the probability of a class Y given input X.
Provides not just a prediction, but a confidence level.

import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

# Step 1: Create toy dataset


X = np.array([
[1, 1],
[2, 0],
[2, 2],
[3, 1],
[4, 3],
[4, 2],
[5, 3],
[6, 4],
[7, 3],
[8, 4]
])
y = np.array([0, 0, 0, 0, 1, 1, 1, 1, 1, 1]) # 0: Fail, 1: Pass

# Step 2: Train/Test Split


X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Step 3: Create and train logistic regression model


model = LogisticRegression()
model.fit(X_train, y_train)

# Step 4: Predict probabilities


SCE/Dept /SUB.CODE/ SUB.NAME/Academic Year

SUGUNA COLLEGE OF ENGINEERING


(Approved by AICTE New Delhi, Affiliated to Anna University, Chennai)
Nehru Nagar (W), Kalapatti Road, Civil Aerodrome Post, Coimbatore – 641 014.

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

probs = model.predict_proba(X_test)
preds = model.predict(X_test)

# Display predictions and probabilities


for i in range(len(X_test)):
print(f"Student {i+1}: Features = {X_test[i]}")
print(f" Predicted Class: {preds[i]}")
print(f" Probability of Passing (class 1): {probs[i][1]:.2f}")
print(f" Probability of Failing (class 0): {probs[i][0]:.2f}")
print("")

# Step 5: Visualization (optional)


pass_students = X[y == 1]
fail_students = X[y == 0]

plt.scatter(pass_students[:, 0], pass_students[:, 1], color='blue', label='Passed')


plt.scatter(fail_students[:, 0], fail_students[:, 1], color='red', label='Failed')
plt.xlabel("Hours Studied")
plt.ylabel("Practice Tests Taken")
plt.title("Student Performance Classification")
plt.legend()
plt.grid(True)
plt.show()

OUTPUT:
SCE/Dept /SUB.CODE/ SUB.NAME/Academic Year

SUGUNA COLLEGE OF ENGINEERING


(Approved by AICTE New Delhi, Affiliated to Anna University, Chennai)
Nehru Nagar (W), Kalapatti Road, Civil Aerodrome Post, Coimbatore – 641 014.

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

FIRST INTERNAL EXAM – APR 2025

Year / Semester: II / IV Max. Marks: 50


Subject: Machine Learning Subject Code: AL3451
Date / Session: 05.04.2025 - FN Timings: 11.00AM to 12.30PM

PART A (Answer all the questions) 5x2=10 Marks


Q. No. COs Question
1 CO1 What do you mean by hypothesis space? (APR/MAY 2023)
2 CO1 List few applications of Machine Learning. (APR/MAY 2023)
3 CO1 Mention the merits of Bayesian Linear Regression. (APR/MAY 2024)
4 CO1 Relate entropy and information gain. (NOV/DEC 2023)

5 What is the significance of eigenvalues and eigenvectors in dimensionality


CO1 reduction techniques?

PART B (Answer any four questions) 4x10=40 Marks

Q. No. Cos Question


6 CO1 Discuss in detail about Bias Variance Trade-off. (5)
Discuss in detail about VC dimension. (5) (APR/MAY 2023)
7 CO1 Write short notes on Regression and Correlation and explain their
limitations. (NOV/DEC 2023)
8 CO1 Elaborate on PAC Learning with an example. (APR/MAY 2023)
CO1 Explain the concept of hypothesis spaces in machine learning. How does
9 the choice of a hypothesis space influence the performance and
generalization of a model?
CO1
By the method of least squares, find the straight line to the data given
10 below. (APR/MAY 2024)
X 5 10 15 20 25
Y 16 19 23 26 30
SCE/Dept /SUB.CODE/ SUB.NAME/Academic Year

SUGUNA COLLEGE OF ENGINEERING


(Approved by AICTE New Delhi, Affiliated to Anna University, Chennai)
Nehru Nagar (W), Kalapatti Road, Civil Aerodrome Post, Coimbatore – 641 014.

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

STAFF IN-CHARGE HOD PRINCIPAL


MARK LIST FOR INTERNAL EXAM -I

YEAR: II SEMESTER:IV
SUB.CODE:AL3451 SUB.NAME: MACHINE LEARNING
STAFF:
Unit Test - I Marks

REGISTER
S.NO. NAME MARKS
NO.
1. 715023243001 AADHEESH S
2. 715023243002 AARTHI M
3. 715023243003 ABISHEK R
4. 715023243004 AHISH S M
5. 715023243005 AJAY P
6. 715023243006 AJAY SAMUVEL C
7. 715023243007 AKALYA A
8. 715023243008 AKASH M
9. 715023243009 AKASH S
10. 715023243010 AKIN R
11. 715023243011 AKSHAYA R
12. 715023243012 ALLEN J WESSLEY D
13. 715023243014 ANISHKUMAR S
14. 715023243015 ARCHANASRI V
15. 715023243016 ARCHUNA R
16. 715023243017 ASHWIN M
17. 715023243018 ATHIKESAVAN S
18. 715023243019 AVINATHAN A
19. 715023243020 BALAMURUGAN C
20. 715023243021 BAVADHARANI C
21. 715023243022 BHARATH KS
22. 715023243023 BHAVANI P
23. 715023243024 CATHRIN MARIYA A
24. 715023243025 CHANDRU R
25. 715023243026 DEEPAK J
26. 715023243027 DHARSHINI R
27. 715023243028 DHARUNYA P
SCE/Dept /SUB.CODE/ SUB.NAME/Academic Year

SUGUNA COLLEGE OF ENGINEERING


(Approved by AICTE New Delhi, Affiliated to Anna University, Chennai)
Nehru Nagar (W), Kalapatti Road, Civil Aerodrome Post, Coimbatore – 641 014.

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

28. 715023243029 DHIVYADHARSHINI D


29. 715023243030 DINESH R
30. 715023243031 DURKESH A
31. 715023243032 EDWIN JOBY J
32. 715023243033 ELAKIYA R
33. 715023243034 EMMANUVEL E
34. 715023243035 GUNASEKAR S
35. 715023243036 HARINI A
36. 715023243037 HEMANTH KUMAR R
37. 715023243038 JACCO JAFFRY S
38. 715023243039 JAYASRI R
39. 715023243040 JENIFAR STELLA J
40. 715023243041 KAMAL S
41. 715023243042 KANIMOZHI G
42. 715023243043 KARTHIKEYAN B
43. 715023243044 KAVYA SHREE B
44. 715023243045 KESAVA ADHITHIYA C
45. 715023243046 KRISHNA KUMAR M

Total Strength 45
No of Appeared 42
No of Passed 42
No of Failures NIL
Pass Percentage 100%

Staff HoD Principal


SCE/Dept /SUB.CODE/ SUB.NAME/Academic Year

SUGUNA COLLEGE OF ENGINEERING


(Approved by AICTE New Delhi, Affiliated to Anna University, Chennai)
Nehru Nagar (W), Kalapatti Road, Civil Aerodrome Post, Coimbatore – 641 014.

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

RESULT ANALYSIS for internal test- I

Internal Test I

1 Batch AI&DS
2 Year & Semester II-IV
3 Subject Code AL3451
4 Name of the Subject MACHINE LEARNING
5 Name of the Exam INTERNAL TEST-I
6 Total Number of Students 45
7 Number of students Absent 3
8 Number of Students Appeared 42

9 Number of Students Passed 42

10 Number of Students Failed NIL


11 Percentage of Pass
1. Based on Total Students 100%
2. Based on Students Appeared 100%
12 Result Analysis
Below 25% to 41 % to 61% to 76% to 91% to
Description
25% 40 % 60% 75% 90% 100%

13 Minimum Marks for Passing 50

Staff HoD Principal


SCE/Dept /SUB.CODE/ SUB.NAME/Academic Year

SUGUNA COLLEGE OF ENGINEERING


(Approved by AICTE New Delhi, Affiliated to Anna University, Chennai)
Nehru Nagar (W), Kalapatti Road, Civil Aerodrome Post, Coimbatore – 641 014.

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

MARK LIST FOR INTERNAL EXAM -I

YEAR: II SEMESTER:IV
SUB.CODE: AL3451 SUB.NAME: MACHINE LEARNING
STAFF:
Unit Test - I Marks

REGISTER
S.NO. NAME MARKS
NO.
46. 715023243047 KULOYHUNGAN S
47. 715023243048 LOGESH V
48. 715023243049 LUKESH R
49. 715023243050 MADHAN R
50. 715023243051 MANIKANDAN PS
51. 715023243052 MANISH KUMAR M
52. 715023243053 MANOJ T
53. 715023243054 MANOJ KUMAR S
54. 715023243055 MOGESHWARAN N
55. 715023243056 MOHAMED AJIM J
56. 715023243057 MOHITH RB
57. 715023243058 MONESH C
58. 715023243059 MOULEESWARAN R
59. 715023243060 MUKESH KUMAR R
60. 715023243061 NAVEEN MS
61. 715023243062 NIRANJAN S
62. 715023243063 NITHEESWARAN J
63. 715023243064 NITHISH A
64. 715023243065 PAVITHRAN J
65. 715023243066 POOJA SRINITHI N
66. 715023243067 PRABHAKARAN G
67. 715023243068 PRAKASH K
68. 715023243069 PRASANTH S
69. 715023243071 PRITHIKA M
70. 715023243072 PRIYADHARSHINI J
71. 715023243073 RAJA M
72. 715023243074 RAMAN K
SCE/Dept /SUB.CODE/ SUB.NAME/Academic Year

SUGUNA COLLEGE OF ENGINEERING


(Approved by AICTE New Delhi, Affiliated to Anna University, Chennai)
Nehru Nagar (W), Kalapatti Road, Civil Aerodrome Post, Coimbatore – 641 014.

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

73. 715023243075 ROSHAN R


74. 715023243076 SARATHI R
75. 715023243077 SHALINI P
76. 715023243078 SHARON J THADIKKARAN
77. 715023243079 SIVA M
78. 715023243080 SRI SABITHA A
79. 715023243081 SUBALAKSHMI N
80. 715023243082 SUBASH S
81. 715023243083 SURENDHAR S
82. 715023243084 SURIYAKUMAARAN M
83. 715023243085 TANISHA G
84. 715023243086 THANGAM V
85. 715023243087 VIGNESH R
86. 715023243088 VISHALI B
87. 715023243089 VISHNUPRIYAN S
88. 715023243090 VISHWANATHAN B
89. 715023243701 SADHANA GAYATHRI

Total Strength 44
No of Appeared 42
No of Passed 42
No of Failures NIL
Pass Percentage 100%

Staff HoD Principal


SCE/Dept /SUB.CODE/ SUB.NAME/Academic Year

SUGUNA COLLEGE OF ENGINEERING


(Approved by AICTE New Delhi, Affiliated to Anna University, Chennai)
Nehru Nagar (W), Kalapatti Road, Civil Aerodrome Post, Coimbatore – 641 014.

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

RESULT ANALYSIS for internal test- I

Internal Test I
1 Batch AI&DS
2 Year & Semester II-IV
3 Subject Code AL3451
4 Name of the Subject MACHINE LEARNING
5 Name of the Exam INTERNAL TEST-I
6 Total Number of Students 44
7 Number of students Absent 2
8 Number of Students Appeared 42

9 Number of Students Passed 42

10 Number of Students Failed NIL


11 Percentage of Pass
2. Based on Total Students 100%
2. Based on Students Appeared 100%
12 Result Analysis
Below 25% to 41 % to 61% to 76% to 91% to
Description
25% 40 % 60% 75% 90% 100%

13 Minimum Marks for Passing 50

Staff HoD Principal


SCE/Dept /SUB.CODE/ SUB.NAME/Academic Year

SUGUNA COLLEGE OF ENGINEERING


(Approved by AICTE New Delhi, Affiliated to Anna University, Chennai)
Nehru Nagar (W), Kalapatti Road, Civil Aerodrome Post, Coimbatore – 641 014.

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

SECOND INTERNAL EXAM – MAY 2025

Year / Semester: II / IV Max. Marks: 50


Subject: Machine Learning Subject: Machine Learning
Date / Session: 13.05.2025 - FN Timings: 11.00AM to 12.30PM

PART A (Answer all the questions) 5x2=10 Marks


Q. No. COs Question
1 CO1 Compare and contrast linear regression and logistic regression.
(APR/MAY 2023)
2 CO1 Distinguish between bagging and boosting. (APR/MAY 2023)
3 CO1 Identify the challenges of clustering algorithm. (NOV/DEC 2023)
4 CO1 Define Expectation Maximization (NOV/DEC 2023)

5 Differentiate single layer and multilayer perceptron. (APR/MAY 2024)


CO1

PART B (Answer any four questions) 4x10=40 Marks

Q. No. Cos Question


6 CO1
Explain Decision Tree concepts in detail (APR/MAY 2024)

7 CO1 List the advantages of Support Vector Machine and how optimal
hyperplanes differ from hyperplanes. (NOV/DEC 2023)
8 CO1 Elaborate on Classification and Regression Tree with a suitable example.
(APR/MAY 2023)
9 CO1 Explain the weighted K-Nearest Neighbour algorithm with a suitable
example. (APR/MAY 2023)
CO1
Cluster the following eight points with (x,y) locations into three clusters
10 using K Means clustering method: A1(2,10), A2(2,5), A3(8,4), A4 (5,8),
A5(7,5), A6(6,4), A7(1,2), A8(4,9) (APR/MAY 2024)
SCE/Dept /SUB.CODE/ SUB.NAME/Academic Year

SUGUNA COLLEGE OF ENGINEERING


(Approved by AICTE New Delhi, Affiliated to Anna University, Chennai)
Nehru Nagar (W), Kalapatti Road, Civil Aerodrome Post, Coimbatore – 641 014.

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

STAFF IN-CHARGE HOD PRINCIPAL

MARK LIST FOR INTERNAL EXAM -II

YEAR: II SEMESTER:IV
SUB.CODE:AL3451 SUB.NAME: MACHINE LEARNING
STAFF:
Unit Test - II Marks

REGISTER
S.NO. NAME MARKS
NO.
1 715023243001 AADHEESH S
2 715023243002 AARTHI M
3 715023243003 ABISHEK R
4 715023243004 AHISH S M
5 715023243005 AJAY P
6 715023243006 AJAY SAMUVEL C
7 715023243007 AKALYA A
8 715023243008 AKASH M
9 715023243009 AKASH S
10 715023243010 AKIN R
11 715023243011 AKSHAYA R
12 715023243012 ALLEN J WESSLEY D
13 715023243014 ANISHKUMAR S
14 715023243015 ARCHANASRI V
15 715023243016 ARCHUNA R
16 715023243017 ASHWIN M
17 715023243018 ATHIKESAVAN S
18 715023243019 AVINATHAN A
19 715023243020 BALAMURUGAN C
20 715023243021 BAVADHARANI C
21 715023243022 BHARATH KS
22 715023243023 BHAVANI P
23 715023243024 CATHRIN MARIYA A
24 715023243025 CHANDRU R
25 715023243026 DEEPAK J
26 715023243027 DHARSHINI R
SCE/Dept /SUB.CODE/ SUB.NAME/Academic Year

SUGUNA COLLEGE OF ENGINEERING


(Approved by AICTE New Delhi, Affiliated to Anna University, Chennai)
Nehru Nagar (W), Kalapatti Road, Civil Aerodrome Post, Coimbatore – 641 014.

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

27 715023243028 DHARUNYA P
28 715023243029 DHIVYADHARSHINI D
29 715023243030 DINESH R
30 715023243031 DURKESH A
31 715023243032 EDWIN JOBY J
32 715023243033 ELAKIYA R
33 715023243034 EMMANUVEL E
34 715023243035 GUNASEKAR S
35 715023243036 HARINI A
36 715023243037 HEMANTH KUMAR R
37 715023243038 JACCO JAFFRY S
38 715023243039 JAYASRI R
39 715023243040 JENIFAR STELLA J
40 715023243041 KAMAL S
41 715023243042 KANIMOZHI G
42 715023243043 KARTHIKEYAN B
43 715023243044 KAVYA SHREE B
44 715023243045 KESAVA ADHITHIYA C
45 715023243046 KRISHNA KUMAR M

Total Strength 45
No of Appeared 43
No of Passed 43
No of Failures NIL
Pass Percentage 100%

Staff HoD Principal


SCE/Dept /SUB.CODE/ SUB.NAME/Academic Year

SUGUNA COLLEGE OF ENGINEERING


(Approved by AICTE New Delhi, Affiliated to Anna University, Chennai)
Nehru Nagar (W), Kalapatti Road, Civil Aerodrome Post, Coimbatore – 641 014.

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

RESULT ANALYSIS for internal test - II

Internal Test II
1 Batch AI & DS
2 Year & Semester II-IV
3 Subject Code EC8453
4 Name of the Subject MACHINE LEARNING
5 Name of the Exam INTERNAL TEST-II
6 Total Number of Students 45
7 Number of students Absent 2
8 Number of Students Appeared 43

9 Number of Students Passed 43

10 Number of Students Failed NIL


11 Percentage of Pass
3. Based on Total Students 100%
2. Based on Students Appeared 100%
12 Result Analysis
Below 25% to 41 % to 61% to 76% to 91% to
Description
25% 40 % 60% 75% 90% 100%

13 Minimum Marks for Passing 50

Staff HoD Principal


SCE/Dept /SUB.CODE/ SUB.NAME/Academic Year

SUGUNA COLLEGE OF ENGINEERING


(Approved by AICTE New Delhi, Affiliated to Anna University, Chennai)
Nehru Nagar (W), Kalapatti Road, Civil Aerodrome Post, Coimbatore – 641 014.

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

MARK LIST FOR INTERNAL EXAM -II

YEAR: II SEMESTER:IV
SUB.CODE:AL3451 SUB.NAME: MACHINE LEARNING
STAFF:
Unit Test - II Marks

REGISTER
S.NO. NAME MARKS
NO.
1 715023243047 KULOYHUNGAN S
2 715023243048 LOGESH V
3 715023243049 LUKESH R
4 715023243050 MADHAN R
5 715023243051 MANIKANDAN PS
6 715023243052 MANISH KUMAR M
7 715023243053 MANOJ T
8 715023243054 MANOJ KUMAR S
9 715023243055 MOGESHWARAN N
10 715023243056 MOHAMED AJIM J
11 715023243057 MOHITH RB
12 715023243058 MONESH C
13 715023243059 MOULEESWARAN R
14 715023243060 MUKESH KUMAR R
15 715023243061 NAVEEN MS
16 715023243062 NIRANJAN S
17 715023243063 NITHEESWARAN J
18 715023243064 NITHISH A
19 715023243065 PAVITHRAN J
20 715023243066 POOJA SRINITHI N
21 715023243067 PRABHAKARAN G
22 715023243068 PRAKASH K
23 715023243069 PRASANTH S
SCE/Dept /SUB.CODE/ SUB.NAME/Academic Year

SUGUNA COLLEGE OF ENGINEERING


(Approved by AICTE New Delhi, Affiliated to Anna University, Chennai)
Nehru Nagar (W), Kalapatti Road, Civil Aerodrome Post, Coimbatore – 641 014.

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

24 715023243071 PRITHIKA M
25 715023243072 PRIYADHARSHINI J
26 715023243073 RAJA M
27 715023243074 RAMAN K
28 715023243075 ROSHAN R
29 715023243076 SARATHI R
30 715023243077 SHALINI P
31 715023243078 SHARON J THADIKKARAN
32 715023243079 SIVA M
33 715023243080 SRI SABITHA A
34 715023243081 SUBALAKSHMI N
36 715023243082 SUBASH S
37 715023243083 SURENDHAR S
38 715023243084 SURIYAKUMAARAN M
39 715023243085 TANISHA G
40 715023243086 THANGAM V
41 715023243087 VIGNESH R
42 715023243088 VISHALI B
43 715023243089 VISHNUPRIYAN S
44 715023243090 VISHWANATHAN B
45 715023243701 SADHANA GAYATHRI

Total Strength 44
No of Appeared 40
No of Passed 40
No of Failures NIL
Pass Percentage 100%

Staff HoD Principal


SCE/Dept /SUB.CODE/ SUB.NAME/Academic Year

SUGUNA COLLEGE OF ENGINEERING


(Approved by AICTE New Delhi, Affiliated to Anna University, Chennai)
Nehru Nagar (W), Kalapatti Road, Civil Aerodrome Post, Coimbatore – 641 014.

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

RESULT ANALYSIS for internal test - II

Internal Test II
1 Batch AI & DS
2 Year & Semester II-IV
3 Subject Code AL3451
4 Name of the Subject MACHINE LEARNING
5 Name of the Exam INTERNAL TEST-II
6 Total Number of Students 44
7 Number of students Absent 2
8 Number of Students Appeared 42

9 Number of Students Passed 42

10 Number of Students Failed NIL


11 Percentage of Pass
4. Based on Total Students 100%
2. Based on Students Appeared 100%
12 Result Analysis
Below 25% to 41 % to 61% to 76% to 91% to
Description
25% 40 % 60% 75% 90% 100%

13 Minimum Marks for Passing 50


SCE/Dept /SUB.CODE/ SUB.NAME/Academic Year

SUGUNA COLLEGE OF ENGINEERING


(Approved by AICTE New Delhi, Affiliated to Anna University, Chennai)
Nehru Nagar (W), Kalapatti Road, Civil Aerodrome Post, Coimbatore – 641 014.

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

Staff HoD Principal

You might also like