Draft
Draft
Q1.
Jethro has to sit one more test that is also to be marked out of 100
Work out the least mark that Jethro needs to get for the last test.
...........................................................
Q2.
The team plays 2 more matches and scores k goals in each match.
The mean number of goals scored by the hockey team in the 10 matches is 7
k = ...........................................................
(Total for question = 3 marks)
Q3.
Ali uses a fitness tracker to count the number of steps he walks each day for 7 days.
...........................................................
Q4.
Work out the weight of the banana that Andy puts into the bag.
........................................................... grams
Q5.
........................................................... kg
Q6.
...........................................................
Q7.
Work out the weight of the sixth cocoa pod that is put into the bag.
........................................................... grams
Q8.
18 18 19 20 24 25 25 26 28 28 29 29 29 30 30
Use the information above to compare the English test results with the Maths test results.
Write down two comparisons.
1 ..........................................................................................................................................
.............................................................................................................................................
2 ..........................................................................................................................................
.............................................................................................................................................
Q9.
The table gives information about the times taken, in minutes, for 80 taxi journeys.
(1)
(b) On the grid opposite, draw a cumulative frequency graph for your table.
(2)
(c) Use your graph to find an estimate for the median.
........................................................... minutes
(1)
(d) Use your graph to find an estimate for the interquartile range.
........................................................... minutes
(2)
Q10.
The cumulative frequency table gives information about the distance, in kilometres, that each of 80
workers travel from home to work at Office A.
(a) On the grid below, draw a cumulative frequency graph for the information in the table.
(2)
(b) Use your graph to find an estimate for the median distance travelled.
........................................................... km
(1)
(c) Use your graph to find an estimate for the interquartile range of the distances travelled.
........................................................... km
(2)
For Office B, the median distance workers travel from home to work is 15 km and the interquartile range is
5 km.
(d) Use the information above to compare the distances that workers at Office A and workers at Office B
travel from home
to work.
Write down two comparisons.
1 ..........................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
2 ..........................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
(2)
Q11.
The table gives information about the times, in minutes, taken by 80 customers to do their shopping in a
supermarket.
(a) Complete the cumulative frequency table.
(1)
(b) On the grid below, draw a cumulative frequency graph for your table.
(2)
(c) Use your graph to find an estimate for the median time taken.
........................................................... minutes
(1)
One of the 80 customers is chosen at random.
(d) Use your graph to find an estimate for the probability that the time taken by this customer was more
than 42 minutes.
...........................................................
(2)
Q12.
The table gives information about the ages, in years, of 80 people in a train carriage.
(1)
(b) On the grid opposite, draw a cumulative frequency graph for your table.
(2)
(c) Use your graph to find an estimate for the median age of the 80 people.
........................................................... years
(1)
Of the people in the train carriage, 60% of those who are aged between 18 and 65 are going to work.
None of the other people in the train carriage are going to work.
(d) Use your graph to find an estimate for the number of people in the train carriage who are going to
work.
...........................................................
(3)
Q13.
The cumulative frequency graph gives information about the times, in seconds, that 80 adults took to log
in to an online bank.
........................................................... seconds
(1)
(b) Work out the percentage of these adults that took longer than 50 seconds to log in.
Show your working clearly.
........................................................... %
(3)
Q14.
The table shows information about the frame size, in cm, of 60 bicycles sold in a shop.
...........................................................
(1)
(b) Work out an estimate for the mean frame size.
........................................................... cm
(4)
Q15.
a b c d d d
The mode of the integers is 9
Work out the value of a, the value of b, the value of c and the value of d
a = ...........................................................
b = ...........................................................
c = ...........................................................
d = ...........................................................
Q16.
The cumulative frequency graph gives information about the marks gained by the 60 students in the
algebra test.
(a) Use the graph to find an estimate for the median mark in the algebra test.
...........................................................
(1)
(b) Use the graph to find an estimate for the number of students who gained 58 marks or less in the
algebra test.
...........................................................
(1)
(c) Use the graph to find an estimate for the interquartile range of the marks gained in the algebra test.
...........................................................
(2)
The interquartile range of the marks gained in the geometry test is 9
Luis says
"The students' marks are more spread out in the algebra test than in the geometry test."
(d) Is Luis correct?
Give a reason for your answer.
.............................................................................................................................................
.............................................................................................................................................
(1)
To be awarded a grade A in the algebra test, a student had to gain a mark greater than 64
Two students are to be selected at random from the 60 students in the group.
(e) Use the graph to find an estimate for the probability that both of these students were awarded a grade
A in the algebra test.
...........................................................
(3)
Q17.
Here are the numbers of aces that Rutger served in each of 11 tennis matches.
1 1 2 4 6 8 8 9 11 12 15
...........................................................
(2)
Kim also plays in 11 tennis matches.
For Kim
the median number of aces is 11
the interquartile range of the numbers of aces is 5
(b) State, giving a reason, whether Rutger or Kim
(i) served more aces on average,
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
(1)
(ii) was more consistent with the number of aces served.
.............................................................................................................................................
.............................................................................................................................................
.............................................................................................................................................
(1)
Q18.
x = ...........................................................
Q19.
The frequency table gives information about the number of points scored by a player.
x = ...........................................................
The table shows information about the heights, in cm, of 48 sunflowers in a garden centre.
........................................................... cm
Q21.
The table gives information about the length of time, in minutes, for which each student spent dancing.
Work out an estimate for the mean length of time the students spent dancing.
........................................................... minutes
Q22.
The frequency table gives information about the numbers of mice in some nests.
x=
(Total for question = 4 marks)
Q23.
4 7 x 10 y y
x = ...........................................................
y = ...........................................................
Q24.
For the 5 days from Monday to Friday, the mean number of kilometres he drove was 104
For the 7 days from Monday to Sunday, the mean number of kilometres he drove was 127
........................................................... kilometres
Q25.
Use this information to compare the Science test results with the Maths test results.
Write down two comparisons.
2.
Q26.
Candela ........................................................... cm
Diana ........................................................... cm
Q27.
(3)
A basketball team plays 6 games.
After playing 5 games, the team has a mean score of 21 points per game.
After playing 6 games, the team has a mean score of 23 points per game.
(b) Work out the number of points the team scored in its 6th game.
...........................................................
(3)
Q28.
x 5 y z 10 12
x = ...........................................................
y = ...........................................................
z = ...........................................................
Q29.
Q30.
h 6 7 8 j 16 k k
h = ...............................
j = ...............................
k = ...............................
Q31.
The table shows some information about the hourly rates of pay of 60 workers.
...........................................................
(1)
(b) Work out an estimate for the mean hourly rate of pay of the 60 workers.
........................................................... dollars
(4)
Q32.
The table shows information about the weights, in kilograms, of 40 babies.
...........................................................
(1)
(b) Work out an estimate for the mean weight of the 40 babies.
........................................................... kg
(4)
One of the 40 babies is going to be chosen at random.
(c) Find the probability that this baby has a weight of more than 5 kg.
...........................................................
(2)
Q33.
The table gives information about the speeds, in kilometres per hour, of 80 motorbikes as each pass
under a bridge.
...........................................................
(1)
(b) Work out an estimate for the mean speed of the motorbikes as they pass under the bridge. Give your
answer correct to 3
significant figures.
The table shows information about the lengths, in minutes, of 50 telephone calls.
...........................................................
(1)
(b) Work out an estimate for the total length, in minutes, of these telephone calls.
........................................................... minutes
(3)
Q35.
68 72 75 77 80
.....................
.....................
.....................
Q36.
...........................................................
Q37.
...........................................................
Q38.
Q39.
Mark Scheme
Q1.
Q2.
(Q08 4MA1/2H, Nov 2023)
Q3.
Q4.
(Q08 4MA1/2H, Nov 2024)
Q5.
Q6.
(QU10 4MA1/2H, June 2023)
Q7.
Q8.
(Q11 4MA1/1H/EAM, Specimen papers )
Q9.
(Q13 4MA1/2H, June 2019)
Q10.
(Q12 4MA1/2H, June 2021)
Q11.
(Q12 4MA1/1H, Jan 2022)
Q12.
(QU13 4MA1/2H, June 2022)
Q13.
(Q13 4MA1/1H, Nov 2023)
Q14.
(Q01 4MA1/1HR, Jan 2023)
Q15.
(QU01 4MA1/2H, June 2022)
Q16.
(Q14 4MA1/2HR, Jan 2022)
Q17.
(Q15 4MA1/2HR, Jan 2023)
Q18.
(QU03 4MA1/1HR, June 2022)
Q19.
Q20.
(Q01 4MA1/2H, June 2019)
Q21.
(Q01 4MA1/1H, Jan 2023)
Q22.
Q23.
(Q04 4MA1/1H, Nov 2020)
Q24.
Q25.
(Q11 4MA1/2H, Jan 2019)
Q26.
Q27.
(Q05 4MA1/1H, Jan 2022)
Q28.
Q29.
Q30.
(QU01 4MA1/2H, June 2024)
Q31.
(Q01 4MA1/1H, Nov 2024)
Q32.
(Q04 4MA1/1H, Jan 2020)
Q33.
(Q02 4MA1/1H, Jan 2021)
Q34.
(Q01 4MA1/2H, Nov 2023)
Q35.
Q36.
(Q07 4MA1/2H, June 2019)
Q37.
Q38.
(Q07 4MA1/1H/EAM, Specimen papers )
Q39.