0% found this document useful (0 votes)
26 views9 pages

Itf Formulae

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
26 views9 pages

Itf Formulae

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 9

Function Domain Range

INVERSE TRIGONOMETRIC
Sin 1
x 1,1    
 2 , 2 
FUNCTION FORMULAE
Cos 1 x 1,1 0, 
Tan 1x R    
 2 ,2 
 
Cot 1 x R 0, 
1
Sec x (  , 1]  [1, )     
 0, 2    2 ,  
   
 Inverse of a function : Co sec1 x ( , 1]  [1, )     
 2 , 0    0, 2 
   
f : A  B is bijective  f 1 : B  A exists and
it is also bijective. All trigonometric functions
are not bijective functions. By restricting the
domains of the functions,we make them bijective
 Graphs of inverse circular functions:
  
 The function f :   ,    1,1 defined by 1.  
y = Sin 1 x, | x |  1, y   2 ,

 2 2  2

f  x   sin x is a bijection.

  
Then f 1 :  1,1    ,  is also a
 2 2
bijection. This function is called inverse sine
function and it is denoted by Arc sine x or
S in 1 x

 The function f :  0,     1,1 defined by


2. y = Cos 1 x , | x |  1, y  [0, ]
f  x   cos x is a bijection.

Then f 1 :  1,1   0,   is also a bijection.


This function is called inverse cosine function
and it is denoted by Arc cos x or C os1 x

  
 The function f :   ,   R defined by
 2 2
f  x   tan x is a bijection.

  
Then f 1 : R    ,  is also a bijection.
 2 2
This function is called inverse tangent function
  
and it is denoted by Arc tan x or Tan 1 x 3. y = Tan 1 x , x  R, y    2 ,
2

 Domains and Ranges of Inverse


trigonometric functions:
Properties of inverse trigonometric
functions:
1 1
i) Sin x  C os ec , x  1,1 , x  0
1

x
1 1
1
ii) Cos x  Sec , x  1,1 , x  0
x
4. y = Cot 1
x , x  R, y  (0 , )
 1 1
 C ot x , x  0
iii) Tan x  
1

    C ot  1 1 ,  x  0
 x
 Some useful periodic graphs:

 3 
   x,  2 x
2

 x,  
 x
 2 2
1. y  Sin 1  sin x   
  x,  3
x
 2 2
 3 5
 2  x, x
 2 2

       
5. y = Sec 1 x,x 1, y  0 , 2    2 ,

 y is Periodic with period 2and y   ,
 2 2 

 x,   x  0
6. 1
y=Cosec x,x1,
    
y   , 0   0 ,   x, 0 x

 2   2
2. y  Cos 1  cos x   
2  x,   x  2
2  x, 2  x  3

y is periodic with period 2 and y   0,  


 3       
x   ,  2 x
2 x, x 0,   , 
   2 2 
 x,  
 x   3   3 
 6. y  Sec  sec x  2  x, x  ,   ,2 
1
3. y  Tan  1  tan x    2 2
   x ,  3   2 2 
x
 2 2  and so on
 3 5 
 x  2 , x 
 2 2

y is periodic with period 2 and y   0,  


   
y is periodic with period and y   , 
 2 2

 Some useful non-periodic graphs:


4. y = Cot1(Cot x) = x, x(0,) and so on. 1. y = Sin(Sin 1 x) = x, x[ 1 , 1], y[ 1 , 1]

y is periodic with period and y   0,  


1
-1
0 1

-1

2. y = Cos(Cos 1x) = x, x  [ 1 , 1], y[ 1 , 1]

     
x, x   ,0    0, 
  2   2

    3  1
5. y  Co sec  cos ecx     x, x   ,   , 
1

 2   2  -1
 and so on
 0 1

-1
   
y is periodic with period 2and y   , 
 2 2
3. y = Tan (Tan–1x) = x, x  R, y  R
v) C o t -1  -x  = π -C o t -1 x ,  x  R
vi) Sec -1  -x  =π-Sec -1 x ,  x  (, 1]  1, )

1  1  1  1  1  1 
1: Cos    2Sin    3Cos  
 2  2  2
4Tan 1  1 
4. y = Cot (Cot–1x) = x, x  R, y  R 1  1  1  1  1  1 
Sol: Cos    2Sin    3Cos  
 2  2  2

1  1   
 4Tan1  1    Cos    2  
2  6 
  1 
 3    Cos 1     4Tan 1
1

  2 
      
    3    4  
3 3  4 4
5. y  cos ec cos ec1 x  x , | x |  1, | y |  1,
  3  43
  3   
3  4  12

i)    0,   then Sin  cos    
1
1 
2
-1
   
0 1 ii)     ,  then Cos 1  sin     
 2 2 2
-1 
iii)    0,   then Tan  cot    
1

6. y = Sec(Sec–1x) = x, | x |  1, | y |  1    
iv)     ,  then Cot 1  tan     
 2 2 2

     
450 v)     , 0    0,  then
1  2   2

-1 Sec 1  cos ec   
0 1 2

-1     
vi)    0,    ,   then
 2 2 

 Important Results: Co sec 1  sec    
2
i) S in -1  -x  = -Sin -1 x ,  x   1,1

ii) C o s -1
 -x = π -C os -1
x ,  x   1,1  Cos 1 1  x 2 if 0  x  1

 i) S in 1 x    Cos 1 1  x 2 if  1  x  0
iii) T a n -1  -x  = -T an -1 x ,  x  R
 x
iv) Cosec -1  - x  =-Cosec -1 x ,  x  R   1,1  Tan 1 if x   1,1
 1  x2
 S in 1 1  x 2 if x   0,1

ii) C os 1 x  
   S in 1 1  x 2 if x   1, 0 

Sin1 x 1 y2  y 1 x2
 
0  x, y  1 and x2  y2  1 or
 x 
 S in
1
for x  0 1  x, y  1, xy  0 and x2  y2 1
 1  x2 
 
1
iii) T an x   1

Sin1x  Sin1 y   Sin1 x 1 y2  y 1 x2
C os 1 for x  0
 1  x2 
if 0  x  1, 1  y  1and x2  y2  1

2: The value of x , where x  0 and

 Sin1 x 1 y2  y 1 x2


 1
Tan  Sec 1   Sin Tan 1 2  is (EAM-2007) if 0<y  1,-1  x<0 and x2  y2  1
 x


Sol: Tan  Sec

1 1 

x
  Sin Tan 2 
1
 
C os1 xy  1 x2 1  y 2

if 1  x, y  1and x  y  0

C os1 x  C os1 y  

Tan  Tan 1

1  x2
x
 
  Sin  Sin 1

2
1 2 
2

 

2  C os1 xy  1  x2 1  y 2 
  
if 1 x, y  1and x  y  0
 x 
  T an x  S in
1 1

 
 1  x2 
C os1 xy  1 x2 1  y2

1 x 2
2 if 1  x, y  1, x  y
  5 1  x 2   4 x 2 1 1 
x C os x  C os y  
 
5
C os1 xy  1 x2 1 y2

5 5 if 1 y  0,0  x  1and x  y
 x2  x
9 3
1
 3: If  x  1 then
1 1 2
  i) S in x  C os x  ,  x  [-1,1]
2
x 1 
ii) T an 1 x  C ot 1 x   / 2 ,  x  R Cos 1   3  3x 2   Cos 1 x is equal to
2 2 

iii) S ec x  C os ec x  ,  x(, 1] 1, )
1 1
1 1  x 1 2 
2 Sol: Cos x  Cos  2  2 3  3 x 
 

 
Sin1 x 1  y2  y 1  x2
  1
 Cos  1 x  Cos  1  x . 
3 
1  x 2 
  2 2 
0  x, y , x  y  1 or
2 2

1  x, y  1, xy  0 and x2  y2  1 1 1 


 Cos 1 x  Cos 1    Cos 1 x  Cos 1   =
 2 2 3


Sin1x  Sin1 y    Sin1 x 1  y 2  y 1  x2


if 0  x, y  1 and x2  y2  1


  Sin1 x 1  y2  y 1  x2


if -1  x,y<0 and x2  y 2  1
 17   17  6
 1  x  y   cot cot 1    cot tan 1   
 6  6  17
Tan  1  xy  if x  0, y  0, xy  1
  
 Transformation of Inverse functions by
 1  x  y 
   Tan   if x  0, y  0, xy  1 elementry substitution and their graphs:
1 1   1  xy 
Tan x  Tan y  
  Tan1  x  y  if x  0, y  0, xy  1   2 Tan 1 x x  1
   2x  1
 1  xy  i) Sin–1 = 2Tan x  1 x  1
 1 x2   2Tan 1 x
 , if xy  1  x 1
 2

 1  x  y 
Tan   for xy 1
  1 xy 
  x y 
Tan1x Tan1y   T an1   if x  0, y  0and xy 1
 1 xy 
  x y 
 T an1   if x  0, y  0and xy 1
 1 xy   2 Tan 1 x
1 x2 x 0
 (i) If x, y , z have same sign and ii) Cos –1
=  
  2 Tan x x  0
1
1 x2
xy  yz  zx  1 then

 x  y  z  xyz 
Tan 1 x  Tan 1 y  Tan 1 z  Tan 1  
 1  xy  yz  zx 

(ii) T an 1 x1  T an 1 x 2  ......T an 1 x n 

 S  S  S  .... 
T an 1  1 3 5 
 1  S2  S4  S6 .... 

where S1 = sum of values , S 2 = sum of product   2 Tan 1 x x  1



of taken two elements at a time and so on.., 2x 1
2 Tan x  1 x  1
iii) Tan–1 = 
1 x2
   2 Tan x
1
S n = product of values. x 1

 1 1 
5 2
4: The value of Cot  Co sec 3  Tan 3  
 

 1 5 1 2   1 3 1 2 
Sol: Cot  Co sec 3  Tan 3   Cot  Sin  Tan 
   5 3

 3 2  x 
 Cot  Tan1  Tan1   Sin x  Tan
1 1

 4 3  1  x2 

  3 2    17      3Sin1x if 1  x  1/ 2
       
 Cot  Tan1  4 3   Cot  Tan1  12  i) Sin1  3x  4x3   3Sin 1x if 1/ 2  x  1/2
  1   3  2    1
      3Sin1x
  
   4  3     2   if 1/ 2  x  1
C os 1  2 x 2  1 if 0  x  1
ii) 2C os1 x  
2  C os
1
 2x 2
 1 if  1  x  0

-3/2 -½  1  2x 
Tan  1  x 2  if  1  x  1
½ 3/2  

1  1  2x 
iii) 2Tan x     Tan  1  x 2  if x  1

 1  2x 
3cos1 x  2 if 1 x  1/2     Tan  2 
if x   1
 1 x 

ii) Cos1  4x3 3x  2 3Cos 1 x if 1/2  x 1/ 2 ;
3C os1 x if 1/2  x 1  1  2x 
    Sin  1  x 2  if x   1
  
1  1  2 x 
iv) 2Tan x   Sin  2 
if  1  x  1
  1  x 
 1  2x 
  Sin  2 
if x  1
 1 x 

 1  1  x 
2

  C os   if    x  0
  1  x2 
½ v) 2 T an x  
1
-3/2 -½ 3/2
 C os  1  1  x  if 0  x  
2

  2 
 1 x 
 1 1 1
3Tan x if -  x  1 4 1
 3 3 5: Sin  2Tan 1 
 3x  x3
  1 5 3
iii) Tan1  2 
   3Tan1 x if x 
 1  3x   3 1 4 1
Sol: Sin  2Tan 1
 1 5 3
  3Tan x if x  
1

 3
 1 
 2    2Tan1x  
1 4 1   3   
 Sin  Tan  1  2 x 
5   1 2  Tan  2 
/2  1       1  x 
  3 
-3 -1/3 1/3 3 4 3
 Sin 1  Tan 1
5 4
-/2 
4 4 1  1 
 Sin 1  Cos 1  Tan x  Cos 
1

5 5   1 x
2
 
 1
 
  Sin 2 x 1  x if  1  x  
2 1
2 
  
 Sin x  Cos x  2 
1 1

 2
1  1


i) 2Sin x  Sin 2 x 1  x
2
if 
1
2
 x
1
2  Some important facts:


1

  Sin 2 x 1  x
2
if
1

2
 x 1
1 1 1 
1) Tan x  Tan y  Tan z  , if xy  yz  zx  1
2
2) Tan x  Tan y  Tan z   ,
1 1 1

if x  y  z  xyz
1 a b    
3) Tan  Tan1  ,then x  ab i) a  x , put x  a sin  ,    , 
2 2
x x 2  2 2
a b 
4) Sin
1
 Sin 1  , then x  a 2  b2   
ii) a  x , put x  a tan  ,    , 
2 2
x x 2
 2 2
1  p  1  q  p  
5) Tan    Tan   iii) x 2  a 2 , put x  a sec ,   0,  
q q p 4
 Range of some special inverse
1  1  x  
6) T an 
1
   tan x if x  1 Trigonometric Functions :
 1  x  4
3 7 3
  Sin x    Cos x  
1 3 1 3

1  1  x   i)
7) T an 
1
   tan x if x  1 32 8
1 x  4
2 5 2
  Sin 1 x    Cos1 x  
2 2
 ii)
1 1
8) If Tan x  Tan y  then xy=1. 8 4
2
2 3 2
  Cos x   Sin x  
2 2
1 1  iii) 
1 1

9) Cot x  Cot y  then xy=1 4 4


2
6 : The set of values of x such that Sin1 x Cos1 x  0
10) If Cos1 x  Cos1 y  Cos1 z  3
are
then xy  yx  zx  3

3
Sol: Sin 1 x  Cos1 x  0  Sin 1 x 
1 1 1
11) If Sin x  Sin y  Sin z  4
2
 1 
then xy  yx  zx  3  x ,1 as x  1
 2 
12) If Sin1 xSin1 y  then Cos1 xCos1 y 
7: The sum to the n terms of the series
13) If Cos1 x  Cos1 y  then Sin1 x Sin1 y  
Co sec 1 10  Co sec1 50  Co sec 1 70  .....
1 1
14) If aSin x  bC os x  c then
 ab  c  a  b
...  Co sec1 n 2
 1 n2  2n  2  is
a Sin1 x  b Cos1 x 
a b Sol: Let y  Co sec  1 n 2
 1 n 2  2 n  2 
1 x 1 y
15) If Cos  Cos
a b
  then Co sec 2 y   n 2  1  n 2  1  2n  1

  n 2  1  2n  n 2  1  n 2  1
2
x 2 2 xy y2
2
 cos   2  Sin2
a ab b
  n2  n 1 1
2

x y
cot 2 y   n 2  n  1
2
16) If Sin
1
 Sin 1   then  cos ec 2  cot 2   1
a b

x 2 2 xy y2 Tany 
1

 n  1  n
 cos    Sin 2 n  n  1 1   n  1 n
2
a 2 ab b2
1  1  1  1    n  1  n 
17) Tan  1 x( x  1)   Tan  1 ( x  1)( x  2)   ....  y  Tan 1  
1   n  1 n 
   

 1 
Tan1   Tan  xn Tan x,nN
1 1
y  Tan 1  n  1  Tan 1n
1 xn1 xn  Thus sum of n terms of the given series
 If an expression contains
y  T a n  1 2  T an  11    T a n  1 3  T a n  1 2  

T a n 1
4  T an  1 3   ......  T an  1  n  1   T a n  1 n 


 Tan1  n  1  Tan11  Tan  n  1 
1

4
8: Sin 1  sin 5  
Sol: Here   5 rad , Clearly it does not lie between
 
and . But 2  5 and 5  2 both lies
2 2
 
between and .
2 2

Sin  5  2   Sin   2  5   Sin  2  5  Sin5

 Sin 1  Sin5   Sin1  Sin  5  2    5  2

9 : Cos 1  cos10  is equal to....

Sol: We know that Cos 1  cos     if 0    


Here   10 rad , clearly, it does not lie between
0 and  . But 4  10 lies between 0 and 
 Cos 1  cos10   Cos 1  cos  4  10    4  10

10: Tan1 Tan  6   is equal to.....

 
Sol: We know that Tan 1 Tan    if  
2 2
Here   6 rad , does not lie between
 
and
2 2
 
But 2  6 lies between and
2 2
Now Tan  2  6   Tan6  Tan  6 

Tan 1 Tan  6    Tan 1 Tan  2  6    2  6

You might also like