0% found this document useful (0 votes)
22 views21 pages

Pres 4

The document outlines Hamilton's formulation of mechanics, contrasting it with Lagrangian mechanics and providing a step-by-step guide to solving problems using Hamilton's method. It includes examples such as deriving the equations of motion for a spring-mass system and finding the Hamiltonian function for a dynamic system. The document also discusses Hamilton's equations and their applications in solving differential equations related to motion.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
22 views21 pages

Pres 4

The document outlines Hamilton's formulation of mechanics, contrasting it with Lagrangian mechanics and providing a step-by-step guide to solving problems using Hamilton's method. It includes examples such as deriving the equations of motion for a spring-mass system and finding the Hamiltonian function for a dynamic system. The document also discusses Hamilton's equations and their applications in solving differential equations related to motion.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 21

Solution

Hamilton’s formulation
Lagrange Hamilton

• L H
• L=L(t, 𝑞𝐾 , 𝑞𝐾ሶ ) H=H(t, 𝑞𝐾 , 𝑃𝐾 )
𝜕𝐿
where ( 𝑃𝐾 = )
𝜕𝑞𝐾ሶ

• L=T-V H=T+V (has physical meaning)


• Lagrange equations: Hamilton equations:
𝑑 𝜕𝐿 𝜕𝐿 𝜕𝐻 𝜕𝐻
− =0 𝑞𝐾ሶ = , 𝑃𝐾ሶ = −
𝑑𝑡 𝜕 𝑞𝐾ሶ 𝜕𝑞𝐾 𝜕𝑃𝐾 𝜕𝑞𝐾
K=1,2,………….n
How to solve any problem using Hamilton methode:

• Step 1: Determine generalized coordinates


• Step 2: find kinetic energy , potential energy and Lagrange (L)
• Step 3: formulate Hamilton (H)
• Step 4: Apply to Hamilton’s equations
Example:
In spring mass system find the equation of motion
using Hamilton procedure.
Solution
Step 1 : x
Step 2 :
1
𝑇= 𝑚 𝑣2 (𝑣 = 𝑥)ሶ
2

1
𝑇 = 𝑚 𝑥ሶ 2
2
• Step 3: Hamiltonian (H)
1 1
𝐻 = 𝑇 + 𝑉 = 𝑚𝑥ሶ + 𝐾 𝑥 2
2
2 2
𝜕𝐿
𝑃𝐾 =
𝜕 𝑞𝐾ሶ

𝜕𝐿
𝑃𝑥 = = 𝑚 𝑥ሶ
𝜕𝑥ሶ
𝑃𝑥
𝑥ሶ =
𝑚

1 𝑃𝑥 2 1 2 1 𝑃𝑥 2 1
𝐻 =𝑇+𝑉 = 𝑚 2 + 𝐾𝑥 = + 𝐾 𝑥2
2 𝑚 2 2 𝑚 2
• Step 4: Hamilton’s equations

𝜕𝐻 𝜕𝐻
𝑞𝐾ሶ = 𝑃𝐾ሶ = −
𝜕𝑃𝐾 𝜕𝑞𝐾

𝜕𝐻 𝜕𝐻
𝑥ሶ = 𝑃𝑥ሶ = −
𝜕𝑃𝑥 𝜕𝑥

𝑃𝑥
𝑥ሶ = 1 𝑃𝑥ሶ = −𝐾𝑥 (2)
𝑚
By diff. equ. (1) with respect to time
𝑃𝑥ሶ
𝑥ሷ =
𝑚

𝑃𝑥 𝐾𝑥
𝑥ሷ = = -
𝑚 𝑚

𝐾
𝑥=
ሷ - 𝑥
𝑚
Simple harmonic motion

𝑥ሷ = −𝑤 2 𝑥
It’s solution is
𝑥=A cos(wt+B)
• Example:

If lagrangian function for dynamic system is


1 1 2 2
𝐿= ( 𝑞ሶ 12 +𝑞12 𝑞ሶ 22 ) − 𝐾 𝑞1
2 2
Where K constant
Find
• A)Hamiltonion function
• B)Prove that 𝑞12 = 𝐴 𝑠𝑖𝑛 2𝐾𝑡 + 𝐵 + 𝐶
Where A, B , C constants
Solution
𝐻 =𝑇+𝑉

1 2 1 2 2
𝐻= 𝑞ሶ 1 +𝑞12 𝑞ሶ 22 + 𝐾 𝑞1
2 2
α=1,2
𝜕𝐿
𝑃1 = = 𝑞ሶ 1
𝜕𝑞ሶ 1

𝜕𝐿 𝑃2
𝑃2 = = 𝑞ሶ 2 𝑞12 𝑞ሶ 2 = 2
𝜕 𝑞ሶ 2 𝑞1
2
1 2 2
𝑃2 1 2 2
𝐻= 𝑃1 +𝑞1 4 + 𝐾 𝑞1
2 𝑞1 2

1 𝑃22 1 2 2
𝐻= 𝑃12 + + 𝐾 𝑞1 Hamiltonian function
2 𝑞12 2
Hamiltonian equations
𝜕𝐻 𝜕𝐻
𝑞ሶ 𝛼 = 𝑃𝛼ሶ = −
𝜕𝑃𝛼 𝜕𝑞𝛼
α=1,2

𝜕𝐻
𝑞ሶ 1 = = 𝑃1 1
𝜕𝑃1

𝜕𝐻 𝑃2
𝑞ሶ 2 = = 2
𝜕𝑃2 𝑞12
𝜕𝐻 𝑃22
𝑃1ሶ = − = − − 3 + 𝐾 2 𝑞1 (3)
𝜕𝑞1 𝑞1

𝜕𝐻
𝑃2ሶ = − =0
𝜕𝑞2

𝑃2 = constant = 𝐶1 (4)
• By diff. eq. (1)

𝑞1ሷ = 𝑃1ሶ
From 𝑃1ሶ in (3)
𝑃22
𝑞1ሷ = 3 − 𝐾 2 𝑞1
𝑞1

𝐶12
𝑞1ሷ = 3 − 𝐾 2 𝑞1
𝑞1
Diff. eq. second order 𝑞1ሷ = 𝑓(𝑞1 )
‫ ونكامل‬2𝑞ሶ 1 ‫حلها نضرب الطرفين في‬
2𝑞ሶ 1 𝐶12
2𝑞ሶ 1 𝑞1ሷ = − 2𝑞ሶ 1 𝐾 2 𝑞1
𝑞13
Integrate with respect to time
2
−𝐶 1
𝑞ሶ 12 = 2 − 𝐾 2 𝑞12 + 𝐶2
𝑞1
‫𝑞 ونكامل‬12 ‫نضرب الطرفين في‬

𝑞ሶ 12 𝑞12 = −𝐶12 − 𝐾 2 𝑞14 + 𝐶2 𝑞12

𝐶2 2 𝐶12
𝑞ሶ 12 𝑞12 = −𝐾 2 (𝑞14 − 2 𝑞1 + 2 )
𝐾 𝐾
𝑎 𝑎2
𝑥 2 + 𝑎𝑥 + 𝑏 = (𝑥 + )2 +b −
2 4
𝐶2 2 𝐶12
𝑞ሶ 12 𝑞12 = −𝐾 2 (𝑞14 − 2 𝑞1 + 2 )
𝐾 𝐾
𝑎 𝑎2
𝑥 2 + 𝑎𝑥 + 𝑏 = (𝑥 + )2 +b −
2 4

2
𝐶2 𝐶12 𝐶22
𝑞ሶ 12 𝑞12 = 𝐾 2 [− 𝑞12 − − 2+ ]
2𝐾 2 𝐾 4𝐾 4

2
𝐶2
𝑞ሶ 12 𝑞12 2
= 𝐾 [− 𝑞12 − + 𝐴2 ]
2𝐾 2
2
𝐶2
𝑞ሶ 12 𝑞12 = 𝐾 2 [𝐴2 − 𝑞12 − ]
2𝐾 2

2
𝐶2
𝑞ሶ 1 𝑞1 = 𝐾 𝐴2 − 𝑞12 −
2𝐾 2
𝑞1 𝑑𝑞1
න 2 = න 𝐾𝑑𝑡
𝐶2
𝐴2 − 𝑞12 −
2𝐾 2
𝑓′ (𝑥)𝑑𝑥 𝑓(𝑥)
‫𝐴 ׬‬2 −𝑓 2 = 𝑠𝑖𝑛−1 +𝑐
𝑥 𝐴

2𝑞1 𝑑𝑞1
න 2 = න 2𝐾𝑑𝑡
𝐶2
𝐴2 − 𝑞12 −
2𝐾 2
𝐶
𝑞12 − 22
𝑠𝑖𝑛−1 ( 2𝐾
)=2Kt + 𝐶3
𝐴
𝐶
𝑞12 − 22
2𝐾 = sin(2𝐾𝑡 + 𝐶 )
3
𝐴
𝐶2
𝑞12 − 2
= 𝐴sin(2𝐾𝑡 + 𝐶3 )
2𝐾

𝐶2
𝑞12 = 𝐴 sin 2𝐾𝑡 + 𝐶3 +
2𝐾 2

You might also like