Week5 6
Week5 6
SENG 360
SYSTEM
PROGRAMMING
Slides by Dr. Eray YAĞDERELİ
Department of Software Engineering
Spring 2025
TOPIC – 04
Virtual Memory
Topic 04: Virtual Memory
Background
Demand Paging
Copy-on-Write
Page Replacement
Allocation of Frames
Thrashing
Memory-Mapped Files
Allocating Kernel Memory
Other Considerations
Operating-System Examples
Operating System Concepts – 10th Edition 10.3 Silberschatz, Galvin and Gagne ©2018
Objectives
Operating System Concepts – 10th Edition 10.4 Silberschatz, Galvin and Gagne ©2018
Background
Code needs to be in memory to execute, but entire program rarely
used
• Error code, unusual routines, large data structures
Entire program code not needed at same time
Consider ability to execute partially-loaded program
• Program no longer constrained by limits of physical memory
• Each program takes less memory while running -> more programs
run at the same time
Increased CPU utilization and throughput with no increase in
response time or turnaround time
• Less I/O needed to load or swap programs into memory -> each
user program runs faster
Operating System Concepts – 10th Edition 10.5 Silberschatz, Galvin and Gagne ©2018
Virtual memory
Operating System Concepts – 10th Edition 10.6 Silberschatz, Galvin and Gagne ©2018
Virtual memory (Cont.)
Operating System Concepts – 10th Edition 10.7 Silberschatz, Galvin and Gagne ©2018
Virtual Memory That is Larger Than Physical Memory
Operating System Concepts – 10th Edition 10.8 Silberschatz, Galvin and Gagne ©2018
Virtual-address Space
Usually design logical address space for
stack to start at Max logical address and
grow “down” while heap grows “up”
• Maximizes address space use
• Unused address space between
the two is hole
No physical memory needed
until heap or stack grows to a
given new page
Enables sparse address spaces with
holes left for growth, dynamically linked
libraries, etc.
System libraries shared via mapping into
virtual address space
Shared memory by mapping pages read-
write into virtual address space
Pages can be shared during fork(),
speeding process creation
Operating System Concepts – 10th Edition 10.9 Silberschatz, Galvin and Gagne ©2018
Shared Library Using Virtual Memory
Operating System Concepts – 10th Edition 10.10 Silberschatz, Galvin and Gagne ©2018
Demand Paging
Operating System Concepts – 10th Edition 10.11 Silberschatz, Galvin and Gagne ©2018
Demand Paging
Operating System Concepts – 10th Edition 10.12 Silberschatz, Galvin and Gagne ©2018
Basic Concepts
With swapping, pager guesses which pages will be used before
swapping out again
Instead, pager brings in only those pages into memory
How to determine that set of pages?
• Need new MMU functionality to implement demand paging
If pages needed are already memory resident
• No difference from non demand-paging
If page needed and not memory resident
• Need to detect and load the page into memory from storage
Without changing program behavior
Without programmer needing to change code
Operating System Concepts – 10th Edition 10.13 Silberschatz, Galvin and Gagne ©2018
Valid-Invalid Bit
With each page table entry a valid–invalid bit is associated
(v in-memory – memory resident, i not-in-memory)
Initially valid–invalid bit is set to i on all entries
Example of a page table snapshot:
Operating System Concepts – 10th Edition 10.14 Silberschatz, Galvin and Gagne ©2018
Page Table When Some Pages Are Not
in Main Memory
Operating System Concepts – 10th Edition 10.15 Silberschatz, Galvin and Gagne ©2018
Steps in Handling Page Fault
Operating System Concepts – 10th Edition 10.16 Silberschatz, Galvin and Gagne ©2018
Steps in Handling a Page Fault (Cont.)
Operating System Concepts – 10th Edition 10.17 Silberschatz, Galvin and Gagne ©2018
Aspects of Demand Paging
Operating System Concepts – 10th Edition 10.18 Silberschatz, Galvin and Gagne ©2018
Instruction Restart
Operating System Concepts – 10th Edition 10.19 Silberschatz, Galvin and Gagne ©2018
Free-Frame List
When a page fault occurs, the operating system must bring the
desired page from secondary storage into main memory.
Most operating systems maintain a free-frame list -- a pool of free
frames for satisfying such requests.
Operating System Concepts – 10th Edition 10.20 Silberschatz, Galvin and Gagne ©2018
Stages in Demand Paging – Worse Case
Operating System Concepts – 10th Edition 10.21 Silberschatz, Galvin and Gagne ©2018
Stages in Demand Paging (Cont.)
Operating System Concepts – 10th Edition 10.22 Silberschatz, Galvin and Gagne ©2018
Performance of Demand Paging
Three major activities
• Service the interrupt – careful coding means just several hundred
instructions needed
• Read the page – lots of time
• Restart the process – again just a small amount of time
Page Fault Rate 0 p 1
• if p = 0 no page faults
• if p = 1, every reference is a fault
Effective Access Time (EAT)
EAT = (1 – p) x memory access
+ p (page fault overhead
+ swap page out
+ swap page in )
Operating System Concepts – 10th Edition 10.23 Silberschatz, Galvin and Gagne ©2018
Demand Paging Example
Memory access time = 200 nanoseconds
Average page-fault service time = 8 milliseconds
EAT = (1 – p) x 200 + p (8 milliseconds)
= (1 – p) x 200 + p x 8,000,000
= 200 + p x 7,999,800
If one access out of 1,000 causes a page fault, then
EAT = 8.2 microseconds.
This is a slowdown by a factor of 40!!
If want performance degradation < 10 percent
• 220 > 200 + 7,999,800 x p
20 > 7,999,800 x p
• p < .0000025
• < one page fault in every 400,000 memory accesses
Operating System Concepts – 10th Edition 10.24 Silberschatz, Galvin and Gagne ©2018
Demand Paging Optimizations
Swap space I/O faster than file system I/O even if on the same device
• Swap allocated in larger chunks, less management needed than file
system
Copy entire process image to swap space at process load time
• Then page in and out of swap space
• Used in older BSD Unix
Demand page in from program binary on disk, but discard rather than paging
out when freeing frame
• Used in Solaris and current BSD
• Still need to write to swap space
Pages not associated with a file (like stack and heap) – anonymous
memory
Pages modified in memory but not yet written back to the file system
Mobile systems
• Typically don’t support swapping
• Instead, demand page from file system and reclaim read-only pages
(such as code)
Operating System Concepts – 10th Edition 10.25 Silberschatz, Galvin and Gagne ©2018
Copy-on-Write
Copy-on-Write (COW) allows both parent and child processes to initially share
the same pages in memory
• If either process modifies a shared page, only then is the page copied
COW allows more efficient process creation as only modified pages are copied
In general, free pages are allocated from a pool of zero-fill-on-demand pages
• Pool should always have free frames for fast demand page execution
Don’t want to have to free a frame as well as other processing on page
fault
• Why zero-out a page before allocating it?
vfork() variation on fork() system call suspends the parent, the child uses
the address space of the parent, and does not use COW
• Designed to have child call exec()
• Very efficient
Operating System Concepts – 10th Edition 10.26 Silberschatz, Galvin and Gagne ©2018
Before Process 1 Modifies Page C
Operating System Concepts – 10th Edition 10.27 Silberschatz, Galvin and Gagne ©2018
After Process 1 Modifies Page C
Operating System Concepts – 10th Edition 10.28 Silberschatz, Galvin and Gagne ©2018
What Happens if There is no Free Frame?
Used up by process pages
Also in demand from the kernel, I/O buffers, etc
How much to allocate to each?
Page replacement – find some page in memory, but not really in use,
page it out
• Algorithm – terminate? swap out? replace the page?
• Performance – want an algorithm which will result in minimum
number of page faults
Same page may be brought into memory several times
Operating System Concepts – 10th Edition 10.29 Silberschatz, Galvin and Gagne ©2018
Page Replacement
Prevent over-allocation of memory by modifying page-fault service
routine to include page replacement
Use modify (dirty) bit to reduce overhead of page transfers – only
modified pages are written to disk
Page replacement completes separation between logical memory and
physical memory – large virtual memory can be provided on a smaller
physical memory
Operating System Concepts – 10th Edition 10.30 Silberschatz, Galvin and Gagne ©2018
Need For Page Replacement
Operating System Concepts – 10th Edition 10.31 Silberschatz, Galvin and Gagne ©2018
Basic Page Replacement
1. Find the location of the desired page on disk
2. Find a free frame:
- If there is a free frame, use it
- If there is no free frame, use a page replacement algorithm to
select a victim frame
- Write victim frame to disk if dirty
3. Bring the desired page into the (newly) free frame; update the page
and frame tables
4. Continue the process by restarting the instruction that caused the
trap
Note now potentially 2 page transfers for page fault – increasing EAT
Operating System Concepts – 10th Edition 10.32 Silberschatz, Galvin and Gagne ©2018
Page Replacement
Operating System Concepts – 10th Edition 10.33 Silberschatz, Galvin and Gagne ©2018
Page and Frame Replacement Algorithms
Operating System Concepts – 10th Edition 10.34 Silberschatz, Galvin and Gagne ©2018
Graph of Page Faults Versus the Number of Frames
Operating System Concepts – 10th Edition 10.35 Silberschatz, Galvin and Gagne ©2018
First-In-First-Out (FIFO) Algorithm
Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
3 frames (3 pages can be in memory at a time per process)
15 page faults
Can vary by reference string: consider 1,2,3,4,1,2,5,1,2,3,4,5
• Adding more frames can cause more page faults!
Belady’s Anomaly
How to track ages of pages?
• Just use a FIFO queue
Operating System Concepts – 10th Edition 10.36 Silberschatz, Galvin and Gagne ©2018
FIFO Illustrating Belady’s Anomaly
Operating System Concepts – 10th Edition 10.37 Silberschatz, Galvin and Gagne ©2018
Optimal Algorithm
Replace page that will not be used for longest period of time
• 9 is optimal for the example
How do you know this?
• Can’t read the future
Used for measuring how well your algorithm performs
Operating System Concepts – 10th Edition 10.38 Silberschatz, Galvin and Gagne ©2018
Least Recently Used (LRU) Algorithm
Operating System Concepts – 10th Edition 10.39 Silberschatz, Galvin and Gagne ©2018
LRU Algorithm (Cont.)
Counter implementation
• Every page entry has a counter; every time page is referenced
through this entry, copy the clock into the counter
• When a page needs to be changed, look at the counters to find
smallest value
Search through table needed
Stack implementation
• Keep a stack of page numbers in a double link form:
• Page referenced:
move it to the top
requires 6 pointers to be changed
• But each update more expensive
• No search for replacement
Operating System Concepts – 10th Edition 10.40 Silberschatz, Galvin and Gagne ©2018
LRU Algorithm (Cont.)
LRU and OPT are cases of stack algorithms that don’t have
Belady’s Anomaly
Use Of A Stack to Record Most Recent Page References
Operating System Concepts – 10th Edition 10.41 Silberschatz, Galvin and Gagne ©2018
LRU Approximation Algorithms
LRU needs special hardware and still slow
Reference bit
• With each page associate a bit, initially = 0
• When page is referenced bit set to 1
• Replace any with reference bit = 0 (if one exists)
We do not know the order, however
Operating System Concepts – 10th Edition 10.42 Silberschatz, Galvin and Gagne ©2018
LRU Approximation Algorithms (cont.)
Second-chance algorithm
• Generally FIFO, plus hardware-provided reference bit
• Clock replacement
• If page to be replaced has
Reference bit = 0 -> replace it
reference bit = 1 then:
– set reference bit 0, leave page in memory
– replace next page, subject to same rules
Operating System Concepts – 10th Edition 10.43 Silberschatz, Galvin and Gagne ©2018
Second-chance Algorithm
Operating System Concepts – 10th Edition 10.44 Silberschatz, Galvin and Gagne ©2018
Enhanced Second-Chance Algorithm
Improve algorithm by using reference bit and modify bit (if available)
in concert
Take ordered pair (reference, modify):
• (0, 0) neither recently used not modified – best page to replace
• (0, 1) not recently used but modified – not quite as good, must
write out before replacement
• (1, 0) recently used but clean – probably will be used again soon
• (1, 1) recently used and modified – probably will be used again
soon and need to write out before replacement
When page replacement called for, use the clock scheme but use the
four classes replace page in lowest non-empty class
• Might need to search circular queue several times
Operating System Concepts – 10th Edition 10.45 Silberschatz, Galvin and Gagne ©2018
Counting Algorithms
Operating System Concepts – 10th Edition 10.46 Silberschatz, Galvin and Gagne ©2018
Page-Buffering Algorithms
Keep a pool of free frames, always
• Then frame available when needed, not found at fault time
• Read page into free frame and select victim to evict and add to
free pool
• When convenient, evict victim
Possibly, keep list of modified pages
• When backing store otherwise idle, write pages there and set to
non-dirty
Possibly, keep free frame contents intact and note what is in them
• If referenced again before reused, no need to load contents again
from disk
• Generally useful to reduce penalty if wrong victim frame selected
Operating System Concepts – 10th Edition 10.47 Silberschatz, Galvin and Gagne ©2018
Applications and Page Replacement
All of these algorithms have OS guessing about future page access
Some applications have better knowledge – i.e. databases
Memory intensive applications can cause double buffering
• OS keeps copy of page in memory as I/O buffer
• Application keeps page in memory for its own work
Operating system can given direct access to the disk, getting out of
the way of the applications
• Raw disk mode
Bypasses buffering, locking, etc.
Operating System Concepts – 10th Edition 10.48 Silberschatz, Galvin and Gagne ©2018
Allocation of Frames
Each process needs minimum number of frames
Example: IBM 370 – 6 pages to handle SS MOVE instruction:
• instruction is 6 bytes, might span 2 pages
• 2 pages to handle from
• 2 pages to handle to
Maximum of course is total frames in the system
Two major allocation schemes
• fixed allocation
• priority allocation
Many variations
Operating System Concepts – 10th Edition 10.49 Silberschatz, Galvin and Gagne ©2018
Fixed Allocation
Equal allocation – For example, if there are 100 frames (after
allocating frames for the OS) and 5 processes, give each process 20
frames
• Keep some as free frame buffer pool
Operating System Concepts – 10th Edition 10.50 Silberschatz, Galvin and Gagne ©2018
Global vs. Local Allocation
Global replacement – process selects a replacement frame from the
set of all frames; one process can take a frame from another
• But then process execution time can vary greatly
• But greater throughput so more common
Local replacement – each process selects from only its own set of
allocated frames
• More consistent per-process performance
• But possibly underutilized memory
Operating System Concepts – 10th Edition 10.51 Silberschatz, Galvin and Gagne ©2018
Reclaiming Pages
A strategy to implement global page-replacement policy
All memory requests are satisfied from the free-frame list, rather than
waiting for the list to drop to zero before we begin selecting pages for
replacement,
Page replacement is triggered when the list falls below a certain
threshold.
This strategy attempts to ensure there is always sufficient free
memory to satisfy new requests.
Operating System Concepts – 10th Edition 10.52 Silberschatz, Galvin and Gagne ©2018
Reclaiming Pages Example
Operating System Concepts – 10th Edition 10.53 Silberschatz, Galvin and Gagne ©2018
Non-Uniform Memory Access
So far, we assumed that all memory accessed equally
Many systems are NUMA – speed of access to memory varies
• Consider system boards containing CPUs and memory,
interconnected over a system bus
NUMA multiprocessing architecture
Operating System Concepts – 10th Edition 10.54 Silberschatz, Galvin and Gagne ©2018
Non-Uniform Memory Access (Cont.)
Operating System Concepts – 10th Edition 10.55 Silberschatz, Galvin and Gagne ©2018
Thrashing
If a process does not have “enough” pages, the page-fault rate is very
high
• Page fault to get page
• Replace existing frame
• But quickly need replaced frame back
• This leads to:
Low CPU utilization
Operating system thinking that it needs to increase the degree
of multiprogramming
Another process added to the system
Operating System Concepts – 10th Edition 10.56 Silberschatz, Galvin and Gagne ©2018
Thrashing (Cont.)
Thrashing. A process is busy swapping pages in and out
Operating System Concepts – 10th Edition 10.57 Silberschatz, Galvin and Gagne ©2018
Demand Paging and Thrashing
Operating System Concepts – 10th Edition 10.58 Silberschatz, Galvin and Gagne ©2018
Locality In A Memory-Reference Pattern
Operating System Concepts – 10th Edition 10.59 Silberschatz, Galvin and Gagne ©2018
Working-Set Model
working-set window a fixed number of page references
Example: 10,000 instructions
WSSi (working set of Process Pi) = total number of pages referenced
in the most recent (varies in time)
• if too small will not encompass entire locality
• if too large will encompass several localities
• if = will encompass entire program
D = WSSi total demand frames
• Approximation of locality
Operating System Concepts – 10th Edition 10.60 Silberschatz, Galvin and Gagne ©2018
Working-Set Model (Cont.)
if D > m Thrashing
Policy if D > m, then suspend or swap out one of the
processes
Operating System Concepts – 10th Edition 10.61 Silberschatz, Galvin and Gagne ©2018
Keeping Track of the Working Set
Approximate with interval timer + a reference bit
Example: = 10,000
• Timer interrupts after every 5000 time units
• Keep in memory 2 bits for each page
• Whenever a timer interrupts copy and sets the values of all
reference bits to 0
• If one of the bits in memory = 1 page in working set
Why is this not completely accurate?
Improvement = 10 bits and interrupt every 1000 time units
Operating System Concepts – 10th Edition 10.62 Silberschatz, Galvin and Gagne ©2018
Page-Fault Frequency
More direct approach than WSS
Establish “acceptable” page-fault frequency (PFF) rate and use
local replacement policy
• If actual rate too low, process loses frame
• If actual rate too high, process gains frame
Operating System Concepts – 10th Edition 10.63 Silberschatz, Galvin and Gagne ©2018
Working Sets and Page Fault Rates
Direct relationship between working set of a process and its
page-fault rate
Working set changes over time
Peaks and valleys over time
Operating System Concepts – 10th Edition 10.64 Silberschatz, Galvin and Gagne ©2018
Allocating Kernel Memory
Treated differently from user memory
Often allocated from a free-memory pool
• Kernel requests memory for structures of varying sizes
• Some kernel memory needs to be contiguous
i.e., for device I/O
Operating System Concepts – 10th Edition 10.65 Silberschatz, Galvin and Gagne ©2018
Buddy System
Allocates memory from fixed-size segment consisting of physically-
contiguous pages
Memory allocated using power-of-2 allocator
• Satisfies requests in units sized as power of 2
• Request rounded up to next highest power of 2
• When smaller allocation needed than is available, current chunk
split into two buddies of next-lower power of 2
Continue until appropriate sized chunk available
For example, assume 256KB chunk available, kernel requests 21KB
• Split into AL and AR of 128KB each
One further divided into BL and BR of 64KB
– One further into CL and CR of 32KB each – one used to
satisfy request
Advantage – quickly coalesce unused chunks into larger chunk
Disadvantage - fragmentation
Operating System Concepts – 10th Edition 10.66 Silberschatz, Galvin and Gagne ©2018
Buddy System Allocator
Operating System Concepts – 10th Edition 10.67 Silberschatz, Galvin and Gagne ©2018
Slab Allocator
Alternate strategy
Slab is one or more physically contiguous pages
Cache consists of one or more slabs
Single cache for each unique kernel data structure
• Each cache filled with objects – instantiations of the data
structure
When cache created, filled with objects marked as free
When structures stored, objects marked as used
If slab is full of used objects, next object allocated from empty slab
• If no empty slabs, new slab allocated
Benefits include no fragmentation, fast memory request satisfaction
Operating System Concepts – 10th Edition 10.68 Silberschatz, Galvin and Gagne ©2018
Slab Allocation
Operating System Concepts – 10th Edition 10.69 Silberschatz, Galvin and Gagne ©2018
Slab Allocator in Linux
For example process descriptor is of type struct task_struct
Approx 1.7KB of memory
New task -> allocate new struct from cache
• Will use existing free struct task_struct
Slab can be in three possible states
1. Full – all used
2. Empty – all free
3. Partial – mix of free and used
Upon request, slab allocator
1. Uses free struct in partial slab
2. If none, takes one from empty slab
3. If no empty slab, create new empty
Operating System Concepts – 10th Edition 10.70 Silberschatz, Galvin and Gagne ©2018
Slab Allocator in Linux (Cont.)
Slab started in Solaris, now wide-spread for both kernel mode and
user memory in various OSes
Linux 2.2 had SLAB, now has both SLOB and SLUB allocators
• SLOB for systems with limited memory
Simple List of Blocks – maintains 3 list objects for small,
medium, large objects
• SLUB is performance-optimized SLAB removes per-CPU queues,
metadata stored in page structure
Operating System Concepts – 10th Edition 10.71 Silberschatz, Galvin and Gagne ©2018
Other Considerations
Prepaging
Page size
TLB reach
Inverted page table
Program structure
I/O interlock and page locking
Operating System Concepts – 10th Edition 10.72 Silberschatz, Galvin and Gagne ©2018
Prepaging
To reduce the large number of page faults that occurs at process
startup
Prepage all or some of the pages a process will need, before they are
referenced
But if prepaged pages are unused, I/O and memory was wasted
Assume s pages are prepaged and α of the pages is used
• Is cost of s * α save pages faults > or < than the cost of prepaging
s * (1- α) unnecessary pages?
• α near zero prepaging loses
Operating System Concepts – 10th Edition 10.73 Silberschatz, Galvin and Gagne ©2018
Page Size
Sometimes OS designers have a choice
• Especially if running on custom-built CPU
Page size selection must take into consideration:
• Fragmentation
• Page table size
• Resolution
• I/O overhead
• Number of page faults
• Locality
• TLB size and effectiveness
Always power of 2, usually in the range 212 (4,096 bytes) to 222
(4,194,304 bytes)
On average, growing over time
Operating System Concepts – 10th Edition 10.74 Silberschatz, Galvin and Gagne ©2018
TLB Reach
TLB Reach - The amount of memory accessible from the TLB
TLB Reach = (TLB Size) X (Page Size)
Ideally, the working set of each process is stored in the TLB
• Otherwise there is a high degree of page faults
Increase the Page Size
• This may lead to an increase in fragmentation as not all
applications require a large page size
Provide Multiple Page Sizes
• This allows applications that require larger page sizes the
opportunity to use them without an increase in fragmentation
Operating System Concepts – 10th Edition 10.75 Silberschatz, Galvin and Gagne ©2018
Program Structure
Program structure
• int[128,128] data;
• Each row is stored in one page
• Program 1
for (j = 0; j <128; j++)
for (i = 0; i < 128; i++)
data[i,j] = 0;
• Program 2
for (i = 0; i < 128; i++)
for (j = 0; j < 128; j++)
data[i,j] = 0;
Operating System Concepts – 10th Edition 10.76 Silberschatz, Galvin and Gagne ©2018
I/O interlock
I/O Interlock – Pages must
sometimes be locked into
memory
Consider I/O - Pages that are
used for copying a file from a
device must be locked from
being selected for eviction by a
page replacement algorithm
Pinning of pages to lock into
memory
Operating System Concepts – 10th Edition 10.77 Silberschatz, Galvin and Gagne ©2018
Operating System Examples
Windows
Solaris
Operating System Concepts – 10th Edition 10.78 Silberschatz, Galvin and Gagne ©2018
Windows
Uses demand paging with clustering. Clustering brings in pages
surrounding the faulting page
Processes are assigned working set minimum and working set
maximum
Working set minimum is the minimum number of pages the
process is guaranteed to have in memory
A process may be assigned as many pages up to its working set
maximum
When the amount of free memory in the system falls below a
threshold, automatic working set trimming is performed to
restore the amount of free memory
Working set trimming removes pages from processes that have
pages in excess of their working set minimum
Operating System Concepts – 10th Edition 10.79 Silberschatz, Galvin and Gagne ©2018
Solaris
Maintains a list of free pages to assign faulting processes
Lotsfree – threshold parameter (amount of free memory) to begin
paging
Desfree – threshold parameter to increasing paging
Minfree – threshold parameter to being swapping
Paging is performed by pageout process
Pageout scans pages using modified clock algorithm
Scanrate is the rate at which pages are scanned. This ranges from
slowscan to fastscan
Pageout is called more frequently depending upon the amount of free
memory available
Priority paging gives priority to process code pages
Operating System Concepts – 10th Edition 10.80 Silberschatz, Galvin and Gagne ©2018
Solaris 2 Page Scanner
Operating System Concepts – 10th Edition 10.81 Silberschatz, Galvin and Gagne ©2018
Performance of Demand Paging
Stages in Demand Paging (worse case)
1. Trap to the operating system
2. Save the user registers and process state
3. Determine that the interrupt was a page fault
4. Check that the page reference was legal and determine the location of the page on the disk
5. Issue a read from the disk to a free frame:
1. Wait in a queue for this device until the read request is serviced
2. Wait for the device seek and/or latency time
3. Begin the transfer of the page to a free frame
6. While waiting, allocate the CPU to some other user
7. Receive an interrupt from the disk I/O subsystem (I/O completed)
8. Save the registers and process state for the other user
9. Determine that the interrupt was from the disk
10. Correct the page table and other tables to show page is now in memory
11. Wait for the CPU to be allocated to this process again
12. Restore the user registers, process state, and new page table, and then resume the
interrupted instruction
Operating System Concepts – 10th Edition 10.82 Silberschatz, Galvin and Gagne ©2018
Need For Page Replacement
Operating System Concepts – 10th Edition 10.83 Silberschatz, Galvin and Gagne ©2018
Priority Allocation
Use a proportional allocation scheme using priorities rather than size
Operating System Concepts – 10th Edition 10.84 Silberschatz, Galvin and Gagne ©2018
Memory Compression
Memory compression -- rather than paging out modified frames to swap
space, we compress several frames into a single frame, enabling the system to
reduce memory usage without resorting to swapping pages.
Consider the following free-frame-list consisting of 6 frames
Assume that this number of free frames falls below a certain threshold that
triggers page replacement. The replacement algorithm (say, an LRU
approximation algorithm) selects four frames -- 15, 3, 35, and 26 to place on
the free-frame list. It first places these frames on a modified-frame list.
Typically, the modified-frame list would next be written to swap space, making
the frames available to the free-frame list. An alternative strategy is to
compress a number of frames{\mdash}say, three{\mdash}and store their
compressed versions n a single page frame.
Operating System Concepts – 10th Edition 10.85 Silberschatz, Galvin and Gagne ©2018
Memory Compression (Cont.)
An alternative to paging is memory compression.
Rather than paging out modified frames to swap space, we compress
several frames into a single frame, enabling the system to reduce
memory usage without resorting to swapping pages.
Operating System Concepts – 10th Edition 10.86 Silberschatz, Galvin and Gagne ©2018
Virtual Memory
QUESTIONS???