Demo Test
Demo Test
Hamirpur
Q1.
If the point of minima of the function,                        𝑓𝑥
                                                               (   ) = 1+       𝑎 𝑥−𝑥
                                                                                 2      3
                                                                                            satisfy the inequality
                                                                                                                       𝑥 𝑥
                                                                                                                        2
                                                                                                                       𝑥 𝑥
                                                                                                                        2
                                                                                                                            +
                                                                                                                            +5
                                                                                                                                 +2
                                                                                                                                 +6
                                                                                                                                      < 0,         𝑎
                                                                                                                                             then ' ' must lie in
the interval :
                   √       √                                                                               √          √
A)    (−3              3, 3       3   )                                                         B)   (−2       3,   −3 3)
              √         √                                                                               √          √       √ √
C)    (2           3, 3       )
                              3
                                                                                               D)    (−3    3,   −2 3) ∪ (2 3, 3 3)
Explanation:
Discriminant of                           𝑥 𝑥 is 𝐷
                                              2
                                                  +       +2       = 1      − 8 = −7 < 0 and coefficient of 𝑥                         2
                                                                                                                                          is 1   > 0,   hence
 𝑥 𝑥  2
          +            +2 > 0              ∀𝑥 ∈ 𝑅.
 Now, we have,
 𝑥 𝑥  2
 𝑥 𝑥 <0
          +    +2
      2
          +5       +6
⇒ 𝑥 𝑥 <0 1
 ⇒ 𝑥 + 5𝑥 + 6 < 0
               2
                   +5     +6
 ⇒ (𝑥 + 2) (𝑥 + 3) < 0
 ⇒ −3 < 𝑥 < −2
Now,
 𝑓𝑥   (       ) = 1+                  𝑎 𝑥−𝑥
                                          2           3
                                                                   √
 ⇒𝑓 𝑥  (𝑎 − 𝑥) (𝑎
               ′
                   (      ) =                         3        +       3   𝑥)
 If sign of               𝑓 𝑥 ′
                                  (       )   changes from − ve to + ve, then it is the point of minima.
 Hence, 𝑥 = ± √𝑎                                  are the points of minima.
      𝑎
                                              3
 If           > 0
 −3 < √−𝑎 < −2
    √          √
 ⇒2 3<𝑎<3 3
                       3
If 𝑎 < 0,
 −3 < √𝑎 < −2
       √           √
            𝑎
                       3
 ⇒ −3 3 < √   < −2
                √ 3 √ √
 ∴ 𝑎 ∈ (−3 3, −2 3) ∪ (2 3, 3 3)
Q2.
Find the intervals in which the following function                  𝑓𝑥(    ) = 20   − 9𝑥 + 6𝑥 − 𝑥 2      3
                                                                                                             is
 ( ) 𝑎 Strictly increasing,
 ( ) 𝑏 Strictly decreasing.
A)                                                                                     B)
              𝑎
          ( ) (1, 3)                                                                         ( )(𝑎 −∞    , 1)     ∩ (3, ∞)
          𝑏 −∞
       ( )(             , 1)   ∩ (3, ∞)                                                       𝑏
                                                                                            ( ) (1, 3)
C) D)
      ( )(𝑎 −∞          , 1)   ∪ (3, ∞)                                                      𝑎
                                                                                            ( ) (1, 3)
          𝑏
      ( ) (1, 3)                                                                             𝑏 −∞
                                                                                            ( )(      , 1)   ∪ (3, ∞)
Explanation:
We have:
 𝑓𝑥   (     − 9𝑥 + 6𝑥 − 𝑥
              ) = 20
                                                 2         3
 𝑓 𝑥
   ′
     ( ) = −9 + 12 − 3𝑥
                                                     2
 = −3 (𝑥 − 4𝑥 + 3)
                        2
 = −3 [𝑥 − 3𝑥 − 𝑥 + 3]
                       2
= −3[𝑥 (𝑥 − 3) − 1 (𝑥 − 3)
 𝑓 ′ (𝑥) = −3 (𝑥 − 1) (𝑥 − 3)
 For stationary point,                     𝑓 𝑥
                                             ′
                                                 (       ) = 0
−3 (𝑥 − 1) (𝑥 − 3) = 0
⇒ 𝑥 = 1, 𝑥 = 3
 Divide           𝑥   = 1,   𝑥   = 3   into following disjoint intervals
 (   −∞, 1) (1, 3) (3, ∞)
         Interval                                    Test Value                                     sign of      𝑓 𝑥
                                                                                                                   ′
                                                                                                                       (   ) =      − (𝑥 − 1) (𝑥 − 3)                                   Nature of   𝑓𝑥
                                                                                                                                                                                                     (   )
A) ( 12 , 2) B) ( 43 , 2)
C)       (0, 2)
                                                                                                                                         D)       (0,   4
                                                                                                                                                            )
                                                                                                                                                        3
Explanation:
𝑔𝑥   (      𝑓 ( 𝑥 ) 𝑓 − 𝑥 and 𝑓 𝑥 ∀𝑥 ∈
             ) = 2                                   +         (2                 )
                                                                                                    ′′
                                                                                                         (   ) < 0                      (0, 2)
    ⇒𝑔 𝑥         𝑓 ( )−𝑓 −𝑥
                 ′   𝑥
                     (       ) =
                                                 ′                            ′
                                                                                  (2            )
    Now, 𝑔 𝑥
                                                         2
                         ′
                             (       ) > 0
    ⇒𝑓 (𝑥) 𝑓     ′
                       −𝑥                >
                                                     ′
                                                         (2               )
    ⇒ 𝑥       −𝑥
                             2
< 2
    ⇒𝑥
             2
                                 4
                     <
                 (       )                      )                                                                          0,
                                                                                                                                4
                                                                                                                                3
Q4.
If function              𝑓𝑥      (       ) = cos |           𝑥 − 𝑎𝑥 𝑏 is strictly increasing function on whole number line, then the value of 𝑎 is
                                                              |       2           +
A)       𝑏                                                                                                                                  B)     𝑏
                                                                                                                                                   2
 C)          𝑎≤ −        2
                             1
                                                                                                                                            D)     𝑎   >
                                                                                                                                                            −3
                                                                                                                                                                2
Explanation:
           𝑓𝑥
Given, ( ) = cos |                                            𝑥 − 𝑎𝑥 𝑏
                                                                  |           2        +
     for 𝑥 ∈ 𝑅
    Therefore,                       𝑓 𝑥  ′
                                                 (    ) =         − sin 𝑥 − 2𝑎
    Now,             𝑓𝑥  (           )   is strictly increasing function, therefore
 𝑓 𝑥  ′
          (   ) > 0
 ⇒ − sin 𝑥 − 2𝑎 > 0
 ⇒ 𝑎 < − sin 𝑥 ⇒ 𝑎 ≤ −1
                      2
                                                        1
                                                        2
Q5.
Let the function          𝑔     −∞, ∞) → (− 𝜋 , 𝜋 )
                              : (
                                                        2       2
                                                                        be given by g (u)   = 2tan
                                                                                                     −1
                                                                                                          (eu) − 𝜋 2
                                                                                                                       Then, g is
 C)       odd and is strictly increasing in (−          ∞∞  ,       )                D)     neither even nor odd, but is strictly increasing in (−   ∞∞
                                                                                                                                                     ,    )
Explanation:
g (−u)         = 2tan
                              −1
                                    (e−u) − 𝜋      2
⇒ 2 (cot− (eu)) − 𝜋 1
⇒ 2 (· 𝜋 − tan− (eu)) − 𝜋
                2
                                    1
=
          𝜋 − 2tan− (eu) = −g (u)
                          1
Q6.
For the function f (x) = (cosx)–x + 1, x                            ∈ ℝ,
 between the following two statements
(S1) f(x) = 0 for only one value of x is [0, π].
 (S2) f(x) is decreasing in [0,             π
                                            2
                                                ] and increasing in
 [ 2 , π].
     π
Explanation:
f (x) = cosx –x + 1
f′(x) = – sinx –1
f is decreasing                            ∀x ∈ R
f (x) = 0
f (0) = 2, f (π) = –π
Q7.
In open interval (0,
                                           𝜋)
                                           2
Explanation:
𝑓𝑥   (     𝑥 𝑥 𝑥−
             ) = cos                    +          sin         1
𝑓 𝑥 − 𝑥 𝑥 𝑥
      ′(         ) =                 sin       +         cos   + sin     𝑥
𝑓 𝑥 − 𝑥 𝑥 𝑥
      ′(         ) =                 sin       +         cos   + sin     𝑥
𝑓 𝑥 is increasing on 𝑥 ∈ (
         (       )                                             0,
                                                                    𝜋)
    𝑥 𝑥 𝑥−
                                                                    2
Q8.
The value of                 𝑎 for which the function 𝑓 𝑥           (   ) = sin   𝑥 − 𝑥 − 𝑎𝑥 𝑏 decreases for all real values of 𝑥 is given by
                                                                                      cos         +
A) 𝑎≥√ 2 B) 𝑎≥ 1
                     √
C)       𝑎   <           2                                                                       D)    𝑎   < 1
Explanation:
Given:
 𝑓𝑥      (   𝑥 − 𝑥 − 𝑎𝑥 𝑏
                 ) = sin                       cos                 +
 ⇒𝑓 𝑥            ′
                  𝑥 𝑥−𝑎
                     (       ) = cos               + sin
 ⇒      𝑥 𝑥−𝑎 ≤
             cos                 + sin                     0
 ⇒      𝑥 𝑥≤𝑎cos                 + sin
          √
 ⇒                2   (√   1
                                   cos      𝑥 √ 𝑥) ≤ 𝑎
                                                 +
                                                         1
                                                                 sin
          √
                                             𝑥) ≤ 𝑎
                               2                             2
 ⇒                2 sin (
                                   𝜋   +
                                   4
⇒ sin ( 𝜋             4
                           +       𝑥) ≤ √𝑎           2
⇒ √𝑎 ≥ 1
                                                     𝑥) ≤
                  2
[∵ −1 ≤ sin ( 𝜋                         4
                                            +                     1]
                      √
⇒𝑎≥                        2
Q9.
The function :             𝑓
A)    Has a maxima but no minima.                                                               B)   Has a minima but no maxima.
Explanation:
𝑥→
lim       𝑓𝑥      (   ) = 1            (can be verified)
      𝑓 (𝑥) = 𝑒
      0
 𝑥lim
   →∞
 Also         𝑓 is increasing for all 𝑥                                > 0,
 ⇒(           𝑑 (can be verified)
                  )
Q10.
The curve   𝑦 𝑥 𝑎𝑥 𝑏𝑥 𝑐𝑥 touches the 𝑥-axis at the point 𝑃
                      (        ) =
                                            3
                                                +
                                                         2
                                                             +         +5                                  −2, 0) and cuts the 𝑦-axis at the point
                                                                                                           (
 A)       27
                                                                                                B)    29
              4                                                                                       4
C)    37
                                                                                                D)    9
          4                                                                                           2
Explanation:
Given that       𝑦 𝑥 𝑎𝑥 𝑏𝑥 𝑐𝑥      (   ) =
                                                      3
                                                             +
                                                                       2
                                                                           +   +5   pass through (−2, 0)
 so 8         𝑎− 𝑏 𝑐   4𝑖       +2              = 5. . . ( )
                         𝑥
 Since the curve touches -axis at (−2, 0), so its slope would be 0
 i.e 𝑦 −     ′
                 ( ⇒ ( 𝑎𝑥     𝑏𝑥 𝑐)𝑥 −
                             2) = 0                         3
                                                                        2
                                                                            +2            +                    = 0
     𝑎− 𝑏 𝑐             𝑖𝑖
                                                                                                      =   2
12 4 + = 0. . . ( )
 𝑐          𝑖𝑖𝑖
         = 3. . . (                       )
 𝑎=− 𝑏 −                 1
                             ,        =
                                                   3
 ⇒𝑥 𝑥−                ⇒ 𝑥− 𝑥
                                                                              2                   2
                 2
                     +                    2 = 0                     (         1) (            + 2) = 0
 ⇒𝑥         and 𝑦= 1
                                               ″
                                                   (1) < 0
 Hence, 𝑦
                                                  27
                             (1) =
                                                  4
Q11.
Let the equation                      𝑥 − 𝑥 𝑎 has a unique root in [− 𝜋
                                                  sin       =
                                                                                                               2
                                                                                                                   ,
                                                                                                                       𝜋 ], then
                                                                                                                       2
A)       𝑎 ∈ [− 𝜋        2
                                 + 1,     ∞)                                                                                 B)      𝑎 ∈ (−∞          ,
                                                                                                                                                          𝜋 − 1]
                                                                                                                                                          2
 C)          𝑎∈[     1       − 𝜋 , 𝜋 − 1]
                                  2       2
                                                                                                                             D)      𝑎∈𝑅−(                1   − 𝜋 , 𝜋 − 1)
                                                                                                                                                                   2   2
Explanation:
Let 𝑓 𝑥 𝑥− 𝑥 ( ) = sin
 ⇒𝑓 𝑥           − 𝑥
                 ′
                     (       ) = 1                 cos
 For 𝑥 ∈ [−                    𝑥≤ ⇒− ≤− 𝑥≤ ⇒ ≤𝑓 𝑥 ≤
            𝜋   𝜋] − ≤                    ,        ,            1           cos               1            1               cos                    1       0
                                                                                                                                                                           ′
                                                                                                                                                                               (   )   2
 Thus, 𝑓 𝑥 is increasing in [− 𝜋 𝜋 ] ⇒ 𝑓 𝑥 ∈ [𝑓 (− 𝜋 ) 𝑓 ( 𝜋 )]
                                      2       2
( ) , ( ) ,
 ⇒𝑓 𝑥 ∈[ − 𝜋 𝜋 − ]
                                                                                  2       2                                          2                2
( ) 1 , 1
                 (       ) =                       sin          =                                                                ,                            1                ,       1]
                                                                                                                             2       2                                 2           2
Q12.
𝑛   th
         derivative of (                  𝑥   + 1)
                                                        𝑛 is equal to
 C)       𝑛  !                                                                                                               D)      𝑛𝑛  [(       + 1)]
                                                                                                                                                          𝑛−   1
Explanation:
Given            𝑦 𝑥 = (                  + 1)
                                                      𝑛 On differentiation w.r.t. 𝑥
   𝑑𝑦
 ⇒ 𝑑𝑥                     =    𝑛𝑥      (        + 1)
                                                            𝑛−      1
Again,
   𝑑𝑦
 ⇒ 𝑑𝑥        𝑛 𝑛 − 𝑥 𝑛−
                  2
                          =                (            1)(             + 1)
                                                                                            2
                      2
 ⇒ 𝑑𝑥 𝑑𝑛𝑦𝑛 𝑛 𝑛 − 𝑛 −          =             (               1) (                 2) … 3.2. 1(             𝑥   + 1)
                                                                                                                      0
⇒ 𝑑𝑥 𝑑𝑛𝑦𝑛 𝑛 . = !
Q13.
 𝑓 𝑥 𝑥 𝑏𝑥 𝑐
If    (       ) =
                               2
                                   +2               +2
                                                                2
                                                                    and         𝑔𝑥
                                                                                (    ) =        −𝑥 − 2𝑐𝑥 + 𝑏
                                                                                                  2               2
                                                                                                                      are such that min        𝑓𝑥  (   ) > max   𝑔𝑥
                                                                                                                                                                 (   ),   then the relation
between 𝑏 and is                       c,
C)        𝑐   2
                  < 2      𝑏                                                                                               D)    𝑐   2
                                                                                                                                           𝑏
                                                                                                                                         > 2
                                                                                                                                               2
Explanation:
 𝑓𝑥 𝑥 (       ) =
                                   2
                                       +2           𝑏𝑥 𝑐    +2
                                                                            2
     ⇒𝑥=− 𝑏                                          −𝑏
                                                                                                              2
                                       (2 )
                                                    =
     ⇒ 𝑓 (𝑥)                                        −𝑏     𝑏 −𝑏 𝑐
                                       2(1)
                                                                2                                     2
                                           = (              )       +2              (       )+2
     ⇒ 𝑓 (𝑥)                                        𝑐 −𝑏
                              min
                                                        2               2
                              min
                                           = 2
 𝑔𝑥   (       ) =             −𝑥 − 2𝑐𝑥 + 𝑏
                                       2                                    2
     ⇒ = − 2(  −1) =
     ⇒𝑔 𝑥        − −𝑐 − 𝑐 −𝑐 𝑏
                  (       ) max =                   (               )
                                                                        2
                                                                                 2      (        )+
                                                                                                          2
     ⇒𝑔 𝑥        𝑐 𝑏
                  (       )                =
                                                    2
                                                        +
                                                                    2
     Since 𝑓 𝑥     𝑔𝑥
                              max
     ⇒ 𝑐 −𝑏2      𝑏 𝑐 2                2
                                            >
                                                    2
                                                            +
                                                                        2
     ⇒𝑐        𝑏  2
                          > 2
                                       2
Q14.
If ℎ (       𝑥   ) = 3       𝑓 ( 𝑥 ) 𝑓 ( − 𝑥 )∀
                                      3
                                       2
                                                  +        3
                                                                           2
                                                                                   x   ∈ (−3, 4) where 𝑓 ″ (𝑥) > 0∀x ∈ (−3, 4), then ℎ (𝑥) is:
Explanation:
Given ℎ (                 𝑥   ) = 3               𝑓 ( 𝑥 ) 𝑓 ( − 𝑥 )∀𝑥 ∈
                                                −3, 4)
                                                               2
                                                                       +               3
                                                                                               2
                                                                                                           (
 ℎ′ (𝑥) = 3𝑓 ′ ( 𝑥 ) × 𝑥 − 𝑓 ′ (3 − 𝑥 )2𝑥
                                                       2
                                                                       2                               2
 = 2𝑥 [𝑓 (
             𝑥 ) − 𝑓 ′ (3 − 𝑥 )]
                                                      3                3
          ′                               2
                                                                                       2
 ∵ 𝑓 ′′ (𝑥) > 0
                                       3
 ℎ (𝑥) = 2                            𝑥 [𝑓
                   ( 𝑥 ) − 𝑓 ′ (3 − 𝑥 )]
                                                               2
         ′                                        ′                                                2
 ∴ 𝑓 ′ ( 𝑥 ) > 𝑓 ′ (3 − 𝑥 )
                          2
                                                                           2
 𝑥 >3−𝑥
                         3
         2
                                       2
      𝑥
     3
             2
     4
                 > 3
         𝑥−                           𝑥
         3
(2 3) (2 + 3) > 0
 𝑥 ∈ (−∞ − ) ∪ ( ∞)               ,
                                                  3                    3
                                                                           ,
 since 𝑥     and 𝑥 ∈ −
                                                  2                    2
> 0 ( 3, 4)
 so for 𝑥 ∈ (    ) ℎ 𝑥 is increasing       3
                                                  ,4           (       )
 Case- : When 𝑥
                                                      2
2 < 0
 ℎ 𝑥 is increasing when ℎ 𝑥
         (       )
                                                                               ′
                                                                                   (       ) > 0
 𝑓 (𝑥 ) 𝑓 ( −𝑥 )
         ′
                     2
                              <
                                              ′
                                                   3
                                                                   2
          −𝑥
                  3
𝑥 2
                 < 3
                                       2
      𝑥
     3
             2
     4
                 < 3
         𝑥−                           𝑥
         3
(2 3) (2 + 3) < 0
 𝑥 ∈(− )                 3
                              ,
                                  3
 since 𝑥      and 𝑥 ∈ −
                         2        2
< 0 ( 3, 4)
 so for 𝑥 ∈ ( −    ) ℎ 𝑥                   2
                                              3
                                                  ,0 ,             (       )   is increasing.
Q15.
if what values of , the function𝑥                                        𝑓𝑥 𝑥    (       ) =
                                                                                                      4
                                                                                                          − 4𝑥    3
                                                                                                                      +4      𝑥   2
                                                                                                                                      + 40   is monotonic decreasing. Then the solution set of   𝑥
is
A)       0 <      𝑥   < 1
                                                                                                                                             B)    1 <   𝑥   < 2
Explanation:
𝑓𝑥 𝑥−𝑥 𝑥
     (    ) =
                          4
                                    4
                                                3
                                                     +4
                                                                    2
                                                                         + 40
𝑓 𝑥 𝑥− 𝑥 𝑥
     ′
         (    ) = 4
                                3
                                                12
                                                            2
                                                                +8
⇒ 𝑥( 𝑥 − 𝑥 )      4
                          2
                                   12               +8              < 0
⇒ 𝑥 (𝑥 − 𝑥 )          2
                               3         +2                 < 0
⇒𝑥 𝑥− 𝑥− ( 1) ( 2) < 0
                                                     
⇒ 𝑥 ∈ (−∞, 0) ∪ (1, 2)
Q16.
In its domain,                𝑓𝑥
                               (    ) =
                                                     sin
                                                     cot
                                                           −1
                                                           −1
                                                                𝑥
                                                                𝑥   is:
Explanation:
Given:            𝑓𝑥  (       ) =
                                         sin
                                         cot
                                                    −1
                                                    −1
                                                          𝑥 , domain of 𝑓 (𝑥) is 𝑥 ∈ [−1, 1]. Differentiating, we get,
                                                          𝑥
                                                              − 𝑥)−(  − 𝑥) (
 𝑓 𝑥                          (√                )×                                 )
                                    1                                                                                 1
                                                         ( cos
                                                                    1
                                                                                         sin
                                                                                                  1
                                                                                                          ×   –
     ′                                  𝑥   2
                                                                                 𝑥                                √1–     2
                                                                  − 𝑥
                                    1–
          (    ) =                                                                            2
                                                                                     1
                                                                    (cos                  )
⇒ 𝑓 ′ (𝑥) =                                          𝑥                   𝑥
                                                −1                  −1
                                    √
                                    cos                  +sin
𝑥 2 −1 𝑥 2
 ⇒ 𝑓 ′ (𝑥) =
                                         1–              (cos            )
√ π
                                                 𝑥   2           − 𝑥1
                                                                              2
                          𝑥                                𝑥
                                            1–           (cos             )
 (∵      cos
                  −1          + sin
                                                 −1             =
                                                                          π
                                                                                  )
                      ≤𝑥                                                                                  𝑥≤
                                                                             2
 Since 0                        2
                                     < 1                 and 0           ≤ cos−                       1
                                                                                                                   π,
⇒ 𝑓 ′ (𝑥) > 0
 So, given function is strictly increasing in its domain.
Q17.
A particle moves along the curve                                    𝑦 𝑥
                                                                    =
                                                                            3
                                                                            2   in the first quadrant in such a way that its distance from the origin
increases at the rate of 11units per second. The value of                                       𝑑𝑥
                                                                                                𝑑𝑡   when     𝑥   = 3   is
 A)    4                                                                                                  B)       9
                                                                                                                   2
          √
C)    3       3                                                                                           D)      None
          2
Explanation:
We have,
 𝑦 𝑥  =
                   3
                   2
 𝑆 √𝑥 𝑦 𝑥 𝑥
      =                 2
                            +            2
                                             =              2
                                                                +       3
 ⇒ 𝑑𝑆
   𝑑𝑡 √     ( 𝑥 𝑥 ) ( 𝑑𝑥
                      𝑑𝑡 )
                                  1                                  2
        𝑥 𝑥         =
                                     2           3
                                                      2     +3
                                (6 + 3 · 3 2 ) 𝑑𝑥
                            2            +
 ⇒ 11 =                  √       1
                                               𝑑𝑡
                          √
                                 2           3
                        2  3 +3
 ⇒        𝑑𝑥
          𝑑𝑡
                            22    36                   2
                    =                         =            ×6
          𝑑𝑥
                                33                     3
Q18.
If the radius af a sphere is measured as 7                                      𝑐𝑚 with an error of   0. 01 𝑐𝑚, then the approximate error is calculating the
volume is (use              𝜋    =
                                         22
                                         7
                                                 )
A) △𝑣 = 6. 16 B) △𝑣 = 6. 56
C) △𝑣 = 7. 18 D) △𝑣 = 6. 26
Explanation:
 ⇒ 𝑑𝑣      𝜋𝑟
                                                      3
    𝑑𝑟
                                  2
                   = 4
 ⇒        𝑑𝑣
          𝑑𝑟
                                      22
                   = 4×                              × 49
          𝑑𝑣
                                         7
⇒ 𝑑𝑟 = 616
Q19.
If   𝑦 𝑥 − 𝑎𝑥
         =
                     3                   2
                                             + 48  𝑥   +7   is an increasing function for all values of , then   𝑥        𝑎 lies in:
A)       (   −14, 14)                                                                                  B)    (   −12, 12)
Explanation:
Given that
 𝑦 𝑥 − 𝑎𝑥 𝑥
         =
                         3                   2
                                                  + 48        +7
  𝑑𝑦
  𝑑𝑥       𝑥 − 𝑎𝑥
              = 3
                                  2
                                              2        + 48 > 0
⇒ 𝑎 − 144 < 0 2
 ⇒ 𝑎 ∈ (−12, 12)
Q20.
If   𝑓 𝑥 𝑥 𝑥−
      (       ) =
                                 3
                                 2    (3           10),   𝑥≥   0,   then   𝑓𝑥
                                                                            (   )   is increasing in
Explanation:
 𝑓 𝑥 𝑥 𝑥− 𝑥≥
      (      ) =
                                     3
2 (3 10), 0
 𝑓 𝑥 𝑥 𝑥−
      ′
             (       ) =       𝑥      3
                                              1
                                              2   (3          10) +
                                                                            3
2 ·3
      𝑥 𝑥−              𝑥
                                      2
                         1
             3
     =                   2
                                 (3               10 + 2       )
 𝑓 𝑥 𝑥 𝑥−
             2
                                              1
      ′                               3
             (       ) =                      2   (5          10)
       𝑥√ 𝑥 −
                                      2
                             1
             15
     =                       2
                                 (                2)
 Here, 𝑥 ≥        𝑥− ≥
             2
 For a function to be increasing its derivative must be greater than or equal to zero.
 ∴Thus 𝑓 𝑥 is increasing in ∞ .  (       )                            [2,       )
Q21.
The flower bed is to be in the shape of a circular sector of radius                                                     𝑟 and central angle 𝜃. If the area is fixed &
perimeter is minimum, then value of                                               𝜃 is
 Answer: 2
Explanation:
We know that, the area and length of the sector of a circle of radius                                                                            𝑟 and central angle 𝜃𝑐 are
respectively                 1
                                 𝑟 𝜃 and 𝑟𝜃
                                     2
                                                                      .
                                                                                                   𝑟𝜃 𝑐
                             2
 ⇒ 𝜃 = 𝑟𝑐 . . . (𝑖)
                                                                                               2
                    2
                        2
 ⇒𝑃         = (         𝜃    + 2)            𝑟
 ⇒𝑃         =       𝑟 ( 𝑟𝑐   2
                                     +2              )
 ⇒𝑃                                      𝑟
                                 2
                         𝑐
                        𝑟
                    2
            =                +2 .
 ⇒ 𝑑𝑃
    𝑑𝑟 = 2 − 𝑟
               𝑐                         2
                                                     = 0
 ⇒ 𝑟 = 𝑐.
                                             2
         𝑑𝑝 2
                                 𝑐                    𝑟   2
                                                                                                   𝑟 𝑐 perimeter is minimum.
 And     𝑑𝑟                  𝑟                       𝑟                    𝑟              so at
                             4                       4                    4                            2
                    =                    =                        =               > 0                      =
                                                              𝑖                                    𝑐            𝑐
                2                3                       3
Q22.
                                                                                                                        √
The sides of an equilateral triangle are increasing at the rate of                                                          3 cm / sec.   Find the rate at which the area of the
triangle is increasing when the side is 4 cm long.
 [Enter the value excluding units]
Answer: 6
Explanation:
 ⇒ 𝑑𝐴                                    𝑎 𝑑𝑎𝑑𝑡
                                                                  4
   𝑑𝑡
                             3
                =                    2           ·
                             4
                                  √                  √
     ( 𝑑𝐴
       𝑑𝑡 )𝑎=4            =
                                  4
                                      3
                                          2 (4) ·        3
Q23.
                            𝑎 for which the function
If the set of all values of the parameter
𝑓𝑥   (      𝑥 − 𝑎 √ 𝑥√ ( 𝑎 𝑎 − )𝑥 increases for all 𝑥 ∈ 𝑅 and has no critical points for all
         ) = sin 2                8(       + 1) sin      +       4
                                                                     2
                                                                         +8           14
Answer: 29
Explanation:
 Given that,
 𝑓𝑥      (   ) = sin 2            𝑥− 𝑎      8(      + 1) sin         𝑥       +   (4   𝑎   2
                                                                                              +8   𝑎 − )𝑥 is an increasing function for all
                                                                                                          14
𝑥 ∈ 𝑅.
 ⇒𝑓 𝑥         ′
                  (   ) > 0
                               √
     ⇒ {cos 𝑥 − (𝑎 + 1)} − ( 5) > 0
                                                                         2
                                                 2
                         √                       √
     ⇒ {cos − (𝑎 + 1) + 5} {cos 𝑥 − (𝑎 + 1) − 5} > 0
                          √                       √
     ⇒ {cos 𝑥 − (𝑎 + 1 − 5)} {cos 𝑥 − (𝑎 + 1 + 5)} > 0
                            √               √
     ⇒ cos 𝑥 ∈ (−∞, 𝑎 + 1 5) ∪ (𝑎 + 1 + 5, ∞)
                        √                     √
     ⇒ cos 𝑥 < 𝑎√+ 1 − 5 or cos 𝑥√> 𝑎 + 1 + 5
     ⇒ 𝑎 + 1√− 5 > 1 or 𝑎 +  √1 + 5 < −1
     ⇒ 𝑎 > 5 or 𝑎 < −√   2−     5
                                  √
     ⇒ 𝑎 ∈ (−∞, −2 − 5) ∪ ( 5, ∞) … (i)
     According to problem
     𝑎 ∈ (−∞ −𝑚 − √𝑛) ∪ (√𝑛 ∞)
                          ,                                          ,           … (ii)
     ⇒𝑚       2
                      +   𝑛   2
                                  = 4 + 25
     ⇒𝑚       2
                      +   𝑛   2
                                  = 29
Q24.
If   𝑓𝑥  (   ) = 3    𝑥   2
                              + 15    𝑥   +5   then find the approximate value of                     𝑓   (3. 02).
Answer: 77.66
Explanation:
Given
 𝑓𝑥   (       ) = 3     𝑥   2
                                  𝑥
                                + 15                +5
Take 𝑥 = 3 then 𝑥 ∆𝑥 + = 3. 02
⇒ ∆𝑥 = 0. 02
 When 𝑥   ,𝑦
                                                         2
                    = 3                 = 3(3)               + 15 (3) + 5
⇒𝑦 = 27 + 45 + 5 = 77
Let 𝑑𝑥 ∆𝑥 = = 0. 02
 Now 𝑦   𝑥 𝑥       = 3
                                2
                                    + 15                +5
   𝑑𝑦
 ∴ 𝑑𝑥   𝑥      = 6          + 15
   𝑑𝑦 ]
 ∴ 𝑑𝑥   𝑥          =3   = 6 × 3 + 15 = 33
 ∴ 𝑑𝑦 = 𝑑𝑥𝑑𝑦 𝑑𝑥 = 33 × 0. 02 = 0. 66 = ∆𝑦
 ∴ 𝑓 (3. 02) = 𝑦 + ∆𝑦 = 77 + 0. 66 = 77. 66
 Hence, approximate value of                                          𝑓   (3. 02)    is 77. 66.
Q25.
Let   𝑓𝑥  (    ) = ∣(   𝑥 − (𝑥      1)
                                                2
                                                    − 2𝑥 − 3)∣ + 𝑥 − 3, 𝑥 ∈ ℝ. If 𝑚 and 𝑀 are respectively the number of points of local
minimum and local maximum of                                     𝑓 in the interval   (0, 4),   then   𝑚 𝑀 is equal to _____.
                                                                                                        +
Answer: 3
Explanation:
Given,
 𝑓𝑥         𝑥− 𝑥 𝑥−                 𝑥−
          ⎧ 𝑥 − (𝑥 )
      (       ) = |(                    1) (         + 1) (               3)| + (           3)
                                ≤𝑥≤
                                (               3)
                                                             2
                                                                  ,       3             4
 𝑓 𝑥 ⎨ 𝑥− ( −𝑥 ) ≤𝑥
      (       ) =        (                  3)       2
                                                                  2
                                                                      ,   1          < 3
          ⎩⎧ 𝑥 − (𝑥 )           ( 𝑥             3)
                                                             2
                                                                  ,       0 <        < 1
                  𝑥−𝑥            𝑥      3
                                                2
                                                         6   ,            3 <       < 4
 𝑓 𝑥 ⎨− 𝑥 𝑥
      ′
          (    ) =               𝑥  3
                                            2
                                                +6           + 2,         1 <       < 3
           ⎩ 𝑥− − 𝑥              𝑥      3
                                                2
                                                         6   ,            0 <       < 1
 𝑓    ′
          (3  𝑓+
                   ) > 0  → Minimum ′
                                        (3          ) < 0
 𝑓    ′
          (1  𝑓 − → Minimum
               +
                   ) > 0
                                    ′
                                        (1          ) < 0
So,   𝑀 𝑚
       +    = 3