Itf Formulae
Itf Formulae
INVERSE TRIGONOMETRIC
Sin 1
x 1,1
2 , 2
FUNCTION FORMULAE
Cos 1 x 1,1 0,
Tan 1x R
2 ,2
Cot 1 x R 0,
1
Sec x ( , 1] [1, )
0, 2 2 ,
Inverse of a function : Co sec1 x ( , 1] [1, )
2 , 0 0, 2
f : A B is bijective f 1 : B A exists and
it is also bijective. All trigonometric functions
are not bijective functions. By restricting the
domains of the functions,we make them bijective
Graphs of inverse circular functions:
The function f : , 1,1 defined by 1.
y = Sin 1 x, | x | 1, y 2 ,
2 2 2
f x sin x is a bijection.
Then f 1 : 1,1 , is also a
2 2
bijection. This function is called inverse sine
function and it is denoted by Arc sine x or
S in 1 x
The function f : , R defined by
2 2
f x tan x is a bijection.
Then f 1 : R , is also a bijection.
2 2
This function is called inverse tangent function
and it is denoted by Arc tan x or Tan 1 x 3. y = Tan 1 x , x R, y 2 ,
2
C ot 1 1 , x 0
x
Some useful periodic graphs:
3
x, 2 x
2
x,
x
2 2
1. y Sin 1 sin x
x, 3
x
2 2
3 5
2 x, x
2 2
5. y = Sec 1 x,x 1, y 0 , 2 2 ,
y is Periodic with period 2and y ,
2 2
x, x 0
6. 1
y=Cosec x,x1,
y , 0 0 , x, 0 x
2 2
2. y Cos 1 cos x
2 x, x 2
2 x, 2 x 3
-1
x, x ,0 0,
2 2
3 1
5. y Co sec cos ecx x, x , ,
1
2 2 -1
and so on
0 1
-1
y is periodic with period 2and y ,
2 2
3. y = Tan (Tan–1x) = x, x R, y R
v) C o t -1 -x = π -C o t -1 x , x R
vi) Sec -1 -x =π-Sec -1 x , x (, 1] 1, )
1 1 1 1 1 1
1: Cos 2Sin 3Cos
2 2 2
4Tan 1 1
4. y = Cot (Cot–1x) = x, x R, y R 1 1 1 1 1 1
Sol: Cos 2Sin 3Cos
2 2 2
1 1
4Tan1 1 Cos 2
2 6
1
3 Cos 1 4Tan 1
1
2
3 4
3 3 4 4
5. y cos ec cos ec1 x x , | x | 1, | y | 1,
3 43
3
3 4 12
i) 0, then Sin cos
1
1
2
-1
0 1 ii) , then Cos 1 sin
2 2 2
-1
iii) 0, then Tan cot
1
6. y = Sec(Sec–1x) = x, | x | 1, | y | 1
iv) , then Cot 1 tan
2 2 2
450 v) , 0 0, then
1 2 2
-1 Sec 1 cos ec
0 1 2
-1
vi) 0, , then
2 2
Important Results: Co sec 1 sec
2
i) S in -1 -x = -Sin -1 x , x 1,1
ii) C o s -1
-x = π -C os -1
x , x 1,1 Cos 1 1 x 2 if 0 x 1
i) S in 1 x Cos 1 1 x 2 if 1 x 0
iii) T a n -1 -x = -T an -1 x , x R
x
iv) Cosec -1 - x =-Cosec -1 x , x R 1,1 Tan 1 if x 1,1
1 x2
S in 1 1 x 2 if x 0,1
ii) C os 1 x
S in 1 1 x 2 if x 1, 0
Sin1 x 1 y2 y 1 x2
0 x, y 1 and x2 y2 1 or
x
S in
1
for x 0 1 x, y 1, xy 0 and x2 y2 1
1 x2
1
iii) T an x 1
Sin1x Sin1 y Sin1 x 1 y2 y 1 x2
C os 1 for x 0
1 x2
if 0 x 1, 1 y 1and x2 y2 1
2: The value of x , where x 0 and
Sin1 x 1 y2 y 1 x2
1
Tan Sec 1 Sin Tan 1 2 is (EAM-2007) if 0<y 1,-1 x<0 and x2 y2 1
x
Sol: Tan Sec
1 1
x
Sin Tan 2
1
C os1 xy 1 x2 1 y 2
if 1 x, y 1and x y 0
C os1 x C os1 y
Tan Tan 1
1 x2
x
Sin Sin 1
2
1 2
2
2 C os1 xy 1 x2 1 y 2
if 1 x, y 1and x y 0
x
T an x S in
1 1
1 x2
C os1 xy 1 x2 1 y2
1 x 2
2 if 1 x, y 1, x y
5 1 x 2 4 x 2 1 1
x C os x C os y
5
C os1 xy 1 x2 1 y2
5 5 if 1 y 0,0 x 1and x y
x2 x
9 3
1
3: If x 1 then
1 1 2
i) S in x C os x , x [-1,1]
2
x 1
ii) T an 1 x C ot 1 x / 2 , x R Cos 1 3 3x 2 Cos 1 x is equal to
2 2
iii) S ec x C os ec x , x(, 1] 1, )
1 1
1 1 x 1 2
2 Sol: Cos x Cos 2 2 3 3 x
Sin1 x 1 y2 y 1 x2
1
Cos 1 x Cos 1 x .
3
1 x 2
2 2
0 x, y , x y 1 or
2 2
1 x y
Tan for xy 1
1 xy
x y
Tan1x Tan1y T an1 if x 0, y 0and xy 1
1 xy
x y
T an1 if x 0, y 0and xy 1
1 xy 2 Tan 1 x
1 x2 x 0
(i) If x, y , z have same sign and ii) Cos –1
=
2 Tan x x 0
1
1 x2
xy yz zx 1 then
x y z xyz
Tan 1 x Tan 1 y Tan 1 z Tan 1
1 xy yz zx
(ii) T an 1 x1 T an 1 x 2 ......T an 1 x n
S S S ....
T an 1 1 3 5
1 S2 S4 S6 ....
1 1
5 2
4: The value of Cot Co sec 3 Tan 3
1 5 1 2 1 3 1 2
Sol: Cot Co sec 3 Tan 3 Cot Sin Tan
5 3
3 2 x
Cot Tan1 Tan1 Sin x Tan
1 1
4 3 1 x2
3 2 17 3Sin1x if 1 x 1/ 2
Cot Tan1 4 3 Cot Tan1 12 i) Sin1 3x 4x3 3Sin 1x if 1/ 2 x 1/2
1 3 2 1
3Sin1x
4 3 2 if 1/ 2 x 1
C os 1 2 x 2 1 if 0 x 1
ii) 2C os1 x
2 C os
1
2x 2
1 if 1 x 0
-3/2 -½ 1 2x
Tan 1 x 2 if 1 x 1
½ 3/2
1 1 2x
iii) 2Tan x Tan 1 x 2 if x 1
1 2x
3cos1 x 2 if 1 x 1/2 Tan 2
if x 1
1 x
ii) Cos1 4x3 3x 2 3Cos 1 x if 1/2 x 1/ 2 ;
3C os1 x if 1/2 x 1 1 2x
Sin 1 x 2 if x 1
1 1 2 x
iv) 2Tan x Sin 2
if 1 x 1
1 x
1 2x
Sin 2
if x 1
1 x
1 1 x
2
C os if x 0
1 x2
½ v) 2 T an x
1
-3/2 -½ 3/2
C os 1 1 x if 0 x
2
2
1 x
1 1 1
3Tan x if - x 1 4 1
3 3 5: Sin 2Tan 1
3x x3
1 5 3
iii) Tan1 2
3Tan1 x if x
1 3x 3 1 4 1
Sol: Sin 2Tan 1
1 5 3
3Tan x if x
1
3
1
2 2Tan1x
1 4 1 3
Sin Tan 1 2 x
5 1 2 Tan 2
/2 1 1 x
3
-3 -1/3 1/3 3 4 3
Sin 1 Tan 1
5 4
-/2
4 4 1 1
Sin 1 Cos 1 Tan x Cos
1
5 5 1 x
2
1
Sin 2 x 1 x if 1 x
2 1
2
Sin x Cos x 2
1 1
2
1 1
i) 2Sin x Sin 2 x 1 x
2
if
1
2
x
1
2 Some important facts:
1
Sin 2 x 1 x
2
if
1
2
x 1
1 1 1
1) Tan x Tan y Tan z , if xy yz zx 1
2
2) Tan x Tan y Tan z ,
1 1 1
if x y z xyz
1 a b
3) Tan Tan1 ,then x ab i) a x , put x a sin , ,
2 2
x x 2 2 2
a b
4) Sin
1
Sin 1 , then x a 2 b2
ii) a x , put x a tan , ,
2 2
x x 2
2 2
1 p 1 q p
5) Tan Tan iii) x 2 a 2 , put x a sec , 0,
q q p 4
Range of some special inverse
1 1 x
6) T an
1
tan x if x 1 Trigonometric Functions :
1 x 4
3 7 3
Sin x Cos x
1 3 1 3
1 1 x i)
7) T an
1
tan x if x 1 32 8
1 x 4
2 5 2
Sin 1 x Cos1 x
2 2
ii)
1 1
8) If Tan x Tan y then xy=1. 8 4
2
2 3 2
Cos x Sin x
2 2
1 1 iii)
1 1
n 2 1 2n n 2 1 n 2 1
2
x 2 2 xy y2
2
cos 2 Sin2
a ab b
n2 n 1 1
2
x y
cot 2 y n 2 n 1
2
16) If Sin
1
Sin 1 then cos ec 2 cot 2 1
a b
x 2 2 xy y2 Tany
1
n 1 n
cos Sin 2 n n 1 1 n 1 n
2
a 2 ab b2
1 1 1 1 n 1 n
17) Tan 1 x( x 1) Tan 1 ( x 1)( x 2) .... y Tan 1
1 n 1 n
1
Tan1 Tan xn Tan x,nN
1 1
y Tan 1 n 1 Tan 1n
1 xn1 xn Thus sum of n terms of the given series
If an expression contains
y T a n 1 2 T an 11 T a n 1 3 T a n 1 2
T a n 1
4 T an 1 3 ...... T an 1 n 1 T a n 1 n
Tan1 n 1 Tan11 Tan n 1
1
4
8: Sin 1 sin 5
Sol: Here 5 rad , Clearly it does not lie between
and . But 2 5 and 5 2 both lies
2 2
between and .
2 2
Sol: We know that Tan 1 Tan if
2 2
Here 6 rad , does not lie between
and
2 2
But 2 6 lies between and
2 2
Now Tan 2 6 Tan6 Tan 6