0% found this document useful (0 votes)
52 views10 pages

Model First Terminal Evaluation - 2023 Mathematics Answer Key

The document contains the answer key for a mathematics terminal evaluation for 2023, detailing solutions to various mathematical problems. It covers topics such as functions, equivalence relations, limits, and matrix operations. The answers include calculations, proofs, and theorems relevant to the questions posed in the evaluation.

Uploaded by

abuniyas46
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
52 views10 pages

Model First Terminal Evaluation - 2023 Mathematics Answer Key

The document contains the answer key for a mathematics terminal evaluation for 2023, detailing solutions to various mathematical problems. It covers topics such as functions, equivalence relations, limits, and matrix operations. The answers include calculations, proofs, and theorems relevant to the questions posed in the evaluation.

Uploaded by

abuniyas46
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 10

Model First Terminal Evaluation – 2023

MATHEMATICS
ANSWER KEY

1. (ii) one-one but not on to


(b) 𝑓 (𝑥) − 8𝑥 3 𝑔(𝑥) =
1
𝑥 3.
𝑔 ∘ 𝑓 (𝑥 ) = 𝑔(𝑓 (𝑥))
= 𝑔(8𝑥 3 )
1
= (8𝑥 3 )3
= 2𝑥

2. For any 𝑎 ∈ ℤ
|𝑎 − 𝑎| = 0 is even
Hence (𝑎, 𝑎) ∈ 𝑅.
∴ 𝑅 is reflexive.
→ if (𝑎, 𝑏) ∈ 𝑅
|𝑎 − 𝑏| is even
⇒ 𝑎 − 𝑏 is even
⇒ 𝑏 − 𝑎 is even
⇒ |𝑏 − 𝑎| is even.
⇒ (𝑏, 𝑎) ∈ 𝑅
∴ symmetric
→ if (𝑎, 𝑏) ∈ 𝑅 and (𝑏, 𝑐) ∈ 𝑅 |𝑎 − 𝑏| is even, |𝑏 − 𝑐| is even.
⇒ 𝑎 − 𝑏 is even, 𝑏 − 𝑐 is even
⇒ 𝑎 − 𝑏 + 𝑏 − 𝑐 is even
⇒ 𝑎 − 𝑐 is even
⇒ |𝑎 − 𝑐| is even
⇒ (𝑎, 𝑐) ∈ 𝑅.
∴ Transitive
Hence 𝑅 is an equivalence relation.
1
cosec −1 (2) = sin−1 ( )
2
3. a) 𝜋
=
6

2𝜋 𝜋
sin−1 sin ( ) = sin−1 sin (𝜋 − )
3 3
−1 𝜋
b) = sin sin
3
𝜋
=
3

9 6 3
4. i) 3𝐴 = [ ]
12 −3 9

9 6 3 1 2 3
3𝐴 − 𝐵 =[ ]−[ ]
ii) 12 −3 9 −2 3 1
8 4 0
=[ ]
14 −6 8

5.
(1 + 1)2
𝑎11 = =2
2
(1 + 2)2 9
𝑎12 = =
2 2
2
(2 + 1) 9
𝑎21 = =
2 2
(2 + 2)2
𝑎22 = =8
2
(3 + 1)2
𝑎31 = =8
2
(3 + 2)2 25
𝑎32 = =
2 2
2 9/2
𝐴 = [9/2 8 ]
8 25/2
5 0 1
1
0 = | 0 1 1|
2
𝑘 0 1
6. 1
0 = (5(1 − 0) − 0(0 − 𝑘) + 1(0 − 𝑘))
2
0=5+0−𝑘
𝑘 = ±5

𝑘𝑥 + 1, 𝑥 ⩽ 5
𝑓(𝑥) = {
3𝑥 − 5, 𝑥 > 5
lim𝑥→5− 𝑓(𝑥) = lim𝑥→5+ 𝑓(𝑥)
lim𝑥→5− 𝑘𝑥 + 1 = lim𝑥→5+ 3𝑥 − 5
7.
5𝑘 + 1 = 10
5𝑘 = 9
9
𝑘=
5

3(7 × 11 − 8 × 10) − 4(11 × 6 − 9 × 8) + 5(10 × 6 − 7 × 9)


8. = 3(−3) − 4(−6) + 5(−3)
= −9 + 24 − 15
=0

9. (a) {(1,1), (2,2), (3,3), (4,4), (1,2), (2,1), (2,3), (3,2)}

𝑓 (𝑥1 ) = 𝑓 (𝑥2 )
𝑥 𝑥
⇒ 1 = 2
(b) 𝑥1 +2 𝑥2 +2
⇒ 𝑥1 (𝑥2 + 2) = 𝑥2 (𝑥1 + 2)
𝑥1 𝑥2 + 2𝑥1 = 𝑥1 𝑥2 + 2𝑥2
2x1=2x2
x1 = x2

𝜋
10. a)
3
b)
𝑥 𝑥 𝑥 𝑥
√1 + sin 𝑥 = √cos2 2 + sin2 2 + 2 sin 2 cos 2

𝑥 𝑥 2 𝑥 𝑥
= √(cos + sin ) = cos + sin
2 2 2 2
𝑥 𝑥 𝑥 𝑥
* √1 − sin 𝑥 = √cos2 + sin2 − 2 sin cos
2 2 2 2

𝑥 𝑥 2 𝑥 𝑥
= √(cos − sin ) = cos − sin
2 2 2 2
. 𝑥 𝑥 𝑥 𝑥
cos +sin +cos −sin
−1 2 2 2 2
⇒ cot [ 𝑥 𝑥 𝑥 𝑥 ]
cos +sin −(cos −sin )
2 2 2 2
𝑥
2 cos
−1 2
= cot [
2 sin 𝑥 ]
2
cot 𝑥
= cot −1 ( )
2
𝑥
=
2

1
11. a) 𝜋 − cos −1 ( )
2
𝜋 2𝜋
=𝜋− =
3 3

b)
cos 𝑥
tan−1 ( )
1−sin 𝑥
𝑥 𝑥
cos2 −sin2
tan−1 ( 𝑥
2
𝑥
2
𝑥 𝑥 )
cos2 +sin2 −2sin cos
2 2 2 2
𝑥 𝑥
cos +sin 𝑥
−1 2 2
= tan [𝑥 𝑥 ÷ cos ]
cos −sin 2
2 2
. 1+tan
𝑥
−1 2
= tan [ 𝑥 )
1−tan
2
𝜋 𝑥
= tan−1 (tan ( + )
4 2
𝜋 𝑥
= +
4 2
3 1
12. We have, [ ]
−1 2

3 1 3 1 8 5
∴ 𝐴2 = 𝐴𝐴 = [ ][ ]=[ ]
−1 2 −1 2 −5 3
8 5 3 1
So, 𝐴2 − 5𝐴 + 7𝐼 = [ ] − 5[ ]+
−5 3 −1 2
1 0 8 − 15 + 7 5 − 5 + 0 0 0
7[ ]=[ ]=[ ]=0
0 1 −5 + 5 + 0 3 − 10 + 7 0 0

Now, 𝐴2 − 5𝐴 + 7𝐼 = 0
⇒ A−1 ( A2 − 5 A + 7I) = A−1 = 0 [Multiplying throughout by A−1 ]

⇒ 𝐴−1 𝐴2 − 5𝐴−1 𝐴 + 7𝐴−1 𝐼 = 𝑂


⇒ 𝐴 − 5𝐼 + 7𝐴−1 = 0
⇒ 7𝐴−1 = 5𝐼 − 𝐴
5 0 3 1 2 −1
7𝐴−1 = [ ]−[ ]=[ ]
0 5 −1 2 1 3
1 2 −1
⇒ 𝐴−1 = [ ]
7 1 3

13.
3𝑥 = 𝑥 + 4
2𝑥 = 4
𝑥 =2
3𝑦 = 6 + (𝑥 + 𝑦)
3𝑦 = 6 + 2 + 𝑦
3y = 8+y
2y = 4
Y=2
3w= 2w+3
W=3
3𝑧 = −1 + 𝑧 + 𝑤
3𝑧 = −1 + 𝑧 + 3
3𝑧 = 2 + 𝑧
2𝑧 = 2
𝑧 =1
14.
2 −1 −4
𝐴 = [−1 3 4]
1 −2 −3
1 1
. = (𝐴 + 𝐴′ ) + (𝐴 − 𝐴′ )
2 2
2 −1 1
𝐴′ = [−1 3 −2]
−4 4 −3
1 ′
(𝐴 + 𝐴 )=
2
1 4 −2 −3
[−2 6 2]
2
−3 2 −6
2 −1 −3/2
[ −1 3 1 ]
−3/2 1 −3
1 ′
(𝐴 − 𝐴 )=
2
0 0 −5
1/2 [0 0 6]
5 −6 0
2 −1 −3/2 0 0 −5/2
[ −1 3 1 ]+[ 0 0 3 ]
−3/2 1 −3 5/2 −3 0
2 −1 −4
= [−1 3 4 ]=4
1 −2 −3

1 −1 1
15. 𝐴 = [2 2 −3]
1 1 1
Cofactor matrix of 𝐴
5 −5 4
.= [+2 0 −2]
1 +5 4
5 2 1
Adj 𝐴 = [−5 0 5]
4 −2 4
.
|𝐴| = 1(2 + 3) + 1(2 + 3) + 1(2 − 2)
= 5 + 5 = 10 ≠ 0
Non singular matrix

16. i) 𝑥 = 2𝑎𝑡, 𝑦 = 𝑎𝑡 2 .

𝑑𝑦 𝑑𝑦∣𝑑𝑡 2𝑎𝑡
= =
,𝑑𝑥 𝑑𝑥∣𝑑𝑡 2𝑎
=𝑡

ii)
𝑦 = tan−1 𝑥
𝑑𝑦 1
=
𝑑𝑥 1 + 𝑥 2
𝑑2 𝑦 −1
2
= × 2𝑥
𝑑𝑥 ( 1 + 𝑥 2 )2
(1 + 𝑥 2 )𝑦2 + 2𝑥𝑦1 =
−2𝑥 2𝑥
(1 + 𝑥 2 ) × 2 2
+ 2
(1+𝑥 ) 1+𝑥
−2𝑥 2𝑥
= +
1+𝑥 2 1+𝑥 2
=0

𝜋
We have sin−1 𝑥 + cos −1 𝑥 =
2
−1 −1 −1 −1 𝜋 −1
17. a) ∴ cos ( ) + sin ( ) = tan−1 (1) + cos −1 ( ) +
2 2 2 2
−1 𝜋 𝜋 3𝜋
sin−1 ( ) = + =
2 4 2 4
b)
𝑥 = tan 𝜃 , 𝜃 = tan−1 𝑥
√1 + 𝑥 2 − 1 √1 + tan2 𝜃 − 1)
tan−1 ( ) = tan−1 (
𝑥 tan 𝜃
sec 𝜃 − 1
= tan−1 ( )
tan 𝜃
1
−1
= tan−1 [ cos 𝜃 ]
sin 𝜃/cos 𝜃
1 − cos 𝜃
= tan−1 ( )
𝑠𝑖𝑛 𝜃
𝜃
2sin
= tan−1 [ 2 ]
𝜃 𝜃
2sin cos
2 2

sin 𝜃/2
= tan−1 ( )
cos 𝜃/2
= tan−1 (tan 𝜃/2)
𝜃 tan−1 𝑥
= =
2 2

1 2 5
𝐴=[ 2 3 1]
18. −1 1 1
−1 1
𝐴 = Adj 𝐴
|𝐴|

|𝐴| = 1(3 − 1) − 2(2 + 1) + 5(2 + 3)


= 2 − 6 + 25
= 21
2 −3 5
Cofactor matrix of 𝐴 = [ +3 6 −3]
−12 +9 −1
2 3 −12
Adjoint = [−3 6 9 ]
5 −3 −1
−1
1 2 3 −12
𝐴 = [−3 6 9 ]
21
5 −3 −1
2/21 1/7 −4/7
= [−1/7 2/7 3/7 ]
5/21 −1/7 −1/21

3 −2 3 𝑥 8
19. Let 𝐴 = [2 1 −1] 𝑋 = [𝑦] 𝐵 = [1]
4 −3 2 𝑧 4
Then the system of equations can be written as AX =B
3 −2 3
|𝐴| = |2 1 −1| = −17 ≠ 0
4 −3 2
−1 −5 −1
adj 𝐴 = [ −8 −6 9 ]
−10 1 7
−1 −5 −1
1 1
𝐴−1 = |𝐴| adj 𝐴 = [ −8 −6 9 ]
−17
−10 1 7
∴ Unique solution is given by
−1 −5 −1 8
−1 1
𝑥=𝐴 𝐵= [ −8 −6 9 ] [1]
−17
−10 1 7 4
−17 1
. 1
= − [−34] = [2]
17
−51 3
∴x=1 y=2 z=3

20. i)
𝑦 = 𝑥𝑥
log 𝑦 = 𝑥log 𝑥
1 𝑑𝑦 1
= 𝑥 × + 1 ⋅ log 𝑥
𝑦 𝑑𝑥 𝑥
= 1 + log 𝑥
𝑑𝑦
= 𝑦(1 + log 𝑥)
𝑑𝑥
= 𝑥 𝑥 (1 + log 𝑥)
ii)

𝑥 2 + 𝑥𝑦 + 𝑦 2 = 100
𝑑𝑦 𝑑𝑦
2𝑥 + 𝑥 ⋅ + 𝑦 + 2𝑦 =0
𝑑𝑥 𝑑𝑥
. 𝑑𝑦
(2𝑥 + 𝑦) + (𝑥 + 2𝑦) =0
𝑑𝑥
𝑑𝑦 −(2𝑥+𝑦)
=
𝑑𝑥 𝑥+2𝑦

iii)
𝑥 = 𝑎(𝜃 − sin 𝜃)
𝑦 = 𝑎(1 + cos 𝜃)
𝑑𝑦 𝑎(1−cos 𝜃)
. =
𝑑𝑥 𝑎(−sin 𝜃)
cos 𝜃−1
=
sin 𝜃

You might also like