Solution Manual For Algebra and Trigonometry 10th Edition Larson 1337271179 9781337271172 Download PDF
Solution Manual For Algebra and Trigonometry 10th Edition Larson 1337271179 9781337271172 Download PDF
   http://testbankpack.com/download/solution-manual-for-algebra-and-
      trigonometry-10th-edition-larson-1337271179-9781337271172/
https://testbankpack.com/download/solution-manual-for-algebra-and-
trigonometry-10th-edition-sullivan-0321998596-9780321998590/
https://testbankpack.com/download/test-bank-for-algebra-and-
trigonometry-10th-edition-sullivan-0321998596-9780321998590/
https://testbankpack.com/download/solution-manual-for-college-
algebra-10th-edition-larson-isbn-1337282294-9781337282291/
https://testbankpack.com/download/solution-manual-for-algebra-and-
trigonometry-6th-edition-blitzer-0134463218-9780134463216/
Solution Manual for Algebra and Trigonometry 8th Edition
Aufmann Nation 1285449428 9781285449425
https://testbankpack.com/download/solution-manual-for-algebra-and-
trigonometry-8th-edition-aufmann-nation-1285449428-9781285449425/
https://testbankpack.com/download/solution-manual-for-algebra-and-
trigonometry-4th-edition-stewart-redlin-
watson-1305071743-9781305071742/
https://testbankpack.com/download/solution-manual-for-college-algebra-
and-trigonometry-3rd-edition-by-ratti-mcwaters-
isbn-0321867416-9780321867414/
                                               CHAPTER2
                                          Functions and Their Graphs
                 Section 2.1 Linear Equations in Two Variables ................................................... 165
                 Section 2.2 Functions ............................................................................................. 178
                 Section 2.3 Analyzing Graphs of Functions ......................................................... 187
                 Section 2.4 A Library of Parent Functions ........................................................... 197
                 Section 2.5 Transformations of Functions ............................................................ 202
                 Section 2.6 Combinations of Functions: Composite Functions ........................... 212
                 Section 2.7 Inverse Functions ................................................................................ 221
                 Review                                                                                                              Exercises
                 ...................................................................................................... 234
............................................................................................................. 248
C    H A P T E R 2 Functions
and Their Graphs
Section 2.1 Linear Equations in Two Variables
1. linear             14. The line appears to go through (0, 7) and (7, 0 .)
                                                                    0
2. slope                           Slope =              y2 − y1 =       − 7 = −1
                                                                                                          x2 − x1        7−0
3. point-slope
15. y = 5x + 3
© 2018 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
4. parallel
                                                                                    Slope: m = 5
5. perpendicular
                                                                                    y-intercept: (0, 3)
6. rate or rate of change                           y
                                                                                                   5
7. linear extrapolation
                                                                                                   4
                                                                                                   3   (0, 3)
8. general
         Matches L2.
     (b) m is undefined. The line is vertical. Matches L3.
10. (a) m = 0. The line is horizontal. Matches L2. y-intercept: 0,( −10)
(b) m
                                                                                                                               −
                                                                                                                               .
                                                                                                                               B
                                                                                                                               e
                                                                                                                               c
                                                                                                                               a
                                                                                                                               u
                                                                                                                               s
                                                                                                                               e
                                                                                                                               t
                                                                                                                               h
                                                                                                                                e
                                                                                                                               s
                                                                                                                               l
                                                                                                                               o
                                                                                                                               p
                                                                                                                               e
Matches L3.
m=0
17. y = − x − 1
Slope: m = −
                          Slope = y2 −y1 = 6 = 3
                                           x2 − x1                  4       2
  © 2018 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in
part.                                                                     165
                 18. y = x + 2
                                                                                                                                                 y
Slope: m = 4
                        y-intercept: 0,( 2)
                                                                                                                                          2
                                                    y                                                                                                        x
                                                                                                             −6                     −2                   2
                                                                                                                                         −2
                                                6
4 −4
(0, 2)
                                                                                                 21. 5x − =2                         0
                                                                        x
                        −6            −2                    2       4
                                                                                                         x = , vertical line
                                            −2
                                                                                                        Slope: undefined
                                            −4
                                                                                                        y-intercept: none
19. y − 5 = 0 y
y =5 2
Slope: m = 0 1
                                                                                                                                                             x
                        y-intercept: 0,( 5)
                                                                                                        −1                      1        2           3
                                                                                                             −1
y −2
                                        8
                                        6
                                                (0, 5)
                                        4
                                                                                                 22. 3y + 5 = 0 3y = −5 y = −
2 Slope: m = 0
                                                                                                                                                 )
                                                                        x
                                                                                                                                (
                          −4     −2                     2       4
                                                                                                                                         −
                                      −2                                                              y-intercept: 0,
                 20. x + 4 = 0
                                                                                                                                                             x
                                                                                                        −2        −1
                 x = −4
                                                                                                                                         1           2
−1
−2
                  © 2018 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
23. 7x − 6y = 30
               −6y = −7x + 30
y = x−5
Slope: m =
           1
                                             x
      −1            1   2    3   5   6   7
       −1
       −2
       −3
       −4
       −5          (0, −5)
       −7
                                   168                 Chapter 2 Functions and Their Graphs Section 2.1 Linear Equations in Two Variables                 168
24. 2x + 3y = 9                                                                                          1 −−( 1)                    2            1
                                                                                          28. m      =                       =           =−           =
                                                                                                                                 −4               2
              3y = −2x + 9
                                                                                                                       y                              =
     y =− x+3                                                                                                      5
                                                                                                                   4
     Slope: m = −                                                                                                  3                                  0
                                                                                                                   2
                                                                                                    (−2, 1)        1
                                                               y-intercept: (0, 3)
                                                                                                                                              x
                                                                                                  −5 −4 −3 −2 −1                 3 4 5
              y                                                                                               −2           (2, −1)                    =
                                                                                                              −3
          5                                                                                                   −4
                                                                                                              −5
          4                                                                                                                                           0
                  (0, 3)                                                                                                                      8
          2
                                                                                                                                              5
          1                                                                                                                      29. m
−1 1 2 3 4
25. m = 0 − 9 = −9 = −
     3
                    6−0                            6       2
26. m = −5 − 0 = −5
              =          1 0 − 10
              −10                          2
                                           y                                                                                                  3
          6
          4
          2
                                           (10, 0)
                                                           x
     −2             2      4           6       8   10 12
       −2
         −4
                  (0, −5)
         −8
−2 − 2
                                       © 2018 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website,
     169       Chapter 2 Functions and Their Graphs Section 2.1 Linear Equations in Two Variables                169
=3
     © 2018 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website,
                      170                   Chapter 2 Functions and Their Graphs Section 2.1 Linear Equations in Two Variables    170
6 6 0
                                                                                      m is undefined.
                                                                                                                          y
                                                8                                                                     6
27. m                              == =                            2
                                                                                                  (−6, 4)             4
             1          3           4
y 2
                           6           (1, 6)                                                                                 x
                                                                                         −8                     −2
                           5                                                                      (−6, −1)
                           4                                                                                         −2
                           2
                           1
−5 −4 −3 −1 1 2 3
                   (−3, −2)                         x
                   171       Chapter 2 Functions and Their Graphs Section 2.1 Linear Equations in Two Variables                 171
 © 2018 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website,
in whole or in part.
                    170        Chapter 2 Functions and Their Graphs Section 2.1 Linear Equations in Two Variables                      170
5),
                                                                                                           0,
                                                                                                                )
                                                                                                                    (   −   ),   and
1, 6 .( )
                                                                                                                      m
                                                                                                             Because = , y increases by 1 unit for e
                                                                                                           increase in x. Three
                                                                                                           additional points are
Because m = 0, y does not change. Three other points are (−1, 7 , 0, 7 , and 4, )   ( ) ( 7 .)       41. Point: (−4, 3 ,) Slope is
                                                                                                         undefined.
 36. Point: (3, −2), Slope: m = 0                                                                     Because m is undefined, x
                                                                                                          does not change. Three
Because m = 0, y does not change. Three other points are (1, −2) (, 10, −2), and (−6, −2 .)                points are (−4, 0 , ) (−4,
 37. Point: (−5, 4 ,) Slope: m = 2                                                                         5 , and ) (−4, 2 .)
       Because m = =2
                                                                                                     42. Point: (2, 14 ,) Slope is
                               , y increases by 2 for every one
                    © 2018 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website,
                                    171              Chapter 2 Functions and Their Graphs Section 2.1 Linear Equations in Two Variables                                   171
Because m is undefined, x does not change. Three other points are (2, −3) (, 2, 0 , and 2, ) ( 4 .) 45. Point: (−3, 6 ;) m = −2
(−3, 6) 6
                                                                                                                                                 4
                                                                                                                                                                              x
                                                                                                                             −6     −4     −2                2    4       6
                                                                                                                                                −2
−4
−6
y + 2 = 3(x − 0) y = 3x − 2 3) y = −2x
                                                                                                                                   1
                                                                                                                                                                 (4, 0)
                                                                                                                                                                              x
                                                                                                                             −1            1         2       3    4
                                                                                                                                  −1
                                                                                                                                  −2
                              y
                                                                                                                                       y − =0 4(x − 0)
                                                             x
        −2       −1                  1      2    3   4
                      −1
                      −2
                                  (0, −2)                                                                                                  y = 4x
                                                                                                                                                         y
y − 10 = −1(x − 0) y − 10 = −x y = − +x 10
             y
                                                                                                                        47. Point: (4, 0 ;) m = −
        10       (0, 10)                                                                                                               y−                =             −0
         8
                                                                                                                                                                 (x       −
         6
         2
         4                                                                                                                                 4)                y = −
                                                         x
       −2             2       4      6      8   10                                                                                                             +13x
43
in whole−3or−2in −1
                 part.                  x
                          1    2   3
                            172             Chapter 2 Functions and Their Graphs Section 2.1 Linear Equations in Two Variables                                                                    172
    2= x−2                                                                                                                                                 y−                =0y=
                                                                  4
                                                                               (8, 2)
                                                                  2
                   y= x                                                                           x
                                                                      246810                                                                           y
                                                              −2
                                                              −4                                                                                   5
                                                              −6                                                                                   4
                                                                                                                                                   3
                                                                                                                                                                                        )4, 52 )
                                                                                                                                                  −1
                                                                          3
                                                                          2
               y+3=− x+1                                                  1
                                                                                                  x
                                                          −5 −4        −1          123
                                                                         −1
                        y=− x−2
                                                                                        (2, −3)
                                                                         −3
                                                                         −4
              y +5=               (x + 2)
      4y + 20 = 3x + 6
                   4y = 3x − 14 y = 34x − 72
                        y
                                                  x
         −2                       2
−2
(−2, −5)
51. Point: 4,  ( ); m = 0
                                                                                                                                                                    y
                                                                                                                                             (−5, 5)
                                                                                                                                − 5)                         6
y− = 6 (x − 2 ) y+1= (x 4
    y−             = 6x − 12                                                                                                    −1                                                                     x
                                                                                                                                        −6    −4       −2                    2                6
                                                                                                                    (x − 5)
                                                                                                                                                            −2                   (5, −1)
                                                                                        y = 6x −           y=−
                                                                                                                                                            −4
                    4                                                      y
                                                                                                                                                             y y= − x + 2
                    2
                                  2, 23
                                  (                                                                                                                         6
    −4        −2              2       4   6
                                                  x                                                                             − 4)   56. (4, 3 ,)4 (− −4,4)
                                                                                                                                                                                        (4, 3)
                   −2                                                                                                                                       2
                   −4                                                                                                                   −6   −4   y−
                                                                                                                                                   −2 =                     2y      4      (6x         x
                                                                                                                                                       8                3
                                                                                                                                                           −4
                                                                                                                                                                                                               =7 −1
                      173          Chapter 2 Functions and Their Graphs Section 2.1 Linear Equations in Two Variables                                173
                                                                                                           (−5(−.14,
                                                                                                             .84))
                                                                                                           ,1−
(−7, 5)                                                                                                    2
                                                                                                                       6
−7 −6                                                                                                                           1
                                                                                                            4−4 −
                                                                                                             −−2
                                                                                                                                                 x
                                                                                                             11
                                                                                   yned,xcopied or duplicated, or posted to a publicly accessible website,
                                                                                                                                    3
y−3= (x − 4)
                                                                                                                     5    2
                                                                                                        m=                         =        3
                                                                                                                   7           7           0
m is undefined.
                                                                    6                                                                                                  y + 3 = 0(x + 6)
                                            (−2.5, 3.25) 4
                       2                                                                            y+3=0
                                        x
        −4       −2          2    4                                                                                                                                           y = −3
                                                                                                                                                         x
                                                                                                             −6    −4    −2            2        4
                                                                                                                              −2
                                                                                                                              −8
                      −2
−1 y 2
                                                             (2 , 4(                                                                                               1
                                                    2
                                                    1
                                                              1 5       (2, 1 )
                                                                             2
                                                    2         24         3                                                                                   −1           1    2   3      4   5
                                       1      −1               1        2        3
                                                                                                                                                                  −2
                                                                                                                                                                       )13, −1) (2, −1)
                                                   −1                                                                                  )
                                       2                                                                             −1 − −( 1             (             )        −3
1 y + 1 =x − 2
       y − =(x − 2)2
             2x x                                                       y+1=0
© 2018 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
                              174                Chapter 2 Functions and Their Graphs Section 2.1 Linear Equations in Two Variables                                         174
            y =−
                          1
                              (x − 2) +y = −1
                          2
                                                                                                                 The line is horizontal.
                                1            3
y=− x+
2 2 64. 7, −8 ,7,1
3 3
      y −1=                                             −1
                                                                1     2    3   4
                                                                                                             3
                                                                                                                                           (x − 1)
                                                                                        6, − 32
                                                        −2
                                                                                       (          )          6 − 1x
      = y − 1 = −(x − 1)x
                                                                                                                 The line is vertical.
                          1       1                              yy     −1=−                           x+
                          3           3                                                                                 2      )73 , 1)
                                                                                                                        1
                                                                                                                    −1
            y = −1x + 4x                                                                                                    1 2 3 4 5 6 7 8
                                                                                                                     −2
                    3                        3                                                                       −3
                                                                                                                     −4
                                                                                                                     −5
 61. (1, 0.6 , ) (−2, −0.6)                                                                                          −6
                                                                                                                     −7
                                                                                                                               )73 , −8)
             y − 0.6 = y                         .61 (x − 1)                                                         −8
                 =
                                                 0.4(x − 1) + 0.6
            y =
                                                             0.4x + 0.2                                                                    65. L1: y = −x − 3
      −0.6−2 −−
      0
                                                                                                                              =−
                      2                                                        y                                                                          m1
                              (1, 0.6)
                      1
                                                                                       L2: y = −x − 1
      −3                         1       2   3
           − −
                                                                                            m2 = −
           ( 2, 0.6)
                     −2
                     −3
                                                    x
66. L1: y =x − 1 m1 =
                                                                                   6
                                                                                   4
                                                               (−8, 0.6)           2
                             −4ights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website,
© 2018 Cengage Learning. All R
                              −6
                              −8
                                                                                  Section 2.1 Linear Equations in Two Variables
            175
m2 = 4
       y − 0.6 =( +
                    x                      8
                                               )                                                                 The lines are neither parallel nor perpendicular.
10y = −3x − 18 m2 = −
                             3         9
                  y=−            x−        or y = −0.3x − 1.8                     The lines are neither parallel nor perpendicular.
                            10         5
68.      L1: y = − x − 5 m1 = −                                                                          2        68
L2: y = x + 1 m2 =
       The slopes are negative reciprocals, so the lines are                                  (          ) ( )
                                                                                          L2: 3 , − 12 , 6, − 12
      perpendicular.
                                                                                                                           0
                                                                                                m2 =                   =       =0
69.          L1: 0( , −1) (, 5, 9)                                                                           6    3        3
                                                                                             L1 and L2 are both horizontal lines, so they are parallel.
           m1 =               =2
           m2 = −5 − 3 = −8 = −2
                                                                                                     =
                            5−1            4
       The lines are neither parallel nor perpendicular.                                            3
                                                                                                    −
71.          L1: (−6, −3) (, 2, −3)                                                                 4
                                                           0
             m1 =                          =       =0                                                −
      © 2018 Cengage
                  © 2018
                     Learning.
                          Cengage
                               All Rights
                                     Learning.
                                          Reserved.
                                               All Rights
                                                      MayReserved.
                                                          not be scanned,
                                                                    May not
                                                                          copied
                                                                            be scanned,
                                                                                 or duplicated,
                                                                                         copiedororposted
                                                                                                    duplicated,
                                                                                                          to a publicly
                                                                                                                or posted
                                                                                                                        accessible
                                                                                                                          to a publicly
                                                                                                                                   website,
                                                                                                                                        accessible
                                                                                                                                            in whole
                                                                                                                                                   website,
                                                                                                                                                     or in
                        176           Chapter 2 Functions and Their Graphs
                                                                                                       (            ( 2 ))
                    4     −8               4
                                                                                       y − 78 = 43 x − −
                                                                                                                      3
                                                                                                y = 43x + 12772
 L2: 3( , −5),
                                1
                        −1,
                            3
                1         16
                                                                                76.          5x + 3y = 0 3y = −5x y =
                                 )
                        − −( 5                                                                   − x
                2         3=3=−4m=
                                                                                        Slope: m = −
                        − −1 3             −4     3
                                                                                                            (7, 3)
       The slopes are negative reciprocals, so the lines are
      perpendicular.                                                                  (a) m = −53 8 4,
73. 4x − 2y = 3 y = 2x −
y − 1 = − (x − 2) y = − x + 2 y = − 53x + 5324
74.          x+y=7
              y = −x + 7
                                                                                      (b) m = 5 8 43,      (7, 3)
         Slope: m = −1 (a) m = − −1, ( 3, 2)
                                                                                                   y − 34
                                                                                                            =
                                                                                                                5
                                                                                                                 3
                                                                                                                    (x − 87)
             y − = −2                      1(x + 3) y − = − −2
                          x                3 y = − −x       1
                                                                                            40y − 30 = 24 x −   (         )
                                                                                            40y − 30 = 24x − 21
        (b) m = −1, ( 3, 2)                                                                        40y = 24x + 9
75. 3x + 4y = 7 77. y + 5 = 0 y = −5
y = − 34x + 74 Slope: m = 0
                                                                                      (a)   (−2, 4 , ) m = 0 y = 4
         Slope: m = −
                         (
        y − 78 = − 34 x − −          ( )) y = − 34x + 83
                                       2
                                        3                                       78.          x−4=0x=4
                                                                                       Slope: m is undefined.
      © 2018 Cengage
                  © 2018
                     Learning.
                          Cengage
                               All Rights
                                     Learning.
                                          Reserved.
                                               All Rights
                                                      MayReserved.
                                                          not be scanned,
                                                                    May not
                                                                          copied
                                                                            be scanned,
                                                                                 or duplicated,
                                                                                         copiedororposted
                                                                                                    duplicated,
                                                                                                          to a publicly
                                                                                                                or posted
                                                                                                                        accessible
                                                                                                                          to a publicly
                                                                                                                                   website,
                                                                                                                                        accessible
                                                                                                                                            in whole
                                                                                                                                                   website,
                                                                                                                                                     or in
                                                                          Section 2.1 Linear Equations in Two Variables
       177
        Slope:
                     m
                         =
                             1                                                             2     (    −2)
= x − 0.1
                   y
 81.             x+ =1
                   3 5
                     +        =1                                                                          1 ==   51.52
               2                                                                       m
               3
               −
               2
                   3x y
                      −
                      1
                   2
                   2
                 3x − − =y     2    0
                   x    y
       85.         + = 1, c
                     ≠0c
                     cx
             +
             y
             =
             c
             1
             +
             2
             =
             c
             3
             =
             c
             x
             +
             y
             =
             3
             x
             +
             y
             −
             3
             =
             0
                                                                                                              m                 == 11.29
87. (a) m = 135. The sales are increasing 135 units per                                                           2
          year.                                                                                    So, the sales increased the least between the years
                                                                                                   2013 and 2014.
     (b) m = 0. There is no change in sales during the year.
(c) m = −40. The sales are decreasing 40 units per (b) (9,42.91 , )
(15,233.72) year.
                                                                                             m
                                                                                                   The slope of the line is about 31.8.
                                                                                             (c) The sales increased an average of about $31.8 billion
                                                                                                  each year between the years 2009 and 2015.
0.0838.3% grade
91. (16, 3000 , ) m = −150 93. The C-intercept measures the fixed costs of
V − 3000 = −150t + 2400 The slope measures the cost to produce one laptop bag.
      V = −150t + 5400, 16 ≤ t ≤ 21 94. Monthly wages = 7% of the Sales plus the Monthly
                                                                   Salary
      V = 6.5t + 96, 16 ≤ t ≤ 21                                                      95. Using the points              (0,   875) and   (5,   0 ,) where the first coordinate
                                                                                             represents the year t and the second coordinate represents the value V, you
                                                                                             have
 96. Using the points (0, 24,000 and 10, 2000 ,)    ()                       (e) Answers will vary. Sample answer: No. The brain
                                                         where the
                                                                                 stops growing after reaching a certain age.
     first coordinate represents the year t and the second             99. (a) Total Cost = cost for cost      purchase fuel and +
     coordinate represents the value V, you have
                                                                           for    + cost maintainance                 operator
                                                                            P=R−C
 97. Using the points (0, 32 and 100, 212 , ) ( ) where the first
     coordinate represents a temperature in degrees Celsius and                    P = 45t − (21t + 42,000)
     the second coordinate represents a temperature in degrees
                              Fahrenheit, you have                                 P = 24t − 42,000
     you have
                                                                                                                  x
            m = 1270 970 =            300 = 150.                                                15 m       x
                   3 1               2
y − y1 = m t( − t1) y
            − 970 = 150(t − 1)
            y − 970 = 150t − 150
                    y = 150t + 820.
                 y = 300 + 820 y
                 = 1120
© 2018 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in
whole or in part. © 2018 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, i
                             180      Chapter 2 Functions and Their Graphs Section 2.1 Linear Equations in Two Variables        180
                                                                                      0
                   10 0
 © 2018 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in
 whole or in part. © 2018 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, i
                           181             Chapter 2 Functions and Their Graphs Section 2.1 Linear Equations in Two Variables               181
       (0, −4) and (−7, 7 :) m2 = 7 − (−4) = 11                                        Since the slopes are negative reciprocals, the line
                                                                                      segments are perpendicular and therefore intersect to
                                                    −7 − 0   −7                       form a right angle. So, the triangle is a right triangle.
      False. The lines are not parallel.                                         104. On a vertical line, all the points have the same x-value,
                                                                                                                            y2       y1
                                                                                      so when you evaluate m =                   −     , you would
 103. Find the slope of the line segments between the points                                                   have x2 − x1
          A and B, and B and C.                                                       a zero in the denominator, and division by zero is
                      y
                                                                                      undefined.
                  8         B(3, 7)
                  7
                  6
         A(−1, 5)
                  3
                  2                   C(5, 3)
                  1
                                                x
          −2 −1           1 2 3 4      5 6
       mAB =                                        7    5= 2 = 1
               3     1    4    2
         mBC = 3 − 7 = −4 = −2
                          5−3          2
© 2018 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in
whole or in part. © 2018 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, i
                      182                     Chapter 2 Functions and Their Graphs Section 2.1 Linear Equations in Two Variables                                              182
  105. Since the scales for the y-axis on each graph is unknown, the slopes of the lines cannot be determined.
             y                                                y
                                                x                                                      x
                 1        2       3       4                            1      2       3       4
 106. d =        (x       − x )2 + ( y − y               )2                       d =             (x       − x )2 + ( y − y           )2
         1            2           1             2    1                            2                 2         1           2       1
                                                                                                                      2
             =   (1 − 0)2             + (m1 − 0)2                                         =       (1 − 0)2        + (m − 0)2
             =   1 + (m1 )                                                                =       1 + (m 2 )
                                      2                                                                           2
m2))2
© 2018 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in
whole or in part. © 2018 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, i
                        183           Chapter 2 Functions and Their Graphs Section 2.1 Linear Equations in Two Variables                        183
       The line y = −4x falls most quickly.                                                The slope is 0.32, which represents the increase in
                                                                                           travel cost for each mile driven. The y-intercept is
         y = −x     y = −4x
                         4                                                                 (0, 32 ,) which represents the fixed cost of $30 per
                                                                                           day for meals. This amount does not depend on the
        −6                            6
                                                                                           number of miles driven.
                                                                                       (d) Matches graph (iv).
                       −4
                                                                                           The slope is –100, which represents the amount by
                                 y = −0.5x
                       y = −2x                                                             which the computer depreciates each year. The
111. Set the distance between (4, −1) and (x, y) equal to the distance between (−2, 3) and (x, y).
x2 + 4x + +4 y2 − 6y + 9 −4 −2 2 4
                                                                                                                                      (4, −1)
                              − +8x                                        2y + 17 = 4x − 6y + 13x
                                                                                                                      −4
                               −12x + 8y + =4 0
                             −4 3( x − 2y − =1) 0
                                  3x − 2y − =1 0
      This line is the perpendicular bisector of the line segment connecting (4 −1) and (−2, 3 .)
                                                                               ,
112. Set the distance between (6, 5) and (x, y) equal to the distance between (1, −8) and (x, y).
                                                                                                                         8
                             (x − 6)2 + (y − 5)2 = (x − 1)2 + (y + 8)2 x2 − 12x + 36 + y2 − 10y + 25                     6       (6, 5)
                                                                                                                         4
                                                                                                                         2
        = x2 − 2x + +1 y2 + 16y + 64
                                                                                                              −6 −4 −2
© 2018 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in
whole or in part. © 2018 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, i
                   184       Chapter 2 Functions and Their Graphs Section 2.1 Linear Equations in Two Variables                184
  6810                                                                                                 −2
                                          x2 + y2 − 12x − 10y + 61 = x2 + y2 − 2x + 16y + 65x          −4
                                                                                                              (7 23(
                                                                                                                2
                                                                                                                    ,−
                                                                                                       −6
                                                                                                        −8   (1, −8)
© 2018 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in
whole or in part. © 2018 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, i
                    183            Chapter 2 Functions and Their Graphs Section 2.1 Linear Equations in Two Variables                                                                         183
                             ( ) and (x, y) equal to the distance between (−7,1) and (x, y).
113. Set the distance between 3,
                (x − 3) + (y − ) =
                              2       x − −( 7)
                                             5
                                                 2    + (y − 1)
                                                         2                                 2            2
                                                                                                                                                              8
                                                                                                                                                                   y
                (x − 3)       2+             5
                                              2
                                                         2=    (x + 7)       2+   (y − 1)   2                                            (−7, 1)
−8 −6 −4 246
x2 − 6x + 9 + y2 − 5y + = x2 + 14x + 49 + y2 − 2y + 1 x
−6x − 5y + = 14x − 2y + 50 −8
This line is the perpendicular bisector of the line segment connecting 3, ( ) and (−7,1 .)
                                         (                          )
114. Set the distance between − − , 4 and (x, y) equal to the distance between                                           (   7
                                                                                                                              2 4,
                                                                                                                                     5) and (x, y).
                                                                                                                                                     2
                                                                                                                                                                       (27, 45(
                                                                                                                                                     1
                                                                                                                                          −2   −1             1              3        4
                                                                                                                                                    −1                  3
                                                                                                                                                                            ,−
                                                                                                                                                                                  (
                                                                                                                                                                                 11
                                                                                                                                                                       (2        8
                                                                                                                                                    −2
                                                                                                                                          ( 12 (
                                                                                                                                           − , −4
               (x + ) + (y + 4) = (x − ) + (y − )
                      1
                          2
                              2                      2                  7
                                                                         2
                                                                             2         5
                                                                                        4
                                                                                                2
                                                           x2 + x + 14 + y2 + 8y + 16 = x2 − 7x + 494 + y2 − 52 y + 1625x
           x2 + y2 + x + 8y + 654 = x2 + y2 − 7x − 52 y + 22116 x + 2.      independent; dependent
                                                                                                            3.   implied domain
                              8y + 654 = −7x − 52 y + 22116
                                                                                                            4.   difference quotient
                       8x +        212   y +                 1639   = 0
                                                                                                            5.   Yes, the relationship is a function. Each domain value
                 128x + 168y + 39 = 0                                                                            is matched with exactly one range value.
© 2018 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
                    184       Chapter 2 Functions and Their Graphs                                   Section 2.2 Functions         184
11.   x2 + y2 = 4    y = ± 4 − x2
      No, y is not a function of x.
12.   x2 − y = 9     y = x2 − 9
      Yes, y is a function of x.
13.   y = 16 − x2
      Yes, y is a function of x.
             y = − −(4             x)
                                                                                               1                1
      (b) f (− = − − = −3) 3( 3)
                                                                                       ( )
                                                 5           14
                                                                               (c) f 4x2 = −3                   4x2 = −3 2 x
      (c) f x( + 2) = 3(x + 2) − 5
                          = 3x + 6 − 5                                   24.   f x(   ) = x + +8                2
                                                                               (a) f (− =8) (− + + =8)                   8         2
                          = 3x + 1
20.   V r(   )=   43πr3                                                                     2
                                                                               (b) f ( )1 = ( )1 + + =8                  2         5
      (a) V( )3 = 43π( )3 3 = 43π(27) = 36π
                                        π
      (c) V(2r) = 43π(2r)3 = 43             (8r3) = 323πr3               25.   q x(   ) = x2 1− 9
21.   g t(   ) = 4t2 − 3t + 5
                                                                               (a) q( )0 = 02 1− 9 = −19
      (a) g( )2 = 4 2(      )2−   3 2(   ) + 5 = 15
                                                                               (b) q( )3 =
      (b) g t( − 2) = 4(t − 2)2 − 3(t − +2)
                                                                                                        is undefined.
                                                             5
                          = 4t2 − 19t + 27
                                                                               (c) q y(        + 3) = (y + 31)2 − 9 = y2 +1 6y
      (c) g t(   ) − g( )2         = 4t2 − 3t + 5 − 15
                             = 4t2 − 3t − 10
26. q t( )= 2t2 2+ 3
                                                                                      (b) f ( )0            = 2 0(   ) +2=2
      (a) q( )2                                                         =
                                                                      =8+3            (c) f ( )2            = 2 2(   ) +2=6
             = 11
                                              4           4
                                                                                30.   f x(   )=    −3x − 3,           x < −1
                                                                                                    2       x         + 2x − 1, x ≥ −1
      (b) q( )0     =
          Division by zero is undefined.                                              (a) f (−2) = −3(−2) − 3 = 3
      =                                                                               (c) f ( )1 = ( )1 2 + 2 1(          ) − =1 2
                                                                          2x2
             2+
                  3                                                             31.   f x(   )   = −x2 + 5 f (−2) = − −( 2)2 + 5 = 1 f
                              x
                                                                                      (−1) = − −( 1)2 + 5 = 4 f ( )0 = −( )0 2 + 5 =
                   x                                                                  5 f ( )1 = −( )1 2 + 5 = 4 f ( )2 = −( )2 2 + 5 =
27.   f x(   )=
                      x                                                               1
                              2
      (a) f ( )2 == 1                                                                  x             –2               0    1         2
                                                                                                                                     −1
                                                                                                        1             5    –4        1
                                                                                                                                     4
                              −2
                                              )
                              2 (b) f (− =2
             −2 = −1
                                  x−1
      (c) f x             1
                                   x−1            1,                            32.   h t(
                                                                                         ) = 12 t + 3       h(−5) = 12 −5 + 3 = 1
                                                       if x > 1
                                                                                      h(−4) = 12 −4 + 3 = 12 h(−3) = 12 −3 + 3 = 0
                                                              <
                          ( − ) ==      −1,            if x       1
                                                                                      h(−2) = 12 −2 + 3 = 12 h(−1) = 12 −1 + 3 = 1
                                                                                       t            –5               –3     –2    –1
                                                                                                                                 –4
      f x(   ) =x+4
                                                                                                    1                 0           1
28.
      (a) f ( )2              =2+4=6
                                                                                                                2
22, 0
f( ) f( 40. f x( ) = x2 − 6x − 16 x2 − 6x − 16 = 0
       )1 = (1 − 2)2 = 1
                                                                                                          (x − 8)(x + 2) = 0
      f ( )2 = (2 − 2)2 = 0                                                                       x −8=0             x=8
                                                                                       x+2=0          x = −2
      x                 –2                 0       1       2
                                                               –1
                        5                  4       1       0
                                                                                41.      x3 − x = 0 x x     ( 2 − 1) = 0 x x( + 1)(x
34.         f x(    )         9−     x2,       x<3
                                                                                                          − 1) = 0      x = 0, x = −1,
                        x − 3,       x≥3
                                                                                                          or x = 1
       f ( )1 = 9 − ( )1 2 = 8 f (
                                                                                42.      f x(   )=x      − x − 3x + 3
)2 = 9 − ( )2 2 = 5 f ( )3 = ( )3
                                                                                                     3         2
− 3 = 0 f ( )4 = ( )4 − 3 = 1 f x3 − x2 − 3x + 3 = 0 x2(x −
( )5 = ( )5 − 3 = 2 1) − 3(x − 1) = 0 (x − 1)(x2
                                                                                      − 3) = 0
      x                 1            3         4       5
                                                           2
                        8            0         1       2
                                                           5                                      x − 1 = 0            x = 1
35. 15 − 3x = 0 3x = 15 x2 − 3 = 0 x=± 3
x=5                                                                             43.      f ( )x = g x(     ) x2 = x + 2
                                                                                          x2 − x − 2 = 0
36.         f x(    ) = 4x + 6 4x + =6                         0
                                                                                                  x − 2)(x + 1) = 0
             4x = −6 x =
                                                                                      x−2=0           x+1=0
                −                                                                                     x=2   x =
                                                                                          −1
37.                     =0
                                                                                44.      f x(   ) = g x( )
      3x − =4 0 x =                                                                     x2 +    2x + 1 = 5x + 19
                                                                                       x2 − 3x − 18 = 0 (x
                 ( ) = 12 −x2
38.         fx                                                                        − 6)(x + 3) = 0
                                 8                                                                x −6=0 x + 3 =
      12                − x2 = 0                                                                      0
            8                                                                                         x=6            x = −3
                 x2 =   12
                                                                                45.      f ( )x = g x(     )
                   x=±        12 = ±2 3
39. f x( ) = x2 − 81 x2 − 81 = 0 x2 = 81 x = ±9
                    x4 − 2x2 = 2x2 x4 −                                                             x + 2 = 0 x = −2
                                                                                                      x−2=0 x=2
46.                            f ( )x= g x( )
                              x −4 =2 −x
                x +           x −6 = 0
       (    x +3    )(    x −2 =0    )
           x +=3          0          x =− 3, which is a contradiction, since
           x −=2          0          x =2             x =4
                                                                                       x represents the principal square root.
                      (
       4x2 = 0 x2 x2 − 4         )   = 0 x2(x
       + 2)(x − 2) = 0
              x2 = 0 x = 0
                                                                                             g x(   ) =1−3xx+2
       numbers x.
                                                                                51.
                                                                                 The domain is all real numbers x except x =
 48.         f ( )x           = 1 − 2x2
                                                                                      0, x = −2.
 49.         g y(   )=        y+6                                                       x x( − 4) ≠
                                                                                        0x≠0
Domain: y + 6 ≥ 0 y ≥ −6
                                                                                             x−4≠0             x≠4
             The domain is all real numbers y such that y ≥ −6.
                                                                                             The domain is all real numbers x except x = 0, x = 4.
                                  50.          f t(   ) = 3t + 4
                      s −1
 53. fs() =
                     s −4
                                                                                             Pr 3300
                                                                                      (b)    ofi 3250
                                                                                                3200
           Domain: s − 1 ≥ 0              s ≥ 1 and s ≠ 4                                       3150
                                                                                                3100
The domain consists of all real numbers s, such that s ≥ 1 and s ≠ 4.
54. f x(   )=          x+6
                      6 + xx
                                                                                                         110   130   150      170
                                                                                                   price                     number
55. f x(   )=x    x −4                                              (cost)    number
 The domain is all real numbers x such that x > 0 or (0, ∞).
                                                                                                  per unit        of units            of units
The domain is all real numbers x such that x > 10. = 45x − 0.15x2, x > 100
                                                                                                                  P
                                                                    59. A =    s2   and P = 4s                        =s
                                                                                                                  4
                                                                                         2
                                                                                         P        P2
     The domain is all real numbers x such that x > −6 or                       Yes, P is a function of x.
                             972                                                    2π
                 3                     60. A = πr2, C = 2πr r =                               2
                                                                                         C             C2
                             1024                                                                 =
                 4
                             980
                 5                                                            A=π            2π π             4
                             864
                 6
                                                                     61.            y = −101 x2 + 3x + 6
            The volume is maximum when x = 4 and                             y(25) = −        (25)2 + 3 25() + 6 = 18.5 feet
                 191        Chapter 2 Functions and Their Graphs                                 Section 2.2 Functions        191
© 2018 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in
whole or in part.
                    190            Chapter 2 Functions and Their Graphs                                                                Section 2.2 Functions    190
        V
            = 1024 cubic centimeters.                                                                  If the child holds a glove at a height of 5 feet, then the
                                                                   (b)     V       ball will be over the child's head because it will be at a
            1200                                                                                     height of 18.5 feet.
            1000
        Vo
        lu 800                                                                                           62. (a) V = l ⋅ w ⋅ h = x ⋅ y ⋅ x = x y2 where
        me 600
            400
                                                                                                                  4x + y = 108. So, y = 108 − 4x and
            200
                                                                                                               V = x2(108 − 4x) = 108x2 − 4x3.
                     1    2   3    4    5   6
                                                      x                                                       Domain: 0 < <x 27
                              Height
                                                                                                       (b)   12,000
V is a function of x.
   (c) The dimensions that will maximize the volume of the                                           equal.
        package are 18 × ×18            36. From the graph,                                      64. A = l ⋅ w = (2x y)                 = 2xy
        the maximum volume occurs when x = 18. To find
        the dimension for y, use the equation y = 108 − 4 .x                                            But y =               36 − x2, so A = 2x 36 − x2. The
     1 − y = 0 −1                                                                   the
                                                y                                                      2010: p( )10= 2.77 10(           ) + 45.2 = 72.90%
     2 −0    x −2                                                                   slope
     1−y      −1                            4       (0, y)                          s
                                                                                                      2011: p( )11 = 2.77 11(            ) + 45.2 = 75.67%
           =                                                                        betw
       2     x −2                           3
                                                                                    een               For 2011 through 2014, use
                                            2
                                                               (2, 1)
                  2 +
            y =       1                     1                                       any
                x −2                                              (x, 0)
                                                                                    pair
                  x                                       1   2    3       4
            y =                                                                x
                                                                                    are
                x −2
                                                                                                                  p t(   ) = 1.95t + 55.9.
           1                  x        =    x2
    So, A = x
                                         2(x − 2)
                                                 .
                              −2                                                                    2012: p( )12 = 1.95 12(            ) + 55.9 = 79.30%
                2     x
                    © 2018 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, i
         191       Chapter 2 Functions and Their Graphs                                   Section 2.2 Functions        191
         © 2018 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, i
                 192          Chapter 2 Functions and Their Graphs                                     Section 2.2 Functions           192
67. (a) Cost = variable costs + fixed costs 68. (a) Model:
 © 2018 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in par
Random documents with unrelated
 content Scribd suggests to you:
                33.
Ein Festungs-Aufzug mit Kraftbetrieb.
  Als auch selbst die kleinen Städte im Mittelalter ihre eigene
Herrschaft führten, waren Überfälle aus der Nachbarschaft täglich zu
erwarten. Die Ingenieure trachteten deshalb danach, die wehrhaften
Bürger möglichst schnell auf die Verteidigungstürme der Festung
hinauf zu bringen. Das beste Mittel hierzu blieb der Aufzug.
  Wir wissen heute, daß man schon im alten Rom den Aufzug
kannte, und dazu benutzte, um ohne lange Zwischenpausen die
Kämpfer und die wilden Tiere im großen Zirkus in die Arena fahren
zu lassen.
                   Aufzug mit Windradbetrieb, 1405.
   Kyeser zeichnet hier einen Aufzug, und wenn wir von der etwas
wunderlichen Zeichnungsart absehen, ist die Darstellung ohne
weiteres verständlich. Wir erkennen die senkrecht stehenden
Fahrschienen, zwischen denen der Fahrkorb auf- und abgleitet. Nun
ist aber noch eine Maschinerie vorhanden, bestehend aus zwei ein
wenig rückwärts gelagerten Achsen, die an jedem Ende ein großes
Windrad tragen. Um die Achsen schlingt sich das Förderseil, und
zieht, vorausgesetzt, daß Wind geht, den Fahrkorb in die Höhe. Die
Einzelheiten der Maschinerie, besonders die Ausrückvorrichtung, die
Bremse usw. läßt Kyeser in seiner Skizze weg. Erklärend sagt er:
„Die durch Wind arbeitende hölzerne Maschine wird auf diese Weise
gebaut: in dem in der Mitte befindlichen Kasten sitzt der Mann, der
sich durch Straffziehen des Seiles emporhebt, durch Nachlassen
herabläßt. Manche bringen unten noch zwei Windräder an, dann ist
der Gang sicherer, kräftiger und schneller.“
                        34.
                Spiegelnde Schilde.
Schneereifen, 1405.
  Kyeser sagt, man soll sich aus Stroh Ringe flechten und diese mit
Strohbändern unter die Füße der Menschen und Pferde binden; dann
werde man nicht im Schnee versinken. Jetzt besteht der Schneereif
aus einem hölzernen Ring, der mit Seilen durchflochten ist. Auf
diesen liegt ein Stück Leder, das man unter den Fuß bindet.
                   38.
       Seilschwebebahnen im Krieg.
   Die niedliche Malerei einer Seilschwebebahn, die wir hier sehen,
stammt aus einer technischen Handschrift, die sich in der
Hofbibliothek in Wien befindet. Die Zeichnung ist in ihren
Einzelheiten zwar nicht sehr genau, doch erkennen wir deutlich, wie
der Mann einen Korb zu der Burg hinüberkurbelt. Seit jener Zeit
findet man in kriegstechnischen Handschriften Seilschwebebahnen
häufig dargestellt, um Geschütze oder Menschen über Flüsse oder
Täler zu befördern. Auch zum Festungsbau wird die
Seilschwebebahn schon im Jahre 1592 verwendet, um die Erde auf
größere Entfernungen wegzuschaffen.
                  Seilschwebebahn, Malerei von 1411.
Our website is not just a platform for buying books, but a bridge
connecting readers to the timeless values of culture and wisdom. With
an elegant, user-friendly interface and an intelligent search system,
we are committed to providing a quick and convenient shopping
experience. Additionally, our special promotions and home delivery
services ensure that you save time and fully enjoy the joy of reading.
testbankpack.com