Pretension Precast PSC Girder 30
Pretension Precast PSC Girder 30
7.5
PROJECT:-
17.0 ICG 66 - 69
18.0ACTIVITY 70 - 70
19.0STRESS SUMMARY 71 - 73
20.0 MATERIALPROPERTIES 74 - 76
PSC MAIN GIRDER
1.0 DESIGN INPUT
Page 1
2.0 LOAD CALCULATIONS
GENERAL ITEMS
CRASH BARRIER
Density = 25 kN/cum
Area part 1= 0.15 sqm 0.175
0.175
0.5
FOOT PATH
Density = 25 kN/cum
Average Thickness = 0.000 m
1.1
WEARING COAT
MEDIAN
0.0
Total Load of Madian per MTR. 0.00 kN/m
LOAD CASES
Page 2
2.0 LOAD CALCULATIONS
DEAD LOAD
2) General Items :-
1.CRASH BARRIER 9.203 kN/m 18.4 kN/sqm
2.WEARING COAT= 1.2 kN/sqm
3.D.L OF FOOT PATH= 0.00 kN/sqm
4.L.L ON FOOTPATH= 5 kN/sqm
5.D.L OF MADIAN= 0.00 kN/m 0.00 kN/sqm
3
1
2
10 0.0
11
0.800
0.200
T 0.300 0.300 T
1 0.100
0.050
3
0.83
2.00 1.00 1.66
Z Z
1.425
Perimeter of Girde 6.443
4 sqm
0.185 Perimeter of bulb =1.65
0.24
0.300 0.300
0.8
Y
(GIRDER SIZE FOR LOAD CALCULATIONS ONLY)
Element Area Ixx m^4 Iyy M^4 C.G C.G M.O.I of Area
M.O.I of Area ITT IYY Ay
Page 3
2.0 LOAD CALCULATIONS
A 0.25 Y 0.25 A
2
0.10 0.10
0.042 0.042
3 3
1.00
2.000
1
4
0.3243
5 0.24
Element Area Ixx m^4 Iyy M^4 C.G C.G MOI of Area
MOI of area IAA IYY Ay
Distance(m)
Distance(m)
about A-Aabout Y-Y m^4 m^4 m^3
sqm local local from A-A from Y-Y m^4 m^4 (2+6) (3+7) (1x4)
1 2 3 4 5 6 7 8 9 10
1 0.60000 0.20000 0.00450 1.00000 ### ### ### ### ### 0.6000
2 0.05000 0.00002 0.00013 0.05000 ### ### ### ### ### 0.0025
3 0.01042 0.00000 0.00000 0.11389 ### ### ### ### ### 0.0012
4 0.0811 0.0000 0.0000 1.0141 0.2581 0.0834 0.0054 0.0834 0.0054 0.0822
5 0.1200 0.0006 0.0006 1.8800 0.0000 0.4241 0.0000 0.4247 0.0006 0.2256
∑= 0.86150 1.30836 0.02500 0.91151
Page 4
2.0 LOAD CALCULATIONS
B= 3.16
0.8
0.2
A 0.300 0.3000 A
0.24
6
0.10
1
0.050
3
2.240 0.83
2.000 1.00 1.66
2
4
tf 0.185
5
0.24
0.300 0.300
0.80
Page 5
2.0 LOAD CALCULATIONS
B= 3.16
6 0.24
2
2
0.10
0.042
3
0.25 1.00
2.240 2.000
0.30
Page 6
2.0 LOAD CALCULATIONS
1.76
1
2.00
0.38
Page 7
2.0 LOAD CALCULATIONS
CG CG MOI of Area
MOI of area IXX IYY
Area Ixx m^4Iyy M^4
Distance(m)
Distance(m)
about X-Xabout Y-Y m^4 m^4
sqm local local from X-X from Y-Y m^4 m^4 (2+6) (3+7)
1 2 3 4 5 6 7 8 9
0.669 0.173 0.008 0.880 0.000 0.518 0.000 0.691 0.008
Total = 0.691 0.008
0.25
1.76
1 2.00
16.720 16.720
4.675 11.00
16.863
A B
1.30 2.20 2.20 1.30
0.430 0.43
28.070 m
Page 8
2.0 LOAD CALCULATIONS
Page 9
3.0 EFFECTIVE WIDTH CALCULATION : (As per Clause 7.6.1.2, Pg 56 of IRC:112-2011)
lo = Min 28.07
27.57 + 1.904 */ (Effective depth assumed 0.85
times of Overall depth)
lo = 28.07 m
bef
bef1 bef2
3.8835 b= 3.859
1.954 3.859
beff1,2 = 3.1729 m
beff = 3.86 m
beff1 = 3.1778 m
Page 10
3.0 EFFECTIVE WIDTH CALCULATION : (As per Clause 7.6.1.2, Pg 56 of IRC:112-2011)
beff2 = 3.1729 m
beff = 3.8835 m
Page 11
Stress Summary
A) With (gp=1.1)
Item Unit 1 2 3 4 5
Support End Varying L/8 L/4 L/2
Section m 0.000 3.070 3.509 7.018 14.035
Page 12
Bottom of Girder t/m2 559.2 1046.6 935.5 1108.7 1137.8
Stress after Differential Shrinkage & Creep (at service condition without Live Loa
Page 13
Stress after Differential Shrinkage & Creep (at service condition with Live Load)
Stress after Differential Shrinkage & Creep with Live load as Leading load+Temp
Stress after Differential Shrinkage & Creep with Live load as accompanying load+
Stress after Differential Shrinkage & Creep with Tempr. Rise as Leading load & w
Stress after Differential Shrinkage & Creep with Live load as Leading load+Temp
Stress after Differential Shrinkage & Creep with Live load as accompanying load+
Stress after Differential Shrinkage & Creep with Tempr. Fall as Leading load & w
Page 14
Bottom of Girder t/m2 502.0 862.6 726.5 745.4 534.4
Stress after Differential Shrinkage & Creep (at service condition with Live Load)
Stress after Differential Shrinkage & Creep with Live load as Leading load+Temp
Page 15
Stress after Differential Shrinkage & Creep with Live load as accompanying load+
Stress after Differential Shrinkage & Creep with Tempr. Rise as Leading load & w
Stress after Differential Shrinkage & Creep with Live load as Leading load+Temp
Stress after Differential Shrinkage & Creep with Live load as accompanying load+
Stress after Differential Shrinkage & Creep with Tempr. Fall as Leading load & w
B) With (gp=0.9)
Item Unit 1 2 3 4 5
Support End Varying L/4 3L/8 L/2
Section m 0.000 3.070 3.509 7.018 14.035
Page 16
Top t/m2 Err:509 Err:509 Err:509 Err:509 Err:509
Bottom t/m2 Err:509 Err:509 Err:509 Err:509 Err:509
Page 17
Stress at 45th day after shifting of bearing
Stress after Differential Shrinkage & Creep (at service condition without Live Loa
Stress after Differential Shrinkage & Creep (at service condition with Live Load)
Stress after Differential Shrinkage & Creep with Live load as Leading load+Temp
Stress after Differential Shrinkage & Creep with Live load as accompanying load+
Page 18
Bottom of Girder t/m2 576.1 693.0 563.3 470.2 189.8
Stress after Differential Shrinkage & Creep with Tempr. Rise as Leading load & w
Stress after Differential Shrinkage & Creep with Live load as Leading load+Temp
Page 19
Stress after Differential Shrinkage & Creep with Live load as accompanying load+
Stress after Differential Shrinkage & Creep with Tempr. Fall as Leading load & w
Stress after Differential Shrinkage & Creep (at service condition with Live Load)
Stress after Differential Shrinkage & Creep with Live load as Leading load+Temp
Stress after Differential Shrinkage & Creep with Live load as accompanying load+
Stress after Differential Shrinkage & Creep with Tempr. Rise as Leading load & w
Stress after Differential Shrinkage & Creep with Live load as Leading load+Temp
Page 20
Bottom of Girder t/m2 178.5 421.3 291.6 198.5 -81.9
Stress after Differential Shrinkage & Creep with Live load as accompanying load+
Stress after Differential Shrinkage & Creep with Tempr. Fall as Leading load & w
Page 21
C) With (gp=1.0)
Item Unit 1 2 3 4 5
Support End Varying L/4 3L/8 L/2
Section m 0.000 3.070 3.509 7.018 14.035
Page 22
Bottom of Girder t/m2 493.3 363.3 796.0 913.3 907.6
Stress after Differential Shrinkage & Creep (at service condition without Live Loa
Page 23
Stress after Differential Shrinkage & Creep (at service condition with Live Load)
Stress after Differential Shrinkage & Creep with Live load as Leading load+Temp
Stress after Differential Shrinkage & Creep with Live load as accompanying load+
Stress after Differential Shrinkage & Creep with Tempr. Rise as Leading load & w
Stress after Differential Shrinkage & Creep with Live load as Leading load+Temp
Stress after Differential Shrinkage & Creep with Live load as accompanying load+
Stress after Differential Shrinkage & Creep with Tempr. Fall as Leading load & w
Page 24
Bottom of Girder t/m2 436.1 179.3 587.0 550.0 304.3
Stress after Differential Shrinkage & Creep (at service condition with Live Load)
Stress after Differential Shrinkage & Creep with Live load as Leading load+Temp
Page 25
Stress after Differential Shrinkage & Creep with Live load as accompanying load+
Stress after Differential Shrinkage & Creep with Tempr. Rise as Leading load & w
Stress after Differential Shrinkage & Creep with Live load as Leading load+Temp
Stress after Differential Shrinkage & Creep with Live load as accompanying load+
Stress after Differential Shrinkage & Creep with Tempr. Fall as Leading load & w
Stress summary
Construction stage
Stage-1
Max. Stress in Girder =
Min. stress in Girder =
Stage-2
Min.stress in Deck =
Max. Stress in Girder =
Min. stress in Girder =
Rare Combination
Min.stress in Deck =
Max.stress in Deck =
Page 26
Max. Stress in Girder =
Min. stress in Girder =
Frequent Combination
Min.stress in Deck =
Max.stress in Deck =
Max. Stress in Girder =
Min. stress in Girder =
Page 27
Permissible
stress
t/m2
> -225.41 OK
< 2333.08 OK
> -460.00 OK
< 2640.00 OK
> -460.0 OK
< 2640.0 OK
> -460.0 OK
< 2640.0 OK
> -460.0 OK
> -460.0 OK
< 2640.0 OK
> -460.0 OK
> -460.0 OK
< 2640.0 OK
> -460.0 OK
> -460.0 OK
Page 28
> -460.0 OK
> -460.0 OK
> -460.0 OK
> -460.0 OK
> -460.0 OK
> -460.0 OK
> -460.0 OK
Page 29
e & Creep (at service condition with Live Load)
> -460.0 OK
> -460.0 OK
> -460.0 OK
e & Creep with Live load as Leading load+Tempr. Rise as accompanying load
> -460.0 OK
> -460.0 OK
> -460.0 OK
e & Creep with Live load as accompanying load+Tempr. Rise as Leading load
> -460.0 OK
> -460.0 OK
> -460.0 OK
e & Creep with Tempr. Rise as Leading load & without Live load
> -460.0 OK
> -460.0 OK
> -460.0 OK
e & Creep with Live load as Leading load+Tempr. fall as accompanying load
> -460.0 OK
> -460.0 OK
> -460.0 OK
e & Creep with Live load as accompanying load+Tempr. fall as Leading load
> -460.0 OK
> -460.0 OK
> -460.0 OK
e & Creep with Tempr. Fall as Leading load & without Live load
> -460.0 OK
> -460.0 OK
> -460.0 OK
> -460.0 OK
> -460.0 OK
Page 30
> 0.0 OK
> -460.0 OK
> -460.0 OK
> 0.0 OK
e & Creep with Live load as Leading load+Tempr. Rise as accompanying load
> -460.0 OK
> -460.0 OK
> 0.0 OK
Page 31
e & Creep with Live load as accompanying load+Tempr. Rise as Leading load
> -460.0 OK
> -460.0 OK
> 0.0 OK
e & Creep with Tempr. Rise as Leading load & without Live load
> -460.0 OK
> -460.0 OK
> 0.0 OK
e & Creep with Live load as Leading load+Tempr. fall as accompanying load
> -460.0 OK
> -460.0 OK
> 0.0 OK
e & Creep with Live load as accompanying load+Tempr. fall as Leading load
> -460.0 OK
> -460.0 OK
> 0.0 OK
e & Creep with Tempr. Fall as Leading load & without Live load
> -460.0 OK
> -460.0 OK
> 0.0 OK
Permissible
stress
t/m2
> -225.4 OK
< 2333.1 OK
> -460.0 OK
< 2640.0 OK
Page 32
> -460.0 Err:509
< 2640.0 Err:509
> -460.0 OK
< 2640.0 OK
> -460.0 OK
< 2640.0 OK
Page 33
> -460.0 OK
> -460.0 OK
< 2640.0 OK
> -460.0 OK
> -460.0 OK
< 2640.0 OK
> -460.0 OK
> -460.0 OK
> -460.0 OK
> -460.0 OK
> -460.0 OK
> -460.0 OK
> -460.0 OK
> -460.0 OK
> -460.0 OK
> -460.0 OK
> -460.0 OK
> -460.0 OK
e & Creep with Live load as Leading load+Tempr. Rise as accompanying load
> -460.0 OK
> -460.0 OK
> -460.0 OK
e & Creep with Live load as accompanying load+Tempr. Rise as Leading load
> -460.0 OK
> -460.0 OK
Page 34
> -460.0 OK
e & Creep with Tempr. Rise as Leading load & without Live load
> -460.0 OK
> -460.0 OK
> -460.0 OK
e & Creep with Live load as Leading load+Tempr. fall as accompanying load
> -460.0 OK
> -460.0 OK
> -460.0 OK
Page 35
e & Creep with Live load as accompanying load+Tempr. fall as Leading load
> -460.0 OK
> -460.0 OK
> -460.0 OK
e & Creep with Tempr. Fall as Leading load & without Live load
> -460.0 OK
> -460.0 OK
> -460.0 OK
> -460.0 OK
> -460.0 OK
> 0.0 OK
> -460.0 OK
> -460.0 OK
> 0.0 OK
e & Creep with Live load as Leading load+Tempr. Rise as accompanying load
> -460.0 OK
> -460.0 OK
> 0.0 OK
e & Creep with Live load as accompanying load+Tempr. Rise as Leading load
> -460.0 OK
> -460.0 OK
> 0.0 OK
e & Creep with Tempr. Rise as Leading load & without Live load
> -460.0 OK
> -460.0 OK
> 0.0 OK
e & Creep with Live load as Leading load+Tempr. fall as accompanying load
> -460.0 OK
> -460.0 OK
Page 36
> 0.0 Check
e & Creep with Live load as accompanying load+Tempr. fall as Leading load
> -460.0 OK
> -460.0 OK
> 0.0 OK
e & Creep with Tempr. Fall as Leading load & without Live load
> -460.0 OK
> -460.0 OK
> 0.0 OK
Page 37
Permissible
stress
t/m2
> -225.4 OK
< 2333.1 OK
> -460.0 OK
< 2640.0 OK
> -460.0 OK
< 2640.0 OK
> -460.0 OK
< 2640.0 OK
> -460.0 OK
> -460.0 OK
< 2640.0 OK
> -460.0 OK
> -460.0 OK
< 2640.0 OK
> -460.0 OK
> -460.0 OK
Page 38
> -460.0 OK
> -460.0 OK
> -460.0 OK
> -460.0 OK
> -460.0 OK
> -460.0 OK
> -460.0 OK
Page 39
e & Creep (at service condition with Live Load)
> -460.0 OK
> -460.0 OK
> -460.0 OK
e & Creep with Live load as Leading load+Tempr. Rise as accompanying load
> -460.0 OK
> -460.0 OK
> -460.0 OK
e & Creep with Live load as accompanying load+Tempr. Rise as Leading load
> -460.0 OK
> -460.0 OK
> -460.0 OK
e & Creep with Tempr. Rise as Leading load & without Live load
> -460.0 OK
> -460.0 OK
> -460.0 OK
e & Creep with Live load as Leading load+Tempr. fall as accompanying load
> -460.0 OK
> -460.0 OK
> -460.0 OK
e & Creep with Live load as accompanying load+Tempr. fall as Leading load
> -460.0 OK
> -460.0 OK
> -460.0 OK
e & Creep with Tempr. Fall as Leading load & without Live load
> -460.0 OK
> -460.0 OK
> -460.0 OK
> -460.0 OK
> -460.0 OK
Page 40
> 0.0 OK
> -460.0 OK
> -460.0 OK
> 0.0 OK
e & Creep with Live load as Leading load+Tempr. Rise as accompanying load
> -460.0 OK
> -460.0 OK
> 0.0 OK
Page 41
e & Creep with Live load as accompanying load+Tempr. Rise as Leading load
> -460.0 OK
> -460.0 OK
> 0.0 OK
e & Creep with Tempr. Rise as Leading load & without Live load
> -460.0 OK
> -460.0 OK
> 0.0 OK
e & Creep with Live load as Leading load+Tempr. fall as accompanying load
> -460.0 OK
> -460.0 OK
> 0.0 OK
e & Creep with Live load as accompanying load+Tempr. fall as Leading load
> -460.0 OK
> -460.0 OK
> 0.0 OK
e & Creep with Tempr. Fall as Leading load & without Live load
> -460.0 OK
> -460.0 OK
> 0.0 OK
Perm. Stress
2287.6 2333.1 OK
-173.2 -225.4 OK
Perm. Stress
-24.6 -460.0 OK
Err:509 2640.0 Err:509
Err:509 -460.0 Err:509
Perm. Stress
-234.6 -460.0 OK
742.7 2201.8 OK
Page 42
1695.8 2640.0 OK
-307.2 -460.0 OK
Perm. Stress
-145.6 -460.0 OK
510.6 2201.8 OK
1618.6 2640.0 OK
-81.9 0.0 FALSE
Page 43
4.0 CABLE DETAILS
A STRAND DETAIL
800
75
2000
75
75
800
Effective Cover Section
Page 44
4.0 CABLE DETAILS
6th Row At a height from bottom = 350 mm
C/C spacing of Strands Required = 55 mm c/c
At Mid No of Strands in First Line = 7.82 Nos.
Ptovide No of Strands = 7.00 Nos.
A2 STRAND
Supp. End Var. L/8 L/4 Mid
Segment length 0 3.07 3.50875 7.0175 14.035
At top
1st Row No 1 1 1 1 1
Ecc. From Bottom 1925 1925 1925 1925 1925
Page 45
4.0 CABLE DETAILS
1st Row No
6th Row Ecc from bottom mm 325 325 325 325 325
6th Row No 0 0 0 0 0
5th Row Ecc from bottom mm 275 275 275 275 275
5th Row No 0 0 0 0 0
4th Row Ecc from bottom mm 225 225 225 225 225
4th Row No 0 0 0 0 0
3rd Row Ecc from bottom mm 175 175 175 175 175
3rd Row No 4 8 8 8 14
2nd Row Ecc from bottom mm 125 125 125 125 125
2nd Row No 4 4 14 14 14
Total No of Strands 13 17 27 37 43
Ecc. From Bottom mm 263 243 199 166 167
Prestressing Factor 0.75 0.75 0.75 0.75 0.75
Loss of Prestress due to slip (ton) 0.3 0.4 0.7 0.9 1.1
Page 46
5.0 Basic Design data for stress check
Stressing and casting sequence
Factor for Shrinkage loss (Refer clause 6.4.2.6 of IRC-112) (shrinkage Girder)
ts= 14 14 14 14 14 14
t (days)= 14 21 45 56 36500 36500
(t-ts) (days)= 0 7 31 42 36486 36486
bas(t)= 0.527 0.600 0.739 0.776 1.000 1.000
ecw (x10 )=
-6
85 85 85 85 85 85
eca(t) (x10 )=
-6
44.8 51.0 62.8 66.0 85.0 85.0
h0 (mm)= 244 244 244 244 244 244
bds(t,ts)= 0.00 0.04 0.17 0.22 1.00 1.00
200 200 200 200 200 200
300 300 300 300 300 300
0.850 0.850 0.850 0.850 0.850 0.850
0.750 0.750 0.750 0.750 0.750 0.750
Kh= 0.806 0.806 0.806 0.806 0.806 0.806
Page 47
5.0 Basic Design data for stress check
ecd (x10 )=
-6
402 402 402 402 402 402
ecd(t) (x10 )=
-6
0.0 14.2 54.6 69.8 322.5 322.5
ecs (x10 )=
-6
44.8 65.2 117.4 135.8 407.5 407.5
Diff. in strain (x10-6)= 20.4 52.2 18.4 271.7 0.0
Factor for Creep Loss (Refer clause 6.4.2.7 of IRC-112 & Annexure-A2)
f(t,t0)= b(t,t0)*f(inf,t0)
b(t,t0)= t-t0 0.3
bH+(t-t0)
a= (45/fcm)0.5
b(fcm)= 18.78/fcm0.5
b(t0)= 1
0.1+t00.2
a1= (43.75/fcm)0.7 a2= (43.75/fcm)0.2
RH= Relative humidity expressed as percent
RH0= 100%
t= is the age of concrete in days at the time considered
t0= is the age of concrete in days at the time of loading
(t-t0)= is the actual duration of loading in days
bH= is the Coefficient depending on RH & notional member size h0 in mm
h0= 2Ac/u Ac= Cross sectional area in mm2
u= Perimeter in contact with atmosphere in mm
is a factor to allow the effect of relative humidity on notional creep
fRH= coefficient
t0 (days)= 14 14 14 14 14 14
t (days)= 14 21 45 56 25550 36500
(t-t0) (days)= 0 7 31 42 25536 36486
RH (%)= 70 70 70 70 70 70
Grade of concrete= M55 M55 M55 M55 M55 M55
fcm (Mpa)= 65 65 65 65 65 65
Ac (mm2)= 674500 674500 674500 674500 674500 674500
Page 48
5.0 Basic Design data for stress check
u (mm)= 5522 5522 5522 5522 5522 5522
h0 (mm) girder = 244 244 244 244 244 244
a= 0.83 0.83 0.83 0.83 0.83 0.83
bH= 590 590 590 590 590 590
b(t,t0)= 0.00 0.26 0.41 0.44 0.99 1.00
b(fcm)= 2.33 2.33 2.33 2.33 2.33 2.33
b(t0)= 0.56 0.56 0.56 0.56 0.56 0.56
a1= 0.76 0.76 0.76 0.76 0.76 0.76
a2= 0.92 0.92 0.92 0.92 0.92 0.92
fRH= 1.26 1.26 1.26 1.26 1.26 1.26
f0= 1.63 1.63 1.63 1.63 1.63 1.63
f(t,t0)= 0.00 0.43 0.67 0.72 1.62 1.63
f(t,t0) Difference = 0.43 0.23 0.06 0.90 0.00
Elastic Modulus (E-Mpa) = 33929 34000 34000 34000 34000 34000
10MpaStress/E= 0.0002947 0.000294 0.000294 0.00029412 0.0002941 0.000294
Creep strain /10Mpa= ### 0.000127 6.895E-05 1.7533E-05 0.0002644 9.76E-07
Creep strain between days per = 14 to 28 28 to 45 45 to 56 56 to ꝏ
10 mpa 6.33E-05 9.78E-05 4.32E-05 1.41E-04
1000hr relaxation (for low relaxation steel) r (table -6.2 IRC-112) 2.5 %
2nd stage
Group-1 Cables
t (days)= 14 21 45 56 36500 36500
t0 (days)= 14 14 14 14 14 14
(t-t0) (days)= 0 7 31 42 36486 36486
Hours= 0 168 744 1008 875664 875664
% Loss of 1000 Hrs= 0 77 93 100 100 100
% Loss= 0.00 2.10 2.34 2.50 2.50 2.50
Difference= 2.10 0.24 0.16 0.00 0.0000
Relaxation factor= 0.840 0.095 0.066 0.00000 0.0000
Group-2 Cables
t (days)= 21 45 56 36500 365000
t0 (days)= 28 28 28 28 28
(t-t0) (days)= -7 17 28 36472 364972
Hours= -168 408 672 875328 8759328
% Loss of 1000 Hrs= 0 84 93 100 100
% Loss= 0.00 2.10 2.34 2.50 2.50
Difference= 0.00 2.10 0.24 0.16 0.00
Relaxation factor= 0.000 0.840 0.095 0.066 0.000
Strain in deck slab after curing (say after 3rd day) 2.49E-05
Page 49
5.0 Basic Design data for stress check
Strain in deck slab after 365 days
h0 263 mm
eca(t) (x10 )= -6
8.500E-05
bds(t,ts)= 1.00
Kh= 0.787
ecd = 4.020E-04
ecd(t) = 3.148E-04
ecs= 3.998E-04
Residual strain 3.749E-04
Strain in Girder at time of casting deck slab 1.17E-04
Strain in Girder after 365 days
h0 222 mm
eca(t)= 8.500E-05
bds(t,ts)= 1.00
Kh= 0.806
ecd (x10-6)= 4.020E-04
ecd(t) (x10-6)= 3.227E-04
ecs (x10 )=-6
4.077E-04
Resiudal strain 2.903E-04
Strain due to differential shrinkage 8.46E-05
Strain due to differential shrinkage considered 8.46E-05
Reduction factor due to creep (1-e )/f
-f 0.49
E N/Sqmm 195000
FINISH
Page 50
6.0 SUMMARY OF FORCE
Finel Moments and Shears (unfactored) L/
At Supp. Varying End 8 4 2
0 3.070 3.509 7.018 14.035
SHUTTERING LOAD 0 0 0 0 0
BM kN-m 1 1 1 1 1
SF kN 1 1 1 1 1
BM kN-M 1 1 1 1 1
SF kN
SPV
BM kN-M 1 1.0 1 1 1
SF kN
1108--503 1101--499 1108--498 1108--495 1109--451
Governing LL
BM kN-M [LS] 463.43 1440.53 1636.65 2845 4725.1
SF kN [LS] 573.91 517.93 492.44 366.92 235.85
Page 51
6.0 SUMMARY OF FORCE
L/C (SIDL) 2 2 2 2 2
BM kN-M 64.152 210.8295 242.2035 426.816 600.588
SF kN 74.8575 67.473 63.531 45.8865 9.9765
FINISH
Page 52
Stress Check For Sls- γp= 1.00
Item Unit 1 2 3 4 5
Support End Vr. L/8 L/4 L/2
Chainage of Section from left support m 0.000 3.070 3.509 7.018 14.035
[0 TO 10 DAY PERIOD]
E-Loss in PS1 cables = kN 60 120 400 600 600
stress due to prestress momemt (Mp/Zt) top -3996.5 -20298 -10707.4 -15187.8 -17876.0
stress due to prestress momemt (Mp/Zb) btm 3558.0 15275.4 8058.0 11429.8 13452.9
Balance stresses after 10 days top -1004 -12773 -799 -242 519
PS1 + DL (g) -Elose bottom 5095.15 18106 12612.94 17220.6 19663
Summary of Stresess
Stress After 10 Days (1st stage of stressing)
Permissible Remark
Due to -PS -Eloss -(C+S+R) +DL girder Limits
N/sqmm
Top -1.00 -12.77 -0.80 -0.24 0.52 -2.25 Check
nocable1= Err:509 No
jforce = 0.75
relax1000 = 2.5 (For Low relaxation Steel)
ifcreep = 1
Relaxation Factor
Relaxation Loss Err:509 Err:509 Err:509 Err:509 Err:509
=Relaxation factor*(1-(0.7-((P1-Eloss)/(nocable1*uts)))/0.2)*jforce*relax1000/100*uts*nocable1*ifrelax
Total Loss (C+S+R) Err:509 Err:509 Err:509 Err:509 Err:509
Stress due to (C+S+R)
Sammary of Stresess
Stress After 28 Days before 2nd stage stressing
Permissible Remark
Due to -PS -Eloss -(C+S+R) + DL girder Limits
N/sqmm
Top Err:509 Err:509 Err:509 Err:509 Err:509 -4.60 ###
Prestressing Force after E-Loss Ps2 = 1.0 1.0 1.0 1.0 1.0
Moment due to P S after E-loss Mp= P*e 1.2 1.3 1.3 0.2 0.2
stress due to prestress momemt (Mp/Zt) top -3.8 -4.5 -4.7 -0.7 -0.6
stress due to prestress momemt (Mp/Zb) btm 3.4 3.4 3.5 0.5 0.4
stress due to prestress momemt (Mp/Zt) top 0.0 0.0 0.0 0.0 0.0
stress due to prestress momemt (Mp/Zb) btm 0.0 0.0 0.0 0.0 0.0
After 28 Days
slab (top) 0 0 0 0 0
slab (btm) 0 0 0 0 0
Stress due to DL momemt (M/Zt) girder (top) 1119.3 4288.3 4923.8 8589.4 11454.2
Stress due to DL momemt (M/Zb) Girder (btm) -996.5 -3227.2 -3705.5 -6464.1 -8620.1
Check for Creep Loss GR1 kN Err:509 Err:509 Err:509 Err:509 Err:509
Check for Creep Loss GR2 Err:509 Err:509 Err:509 Err:509 Err:509
Total= Err:509 Err:509 Err:509 Err:509 Err:509
jforce = 0.75
relax1000 = 2.5
ifcreep = 1
Check for Creep Loss GR1 kN Err:509 Err:509 Err:509 Err:509 Err:509
Check for Creep Loss GR2 Err:509 Err:509 Err:509 Err:509 Err:509
Total = Err:509 Err:509 Err:509 Err:509 Err:509
Shrinkage loss in GR1 & 2 cables kN Err:509 Err:509 Err:509 Err:509 Err:509
("shr&dayps1&"-shr"&dayps2&")" &"*nocable1*acable*ecable*ifshr"
nocable1= Err:509 No
nocable2= 0.000 No
acable= 0.0001387 sqm
Ecable= 195000000 kN/sqm
ifshr= 1
Eloss GR1 cables + due to GR2 cables = 600 kN
Eloss GR2 cables = 0 kN
uts = 258.2594 kN
jforce = 0.75
relax1000 = 2.5
ifcreep = 1
=Relaxation factor*(1-(0.7-((P1-Eloss)/(nocable1*uts)))/0.2)*jforce*relax1000/100*uts*nocable1*ifrelax
Check for Creep Loss GR1 kN Err:509 Err:509 Err:509 Err:509 Err:509
Check for Creep Loss GR2 Err:509 Err:509 Err:509 Err:509 Err:509
Total= Err:509 Err:509 Err:509 Err:509 Err:509
Shrinkage loss in GR1 & 2 cables kN Err:509 Err:509 Err:509 Err:509 Err:509
("shr&dayps1&"-shr"&dayps2&")" &"*nocable1*acable*ecable*ifshr"
nocable1= Err:509 No
nocable2= 0.000 No
acable= 0.0001387 sqm
Ecable= 195000000 kN/sqm
ifshr= 1
Eloss GR1 cables + due to GR2 cables = 600 kN
Eloss GR1 cables = 0 kN
uts = 258.2594 kN
jforce = 0.75
relax1000 = 2.5
ifcreep = 1
Relaxation Loss due to GR1 cables
After
Stress due to LL momemt (M/Zts) slab (top) 381.5 1147.4 1303.6 2266.1 3763.6
slab (btm ) 829.5 2724.4 3095.3 5380.5 8936.2
Stress due to LL momemt (M/Ztg) top (g) 829.5 2724.4 3095.3 5380.5 8936.2
Stress due to LL momemt (M/Zb) bottom (g) -762.9 -2452.7 -2786.6 -4843.9 -8045.0
Stresses due to LL
Top of Girder
DL+SIDL+LL+0.9PR+0.6TR+0.6DShr. N/sqmm Err:509 Err:509 Err:509 Err:509 Err:509
DL+SIDL+LL+0.9PR+0.6TF+0.6DShr. N/sqmm Err:509 Err:509 Err:509 Err:509 Err:509
DL+SIDL+0.75LL+0.9PR+TR+DShr. N/sqmm Err:509 Err:509 Err:509 Err:509 Err:509
DL+SIDL+0.75LL+0.9PR+TF+DShr. N/sqmm Err:509 Err:509 Err:509 Err:509 Err:509
DL+SIDL+LL+1.1PR+0.6TR+0.6Dshr. N/sqmm Err:509 Err:509 Err:509 Err:509 Err:509
DL+SIDL+LL+1.1PR+0.6TF+0.6DShr. N/sqmm Err:509 Err:509 Err:509 Err:509 Err:509
DL+SIDL+0.75LL+1.1PR+TR+DShr. N/sqmm Err:509 Err:509 Err:509 Err:509 Err:509
DL+SIDL+0.75LL+1.1PR+TF+DShr. N/sqmm Err:509 Err:509 Err:509 Err:509 Err:509
Bottom of Girder
DL+SIDL+LL+0.9PR+0.6TR+0.6DShr. N/sqmm Err:509 Err:509 Err:509 Err:509 Err:509
DL+SIDL+LL+0.9PR+0.6TF+0.6DShr. N/sqmm Err:509 Err:509 Err:509 Err:509 Err:509
DL+SIDL+0.75LL+0.9PR+TR+DShr. N/sqmm Err:509 Err:509 Err:509 Err:509 Err:509
DL+SIDL+0.75LL+0.9PR+TF+DShr. N/sqmm Err:509 Err:509 Err:509 Err:509 Err:509
DL+SIDL+LL+1.1PR+0.6TR+0.6Dshr. N/sqmm Err:509 Err:509 Err:509 Err:509 Err:509
DL+SIDL+LL+1.1PR+0.6TF+0.6DShr. N/sqmm Err:509 Err:509 Err:509 Err:509 Err:509
DL+SIDL+0.75LL+1.1PR+TR+DShr. N/sqmm Err:509 Err:509 Err:509 Err:509 Err:509
DL+SIDL+0.75LL+1.1PR+TF+DShr. N/sqmm Err:509 Err:509 Err:509 Err:509 Err:509
Temp. Rise
Stress at slab Top = Err:509 kg/sqcm
Stress at slab Bottom = Err:509 kg/sqcm
Temp. Fall
Stress at slab Top = Err:509 kg/sqcm
Stress at slab bottom = Err:509 kg/sqcm
Err:509
2.00
Err:509
Err:509
2.00
Err:509
Err:509
Err:509
Tensile force in Bottom Bulb =
Area of Bulb = 0.248 sqm
depth of Bulb = 0.425 m
Tensile Force in bulb = Err:509 kN
Ast = Err:509 sqmm
D1 D4 D2
Due to MEMBER
MEMBERS DL NOS.
GIR.+SLABDL COMB.
BM #N/A #N/A
L/2
SF #N/A #N/A
END X- GIRDER ECG-1
BM #N/A #N/A
L/4
SF #N/A #N/A
BM #N/A #N/A
L/8
SF #N/A #N/A
BM #N/A #N/A
Support
SF #N/A #N/A
Due to MEMBER
MEMBERS DL NOS.
GIR.+SLABDL COMB.
BM 234.26 7000--275
L/2
CROSS GIRDER ICG-2
SF 14.47 7000--275
BM 159.33 7000--276
L/4
SF 92.52 7000--278
Page 65
INT. CROSS GIRDER
BM 159.33 7000--280
L/8
SF 92.52 7000--278
BM 159.33 7000--276
Support
SF 92.52 7000--278
Page 66
D6
D2
Due to MEMBER Due to MEMBER
SIDL NOS. CarriageWay NOS.
DL COMB. LL (kN) LL COMB. live load (kN)
-96.25 3002--6 #N/A #N/A #N/A #N/A
59.61 3002--5 #N/A #N/A #N/A #N/A
Page 67
#N/A #N/A -810.9 2868--278 -1566.88
#N/A #N/A 215.12 2868--279 415.07
Page 68
SLS force ULS force
with govrn. with govrn.
live load (kN)live load (kN)
#N/A #N/A
#N/A #N/A
#N/A #N/A
#N/A #N/A
#N/A #N/A
#N/A #N/A
#N/A #N/A
#N/A #N/A
-4649.08 -6711
610.71 900
-2686.24 -3944
759.01 1117
-2359.55 -3464
811.1 1193
-761.22 -1116
923.17 1355
#N/A #N/A
#N/A #N/A
Page 69
#N/A #N/A
#N/A #N/A
#N/A #N/A
#N/A #N/A
Page 70
7.0 STRESS CHECK 1.1
Dead Load Moments 1st Stage t-m 25.03 76.29 87.02 148.79 198.03
Page 71
7.0 STRESS CHECK 1.1
Stress At 21 day
Page 72
7.0 STRESS CHECK 1.1
Dead Load Moments due to Deck Slab t-m 36.39 122.15 140.25 244.67 326.27
Stress release due to hardening of solid slab i.e density reduces from 2.60 to 2.5 t/m3
Page 73
7.0 STRESS CHECK 1.1
GR1 Cable
Top -1.029 -0.324 -0.359 -0.385 -0.384
Bottom 2.642 2.883 2.958 3.015 3.012
Dead Load Moments due to bearing shift t-m 0.00 0.00 0.00 0.00 0.00
Gain in moment t-m 0.00 0.00 0.00 0.00 0.00
Page 74
7.0 STRESS CHECK 1.1
Moments Due to Shift of Bearings t-m 0.00 0.00 0.00 0.00 0.00
Page 75
7.0 STRESS CHECK 1.1
Moment due to Live Load t-m 46.3 144.1 163.7 284.5 472.5
Page 76
7.0 STRESS CHECK 1.1
Page 77
7.0 STRESS CHECK 1.1
AFTER LONG TERM (INFINITY) LOSSES WITH TEMP WITHOUT LIVE LOA
(Temp Rise)
AFTER LONG TERM (INFINITY) LOSSES WITH TEMP WITHOUT LIVE LOA
(Temp fall)
AFTER LONG TERM (INFINITY) LOSSES WITH TEMP WITHOUT LIVE LOA
(Temp Max)
Page 78
7.0 STRESS CHECK 1.1
AFTER LONG TERM (INFINITY) LOSSES WITH TEMP WITHOUT LIVE LOA
(Temp Max)
finish
Page 79
8.0 STRESS CHECK 0.9
Dead Load Moments 1st Stage t-m 25.03 76.29 87.02 148.79 198.03
Page 80
8.0 STRESS CHECK 0.9
Stress at 21 day
Losses From 21st day to 28th day If 2nd stage > 21days multiply by = 0
Page 81
8.0 STRESS CHECK 0.9
Dead Load Moments due to Deck Slab t-m 36.39 122.15 140.25 244.67 326.27
Stress release due to hardening of solid slab i.e density reduces fro 2.60 to 2.5 t/m3
Page 82
8.0 STRESS CHECK 0.9
=(shr28-shr45)*nocable*acable*ecable*ifshr
Relaxation loss of GR1 Cable t 1.90 4.03 3.95 5.41 6.28
GR1 Cable
Top -1.029 -0.324 -0.359 -0.385 -0.384
Bottom 2.642 2.883 2.958 3.015 3.012
Dead Load Moments due to bearing shift t-m 0.00 0.00 0.00 0.00 0.00
Gain in moment t-m 0.00 0.00 0.00 0.00 0.00
Page 83
8.0 STRESS CHECK 0.9
Page 84
8.0 STRESS CHECK 0.9
Moment due to Live Load t-m 46.3 144.1 163.7 284.5 472.5
Page 85
8.0 STRESS CHECK 0.9
1.0 DL+1.0 SIDL-1+1.2-SIDL-2+0.9 Prestress+1.0 Live load+1.0 Differential Shrinkage & Creep
Top of Deck t/m2 83.4 102.6 119.1 218.3 372.0
Top of Girder t/m2 160.3 601.1 667.9 1134.5 1607.8
Bottom of Girder t/m2 305.0 480.5 342.6 198.0 -162.5
Page 86
8.0 STRESS CHECK 0.9
Page 87
8.0 STRESS CHECK 0.9
Page 88
8.0 STRESS CHECK 0.9
Temp Fall
Min. Stress deck slab TOP t/m2 -203.4 -234.6 -233.7 -230.7 -226.8
Min. Stress Deck Slab Bottom' t/m2 242.3 671.6 728.0 1130.7 1504.6
Page 89
9.0 STRESS CHECK 1.0
Stress Check For Sls- gp= 1.00
Item Unit 1 2 3 4 5
Support End Varying L/8 L/4 L/2
Chainage of Section from left
m 0.000 3.070 3.509 7.018 14.035
support
Dead Load Moments 1st Stage t-m 25.03 76.29 87.02 148.79 198.03
Page 90
9.0 STRESS CHECK 1.0
Stress At 21 day
Losses From 21st day to 28th day If 2nd stage > 21days multiply by = 0
Page 91
9.0 STRESS CHECK 1.0
Stress due to (C+S+R)
Dead Load Moments due to Deck Slab t-m 36.39 122.15 140.25 244.67 326.27
Stress release due to hardening of solid slab i.e density reduces 2.60 to 2.5 t/m3
Page 92
9.0 STRESS CHECK 1.0
GR1 Cable
Top -1.029 -0.333 -0.359 -0.385 -0.384
Bottom 2.642 2.903 2.958 3.015 3.012
Stress due to (C+S+R)
Top of Deck t/m2 2.63 0.85 0.92 0.99 0.98
Top t/m2 1.6 0.0 0.0 0.1 0.1
Bottom t/m2 -6.8 -7.4 -7.6 -7.7 -7.7
Dead Load Moments due to bearing sh t-m 0.00 0.00 0.00 0.00 0.00
Gain in moment t-m 0.00 0.00 0.00 0.00 0.00
Page 93
9.0 STRESS CHECK 1.0
Page 94
9.0 STRESS CHECK 1.0
Moment due to Live Load t-m 46.3 144.1 163.7 284.5 472.5
Page 95
9.0 STRESS CHECK 1.0
1.0 DL+1.0 SIDL-1+1.2-SIDL-2+1.0 Prestress+1.0 Live load+1.0 Differential Shrinkage & Creep+0.6 Tem
Top of Deck t/m2 360.0 381.4 397.9 497.1 650.8
Top of Girder t/m2 70.8 604.6 557.9 1004.3 1467.9
Bottom of Girder t/m2 522.5 174.1 573.4 485.0 159.2
Page 96
9.0 STRESS CHECK 1.0
Loss due to Friction & Slip t 0.33 0.50 0.68 0.93 1.08
Loss due to Elastic shortening t 6.0 12.0 40.0 60.0 60.0
Loss due to Creep t 1.2 1.5 2.3 3.1 3.5
Loss due to Shrinkage t 1.0 1.3 2.1 2.9 3.3
Loss due to Relaxation of Steel t 18.4 23.7 36.0 48.9 57.6
Total Loss t 27.0 39.1 81.1 115.8 125.6
Summary of loses
Loss due to Friction & Slip 0.133 %
Loss due to Elastic shortening 6.708 %
Loss due to Creep 0.438 %
Loss due to Shrinkage 0.403 %
Loss due to Relaxation of Steel 6.960 %
Total Loss 14.642 %
finish
Page 97
10.0 MOR AND VUR
Stress check for ULS-(gp=1.0) Support End Vr. L/8 L/4 L/2
Section from left Unit 1 2 3 4 5
m 0.000 3.070 3.509 7.018 14.035
Section Property
Thickness of Web m 0.30 0.20 0.20 0.20 0.20
Height of girder only m 2.00 2.000 2.00 2.00 2.00
Thickness of deck slab m 0.240 0.240 0.240 0.240 0.240
Height of Composite Section m 2.240 2.240 2.240 2.240 2.240
Area of Composite Section m2 1.619 1.432 1.432 1.432 1.432
Width of Top Flange m 3.157 3.157 3.157 3.157 3.157
CG from bottom m 1.493 1.526 1.526 1.526 1.526
Inertia of composite section m4 0.907 0.896 0.896 0.896 0.896
Zt m3 0.747 1.255 1.255 1.255 1.255
Zb m3 0.607 0.587 0.587 0.587 0.587
Zb of Girder only m3 0.365 0.379 0.379 0.379 0.379
Total No of strands 13 17 27 37 43
Torsion
DL of Girder t-m 0.0 0.0 0.0 0.0 0.0
DL of Deck slab t-m 0.0 0.0 0.0 0.0 0.0
SIDL t-m 0.0 0.0 0.0 0.0 0.0
LL t-m 0.0 0.0 0.0 0.0 0.0
Ultimate Torsion "V" t-m 0.0 0.0 0.0 0.0 0.0
Bending Moments
DL of Girder t-m 33.8 103.0 117.5 200.9 267.3
DL of Deck slab t-m 49.1 164.9 189.3 330.3 440.5
SIDL t-m 6.4 21.1 24.2 42.7 60.1
Page 98
10.0 MOR AND VUR
LL t-m 69.5 216.1 245.5 414.9 543.4
Ultimate Moment "M" t-m 158.8 505.1 576.5 988.7 1311.3
Effective depth "d" m 1.98 2.00 2.04 2.07 2.07
Bottom fibre stress due to Ultimate B Mpa -3.52 -11.12 -12.70 -21.82 -28.97
Ultimate Moment capacity of the section As per Clause 16.4.3 of IRS CBC
Shear Capacity of the section As per Clause 10.3.2 & 16.5 of IRC-112
Page 99
10.0 MOR AND VUR
Min.
Reinf. Reinf. Reinf. Reinf.
reinf.
Shear Reinforcement Requir Requir Requir Requir
Requir
ed ed ed ed
ed
fyk 500.0 500.0 500.0 500.0 500.0
Minimum Shear reinf. Ratio rwmin % 0.11 0.11 0.11 0.11 0.11
rwmin=Asw/(s.bw.sina) i.e. Asw cm 2 0.48 0.32 0.32 0.32 0.32
vED-Applied shear stress=VED/(bw*Z) Mpa 3.32 4.34 4.01 2.88 1.03
acw 1.01 1.01 1.01 1.02 1.02
v 0.49 0.49 0.49 0.49 0.49
Permissible shear stress=acw*v*fcd/(cotq+tanq) 4.21
Mpa 4.22 4.24 4.27 4.28
Status OK Check OK OK OK
q to be considered deg. 21.8 21.8 21.8 21.8 21.8
Required shear reinforcement cm2 1.4 1.2 1.1 0.8 0.3
Design shear reinforcement cm 2
1.37 1.20 1.11 0.79 0.32
Dia of bars mm 12 12 10 10 10
Spacing mm 150 150 150 150 150
Legs No. 2 2 2 2 2
Reinforcement provided cm 2
2.26 2.26 1.57 1.57 1.57
Check OK OK OK OK OK
Page 100
11.0 TEMP. RISE
F = EC a Dt A
EC = 3.40E+06 t/m2
a = 1.20E-05 /0C
Dt = Temperature differential
A = X - sectional Area Where temp. differential is Dt
TEMPERATURE GRADIENT
( FOR CONCRETE SUPERSTRUCTURE )
( Refer IRC : 6 - 2010 ; clause 215.3 )
At Midspan
150 2 1.51
4.0
250
2.240
3
0
0
4
150
5 1.05
2.1
Element
1 2 3 4 5 TOTAL
No.
Width 3.883 0.800 0.200 0.800 0.800
Height 0.240 0.131 1.513 0.206 0.150 2.240
Area 0.932 0.105 0.303 0.164 0.120 1.624
Y 0.1200 0.306 1.128 1.987 2.165
A*Y 0.112 0.032 0.341 0.327 0.260 1.072
A*Y^2 0.0134 0.0098 0.3849 0.6496 0.5625 1.620
T 6.76 1.51 0.00 0.00 1.05
A*T 6.301 0.159 0.000 0.000 0.126 6.585
A*T*Y 0.756 0.048 0.000 0.000 0.273 1.077
As per Dr. V. K . Raina's book ''Concrete Bridge Practice Analysis ,Design and Economics'' Chapter 30.
Page 101
11.0 TEMP. RISE
At Support
150 2 0.76
4.0
250
3
0
150
4 1.05
2.1
Element 1 2 3 4 TOTAL
No.
Width 3.883 0.800 0.300 0.300
Height 0.240 0.226 1.624 0.150 2.240
Area 0.932 0.180 0.487 0.045 1.645
Y 0.120 0.353 1.278 2.165
A*Y 0.112 0.064 0.623 0.097 0.896
A*Y^2 0.0134 0.0225 0.7957 0.2109 1.042
Page 102
11.0 TEMP. RISE
As per Dr. V. K . Raina's book ''Concrete Bridge Practice Analysis ,Design and Economics'' Chapter 30.
Min. Tension Longitudnal Reinf. For Top bulb (Main Girder) (For all Comb.)
Page 103
11.0 TEMP. RISE
173.17
0.38
2.00
746.65
Min. Tension Longitudnal Reinf. For Bottom bulb (Main Girder) (For all Comb.)
1695.77
0.2
2.00
###
0.31
0 0.185
66.831
187 0.24
0.8
307.19
TENSION
Page 104
12.0 TEMP FALL
F = EC a Dt A
EC = 3.40E+06 t/m2
a = 1.20E-05 /0C
Dt = Temperature differential
A = X - sectional Area Where temp. differential is Dt
TEMPERATURE GRADIENT
( FOR CONCRETE SUPERSTRUCTURE )
( Refer IRC : 6 - 2010 ; clause 215.3 )
At Mid span
250 2 -0.54
-0.7
250
2.24
3
0
200 -0.81
4
-0.8
250 5 -3.70
-6.6
Element
1 2 3 4 5 TOTAL
No.
Width 3.883 0.800 0.200 0.800 0.800
Height 0.240 0.131 1.513 0.206 0.250 2.340
Area 0.932 0.105 0.303 0.164 0.200 1.704
Y 0.120 0.306 1.128 1.987 2.215
A*Y 0.112 0.032 0.341 0.327 0.443 1.255
A*Y^2 0.0134 0.0098 0.3849 0.6496 0.9812 2.039
T -5.85 -0.54 0.00 -0.81 -3.70
A*T -5.451 -0.057 0.000 -0.133 -0.740 -6.381
A*T*Y -0.654 -0.017 0.000 -0.265 -1.639 -2.576
Page 105
12.0 TEMP FALL
As per Dr. V. K . Raina's book ''Concrete Bridge Practice Analysis ,Design and Economics'' Chapter 30.
At Support
1 -5.85
250 2 -0.34
-0.7
200
3
0
200
-0.81
-0.8 4
250 -3.70
5
-6.6
Element 1 2 3 4 5 TOTAL
No.
Width 3.883 0.800 0.300 0.300 0.300
Height 0.240 0.226 1.624 0.206 0.250 2.546
Page 106
12.0 TEMP FALL
As per Dr. V. K . Raina's book ''Concrete Bridge Practice Analysis ,Design and Economics'' Chapter 30.
-203.4
0.110
Point of zero stress
242.3
FINISH
Page 107
14.0 DESIGN OF END ANCHORAGE
(as per clause 17 IRC-18)
Err:508
300
CEB- FIP model code has been used to calculate the increase in permissible bearing stress.
According to above code ,
Increase in permissible stress (using 16 f spirals with 300 mm ID and 50 mm spacing)
D F = 1.3*u/s*As*fyd-(Ac1-Ac2)*fcd*(1-(8*Mbdu)/(u/p *Nsdu))
where,
u = perimeter of hoop p*(0.3+0.016)= 0.992 m
s = hoop spacing = 0.05m
As = c/s area of hoop R/F = 2.01E-04 m2
fyd = design strength of hoop = 0.87*41500 = 36105.0 t/m2
Ac1= 0.32*0.32 = 0.102 m2
Ac2 = area of concrete within hoop R/F
= p/4*0.3^2= 0.071 m2
fcj=35 t/m^2
207 Err:508
800
2Yo = 800 mm
2Ypo = 207 mm
Ypo/Yo = 0.26
From table 8 of IRC-18 Fbst/Pk = 0.23
Pk = ultimate cable force = Err:509 t
Err:509 Err:509 t
Allowable stress 0.87* 41500 = 36105 t/m2
Ast Req. = Err:509 Err:509 cm2
FINISH
13.0 Provision of Untensioned Reinforcement in Beams
1.0 Minimum Reinforcement in Longitudinal direction
(As per Cl. 6.5.4 & 16.5.6 of IRC 112)
Bulb
Perimter of bottom bulb at mid span = 1650 mm
Area of steel required in bulb = 1239 mm2
Providing 6 no 12 dia bars distributed around the perimeter of the beam
5 no 12 dia Curtailed up to l/4 eiter side from C/L
Area of Steel provided 1244 mm2 OK
Web
Perimeter of web = 2850 mm
Area of steel required in web = 1140 mm2
Providing 11 no 12 dia bars distributed around the perimeter of the beam
Area of Steel provided 1244 mm2 OK
Flange
Perimeter of flange = 1600 mm
Area of steel required in flange 640 mm2
Providing 6 no 12 dia bars distributed around the perimeter of the beam
Area of Steel provided 679 mm2 OK
Check For minimum r/f
Total Area of steel Provided 3167 mm2
Area of Steel required = 2577 mm2 OK
PROVISION OF MINIMUM REINFORCEMENT
This clause needs to be followed in case girder is in tension at bottom under rare combination of l
otherwise if it is in compression it need not to be followed
Reinforcement at bottom (in bottom flange ) shall be provided to cater for cracking moment i.e.
As,min*ss= kc*k*fct,eff*Act
Tensile strength of concrete fct,eff = 2.50 Mpa
Permissible stress in steel after crack formation = 500.0 Mpa
Maximum stress at top of Girder = 16.96 Mpa
Minimum stress at top of Girder = -3.07 Mpa
Depth of Girder = 2.000 m
Neutral axis from top = 1.943 m
Tension zone from bottom = 0.057 m
Width of section in tension = 0.800 m
Area of concrete in tension Act = 0.0453 m2
kc =0.9*Fcr/Act/fct,eff >=0.5 = 1.4
k = 1.0
As,min ss = 3.24 cm2
Provide 6 no Nos. of 12 mm dia. = 6.79 cm2 OK
Page 110
14.0 Design of Shear Connectors
At Support AT 0 m
Page 111
14.0 Design of Shear Connectors
VEd = 137.38 t
z = 1.961 m
bi = 0.800 m
m Rough = 0.700
fyd = 435 Mpa
a = 90 deg.
fck = 55 Mpa
fcd 0.67 /γm fck = 25 Mpa
sn Vertical component of prestress = 0.00 Mpa
As = 2555 mm2
Aj = 0.800 m2
r = 0.003
v 0.6*(1-fck/310) = 0.494
Minimum steel required = 1200 mm2
Provide 2 Legged 12Ø @ 150 c/c + 2 Legged 10Ø @ 150 c/c
Area of Steel provided = 2555 mm2 OK
AT L/4 AT 7.0 m
Check for Shear in Flange Portion (As per clause 10.3.5 of IRC-112 )
As per clause 10.3.5 (4) , if vED is less than 0.4fctd no extra reinforcement above that for flexure is required.
Mix for deck slab = M 45
fctd =fctk/gm
fctk Characteristic tensile strength of conc. at strain, 5% fractile of tensile strength= 2.3 Mpa
gm = 1.5
Page 112
14.0 Design of Shear Connectors
Support AT 0.0 m
Fd=vED*b = 77.8 t
FINISH
Page 113
END X-GIRDER FORCE SUMMURY :-
Material property
fyk Mpa 500
gm 1.15
fyd Mpa 435
Permissible stress in steel Rare comb. (12.2.2-IRC112) 0.8Fyk Mpa 400
fck Mpa 35
η 1
gc 1.5
fcd Mpa 16
Permissible stress in conc. Rare comb. (12.2.1-IRC112) .48 fck Mpa 17
Dia of main R/F LEGGED LEGGED (PER M) LAYERS LAYERS
mm 25
(PER M)
LEGGED LAYERS
Spacing s mm
(PER M)
no of bars 4
Xumax / d 0.458
λXumax 714
Limiting moment of resistance, Mu,lim KNm 7098
If ( Mu,lim > Mu) No
LEGGED (PER M) LAYERS
Mu = KNm 1181
Check, If Md < Mu Safe
LEGGED LAYERS At
(PER M)
Shear resistance withour shear reinforcement supp.
d 1948
K 1.32
bw = 400.00
Asl 1963
LEGGED (PER M) LAYERS LAYERS
ρ1 = Asl / bw d ρ1 0.003
VRd,c KN 235
νmin bw d, cl 10.3.2-IRC 112 KN 217
VRd,c (adopted) 235
Ultimate design shear VEd KN 1574
Sheer Reinforcement 'Required' or 'Not Required' REQUIRED
VRd.s (N) = 1338866
Design Yield Strength shear reinforcement fywd = 0.8fywk / gm n/sqmm 320
Privide 12 dia 2 legged stirrups / m width 's' = = Asw * Z * fywd / VRd.s
s= mm c/c 101.51
Provide 12 $ 2 -L stirrpus 110 mm C/C
Stress check
Mu= 875
m =280/fy = 8.000
Width Bf mm 400
Depth Df mm 2000
Depth of NA 171
Icr ( section is cracked ) 5.0E+10
FINISH
INT. X-GIRDER FORCE SUMMARY (UN- FACTORED)
ACTIONS OF DL
Moments and Shears (Unfactored)
Memb No
BM kN-M 56.00
SF kN 69
ACTIONS OF SIDL
Moments and Shears (Unfactored)
Memb No
BM kN-M 564.0
SF kN 145.0
ACTIONS OF LL
Moments and Shears (Unfactored)
Memb No
BM kN-M 445
SF kN 194
SPV
Moments and Shears (Unfactored)
Memb No 286
BM kN-M 1681
SF kN 471
Memb No 0
BM kN-M 76
SF kN 93.15
ACTIONS OF SIDL
Moments and Shears (factored)
Memb No
BM kN-M 761
SF kN 195.75
ACTIONS OF LL
Moments and Shears (factored)
Memb No 0
BM kN-M 1681
SF kN 471
Material property
fyk Mpa 500 500 500
gm 1.15 1.15 1.15
fyd Mpa 435 435 435
Permissible stress in steel Rare comb. (12.2.2-IRC112) 0.8Fyk Mpa 400 400 400
fck Mpa 30 30 30
η 1 1 1
gc 1.5 1.5 1.5
fcd Mpa 13 13 13
Permissible stress in conc. Rare comb. (12.2.1-IRC112) .48 fck Mpa 14 14 14
Dia of main R/F LEGGED LEGGED (PER M) LAYERS mm
LAYERS 12 25 32
LAYS
(PER M)
Spacing LEGGED s
LAYERS mm
(PER M)
no of bars 3 3 4
LEGGED LAYERS At At At
(PER M)
Shear resistance withour shear reinforcement supp. supp. supp.
d 1714 1948 1884
K 1.34 1.32 1.33
bw = 250.00 250.00 250.00
Asl 339 1473 3217
LEGGED (PER M) LAYERS LAYERS LAYERS LAYERS
ρ1 = Asl / bw d ρ1 0.001 0.003 0.007
VRd,c KN 85 148 189
νmin bw d, cl 10.3.2-IRC 112 KN 113 125 122
VRd,c (adopted) 113 148 189
Ultimate design shear VEd KN 93 289 471
Sheer Reinforcement 'Required' or 'Not Required' NOT REQUIRED REQUIRED REQUIRED
VRd.s (N) = -19909 140506 282411
Design Yield Strength shear reinforcement fywd = 0.8fywk / gm n/sqmm 320 320 320
Privide 8 dia 2 legged stirrups / m width 's' = = Asw * Z * fywd / VRd.s
s= mm c/c -2719.57 421.78 189.82
Provide 8 $ 2 -L stirrpus 150 mm C/C
FINISH FINISH
STAAD OUTPUT DL + SIDL
1 12 16 20 133 24 28 32 36 40 107 103 99 95 91 135 87 83 7968
3 14 18 22 142 26 30 34 38 42 109 105 101 97 93 137 89 85 8170
191192 193 194 210 195 196 197 198 199 208 207 206 205 204 209 203 202 201200
9 52 53 54 145 55 56 57 58 59 122 121 120 119 118 140 435 439 11776
6 129 73
7 130 74
1044 45 46 146 47 48 49 50 51 116 115 114 113 112 141 436 440 11177
8 131 75
5 132 72
1160 61 62 144 63 64 65 66 67 128 127 126 125 124 139 437 441 12378
167 169 168
464. DIST 3.2 1.37 5.389 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 -
465. 1.5 -
466. 1.5 1.5 1.5 1.5 -
467. WID 1.05
468. ** FATIGUE LOAD ( IF =0.18/ =.09) (IRC-6 CLAUSE 204.6)
469. *TYPE 9 LOAD 65.4 76.3 76.3
470. *DIST 4.5 1.4 WID 1.68
471. **
472. *
475. *********************LIVE LOADS
476. **
477. ****LL ECCENTRIC LOADING TO GET MAXIMUM B.M IN END GIRDER
478. ** 70R TRACKED LOADING + ONE LANE CLASS A : -
479. LOAD GENERATION 300
480. TYPE 1 -12.024 0 3.68 XINC 0.3
481. TYPE 2 -18.6 0 9.3 XINC 0.3
482. *
483. ** 3-LANES OF CLASS A LOADING: -
484. LOAD GENERATION 300
557. PRINT MAXFORCE ENVELOPE LIST 329 330 331 333 356
558. ** SPV
559. LOAD LIST 901 TO 1200
560. PRINT MAXFORCE ENVELOPE LIST 262 264 266 269 361
561. PRINT MAXFORCE ENVELOPE LIST 329 330 331 333 356
567. PRINT MAXFORCE ENVELOPE LIST 321 322 323 357 325
569. FINISH
212223 227 231 350 235 239 243 247 251 318 314 310 306 302 352 298 294 2902791563
1574 1578 1582 1636 158
214225 229 233 359 237 241 245 249 253 320 316 312 308 304 354 300 296 2922811565
1576 1580 1584 1638 158
363364 365 366 382 367 368 369 370 371 380 379 378 377 376 381 375 374 3733721656
1657 1658 1659 1665 166
389413 390 391 412 392 393 394 395 396 397 405 403 402 401 400 408 399 3984141692
1682 1683 1689 1684 168
387 386 388 1672
456. DIST 3.2 1.37 5.389 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 -
457. 1.5 -
458. 1.5 1.5 1.5 1.5 -
459. WID 2.55
460. ****
461. *** SPECIAL VEHICLE-SV2(IF=0)
462. TYPE 8 LOAD 15 23.75 23.75 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 -
463. 45 45 45
464. DIST 3.2 1.37 5.389 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 -
465. 1.5 -
466. 1.5 1.5 1.5 1.5 -
467. WID 1.05
468. ** FATIGUE LOAD ( IF =0.18/ =.09) (IRC-6 CLAUSE 204.6)
469. *TYPE 9 LOAD 65.4 76.3 76.3
470. *DIST 4.5 1.4 WID 1.68
471. **
472. *
475. *********************LIVE LOADS
476. **
477. ****LL ECCENTRIC LOADING TO GET MAXIMUM B.M IN END GIRDER
478. ** 70R TRACKED LOADING + ONE LANE CLASS A : -
479. LOAD GENERATION 300
480. TYPE 1 -12.024 0 3.68 XINC 0.3
481. TYPE 2 -18.6 0 9.3 XINC 0.3
482. *
483. ** 3-LANES OF CLASS A LOADING: -
484. LOAD GENERATION 300
557. PRINT MAXFORCE ENVELOPE LIST 329 330 331 333 356
558. ** SPV
559. LOAD LIST 901 TO 1200
560. PRINT MAXFORCE ENVELOPE LIST 262 264 266 269 361
561. PRINT MAXFORCE ENVELOPE LIST 329 330 331 333 356
567. PRINT MAXFORCE ENVELOPE LIST 321 322 323 357 325
569. ** SPV
570. LOAD LIST 901 TO 1200
572. PRINT MAXFORCE ENVELOPE LIST 254 256 258 261 362
573. PRINT MAXFORCE ENVELOPE LIST 321 322 323 357 325
578. FINISH
TABLE FOR STRESSING Jack Ram rea = 563.72 sqcm
Jack Eff. = 0.95
Cable No Theoretical Theretical Type of No of Dummy Stage of Length of extra Approx. Prestress
Jack End Elongation Bearing Strands to strands Prestressing cable length Jack losses
Force at Each End Plate & be stressed anchour beyond Pressure
Tube Unit to anchour kg/sqcm
anchour each side
Ton mm No/ N dia No No mm mm %
cb1 Err:509 Err:509 1T15 Err:509 Err:509 2 Err:508 700 Err:509 14.64
cb2 Err:509 Err:509 1T15 Err:509 Err:509 2 Err:508 700 Err:509
cb3 Err:509 Err:509 1T15 Err:509 Err:509 1 Err:508 700 Err:509
cb4 Err:509 Err:509 1T15 Err:509 Err:509 1 Err:508 700 Err:509
cb5 Err:509 Err:509 1T15 Err:509 Err:509 1 Err:508 700 Err:509
cb6 Err:509 Err:509 1T15 Err:509 Err:509 2 Err:508 700 Err:509
15.0 Design of Lifting Hook
Page 137
16.0 DESIGN OF ECG
Jacking Reaction
DL+ SIDL Reaction at outer support V = 1050.00 kN
Hogging SF Vu FACTORED = 1417.50 kN
Hogging Moment Mu FACTORED = 1063.13 kN-m
DL+ SIDL Reaction between jacks V= = 850.00 kN
Sagging SF Vu FACTORED = 637.50 kN
Sagging Moment Mu FACTORED = 430.31 kN-m
ULS Design
Member No
Action
SAG
HOGG.
G.
Mu kN-m 1063.1 637.5
BMD
Material Property
fyk Mpa 500 500
gm 1.15 1.15
fyd Mpa 434.8 434.8
Permissible stress in steel Rare comb. (12.2.2-IRC112) 0.8Fyk Mpa 400 400
fck Mpa 30 30
η 1.00 1.00
gc 1.5 1.5
fcd Mpa 13.40 13.40
Permissible stress in conc. Rare comb. (12.2.1-IRC112) .48 fck Mpa 14.4 14.4
Dia of main R/F mm 25 25
Spacing of Bars Main LAYERS mm c/c 66.67 ###
No of bars Main NO 4.0 2.0
Dia of main R/F Extra mm 12.00 20
Spacing of Bars Extra mm c/c 66.7 ###
No of bars NO 2.0 2.0
Ast_provided 2190 1610
If λx < deck slab thck
λx 186.97 ###
λ 0.8 0.8
Effective depth, d mm 1947.5 1948
d - λx/2 mm 1854.02 ###
Ultimate resisting moment, Mu KNm 1765.1 ###
Xumax / d 0.458 0.458
λXumax 713.56 ###
Page 138
Limiting moment of resistance, Mu,lim KNm 5779.8 ###
Ok Ok
If ( Mu,lim > Mu) KNm 1063.13 ###
Mu = Safe Safe
Check, If Md < Mu
Page 139
cl. 10.3.3.3 Eq. 10.17 of IRC :112-2010
VEd <= ASW fywd (KN) = 63
cl. 10.3.3.3 (6) of IRC :112-2010 =
MEd / z + 0.5 VEd (KN) = 605
Med max / z (KN) = 952
= OK
cl. 10.3.3.2 Eq. 10.7 of IRC :112-2011 =
VRd.s = ASW z fywd cot Ɵ/ S (KN) = 1456
= OK
acw = (scp = NEd / Ac = 0) = 1.0
n1 = 0.6
cl. 10.3.3.2 Eq. 10.8 of IRC :112-2011
VRd.max = acw bw z n1 fcd / (cot Ɵ + tan Ɵ) (KN) = 1953
= OK
cl. 10.3.3.2 Eq. 10.10 of IRC :112-2011
ASW.max <= 0.5 acw n1 fcd bw S / fywd = 764
= OK
cl. 10.3.1 of IRC :112-2011
rw = ASW/( S bw sina) = 0.0021
cl. 10.3.3.5 of IRC :112-2011
rw,min = ( 0.072 fck0.5 ) / fyk = 0.0008
= OK
Strees Check
SLS Comb. Moment kN-M 1050.0 638
Stress check m = 280/ fck = 9.33 9.33
Width Bf mm 380 380
Depth Df LAYERS
mm 2000 2000
Page 140
2.5(h - d) 131 131
Aceff 49875 ###
ρp,eff = As / Ac,eff ρp,eff 0.0439 ###
kt 0.5000 ###
fct,eff 3.0000 ###
f f t , ef f 0.0011 ###
sc k t 1 e , p , ef f
p .ef f sc
sm cm 0 .6
Es Es 0.0008 ###
0.6 σsc / Es 0.0008 ###
εsm - εcm 0.0011 ###
f ft, eff c 40.00 40.00
sc k t 1 ,
e p , eff
p.eff sc φeq 25.00 25.00
sm cm 0 .6
Es Es Sr,max 232.80 ###
Wk mm 0.2611 ###
Permissible wk mm 0.3 0.3
Check Ok Ok
Page 141
17.0 ICG
INT. X-GIRDER FORCE SUMMARY (UN- FACTORED)
ACTIONS OF DL + SIDL
Moments and Shears (Unfactored)
Memb No
SF kN 92.52
ACTIONS OF LL
Moments and Shears (Unfactored)
Memb No
BM kN-M SAGGING 811
BM kN-M HOGGING 20
SF kN 215.12
SPV
Moments and Shears (Unfactored)
Memb No
BM kN-M SAGGING 1567
BM kN-M HOGGING 36
SF kN 415.07
SF kN 125
ACTIONS OF LL
Moments and Shears (factored)
SF kN 477.33
Page 142
17.0 ICG
ULS Design
Member No
Action
HOGG. SAGG.
Mu kN-m 483.7 1801.9
BMD
Material Property
fyk Mpa 500 500
gm 1.15 1.15
fyd Mpa 434.8 434.8
Permissible stress in steel Rare comb. (12.2.2-IRC112) 0.8Fyk Mpa 400 400
fck Mpa 45 45
η 1.00 1.00
gc 1.5 1.5
fcd Mpa 20.10 20.10
Permissible stress in conc. Rare comb. (12.2.1-IRC112) .48 fck Mpa 21.6 21.6
Dia of main R/F mm 20 25
Spacing of Bars Main LAYERS mm c/c 75 72.50
No of bars Main NO 3.0 3.0
Dia of main R/F Extra mm 0 25
Spacing of Bars Extra mm c/c 75 145.0
No of bars NO 0.0 2.0
Ast_provided 942 2454
If λx < deck slab thck
λx 81.55 212.36
λ 0.8 0.8
Effective depth, d mm 1950 1947.5
d - λx/2 mm 1909.23 1841.32
Ultimate resisting moment, Mu KNm 782.3 1964.9
Xumax / d 0.458 0.458
λXumax 714.48 713.56
Limiting moment of resistance, Mu,lim KNm 5718.4 5703.8
Ok Ok
If ( Mu,lim > Mu) KNm 483.75 1801.91
Mu = Safe Safe
Check, If Md < Mu
Page 143
17.0 ICG
Ɵ = 0.5 x sin-1 (Applied shear stress / 0.135/fck/(1-fck/310)) =
Min angle of inclination, Ɵ (deg) = 21.8
cl. 10.3.2(2) Eq. 10.2 of IRC :112-2010 =
K = 1+Sqrt(200/d) <= 2.0 = 1.3
cl. 10.3.2(2) Eq. 10.3 of IRC :112-2010
nmin = 0.031 K3/2 fck1/2 = 0.3
cl. 10.3.1 of IRC :112-2011 =
r1 = Asl/(bw d) <= 0.02 = 0.002
= OK
0.12 K (80 r1 fck)0.33 = 0.298
Axial compressive force NEd (KN) = 0.0
scp = NEd / Ac <= 0.2 fcd =
0.0
Page 144
17.0 ICG
acw = (scp = NEd / Ac = 0) = 1.0
n1 = 0.6
cl. 10.3.3.2 Eq. 10.8 of IRC :112-2011
VRd.max = acw bw z n1 fcd / (cot Ɵ + tan Ɵ) (KN) = 1985
= OK
cl. 10.3.3.2 Eq. 10.10 of IRC :112-2011
ASW.max <= 0.5 acw n1 fcd bw S / fywd = 754
= OK
cl. 10.3.1 of IRC :112-2011
rw = ASW/( S bw sina) = 0.0031
cl. 10.3.3.5 of IRC :112-2011
rw,min = ( 0.072 fck0.5 ) / fyk = 0.0010
= OK
Strees Check
SLS Comb. Moment kN-M 358.3 1567
Stress check m = 280/ fck = 6.22 6.22
Width Bf mm 250 250
Depth Df LAYERSmm 2000 2000
Page 145
17.0 ICG
εsm - εcm 0.0007 0.0000
f ft, eff c 40.00 40.00
sc k t 1 ,
e p , eff
p.eff sc φeq 20.00 25.00
sm cm 0 .6
Es Es
Sr,max 248.73 192.82
Wk mm 0.1813 0.0001
Permissible wk mm 0.3 0.3
Check Ok Ok
Page 146
18.0ACTIVITY
Age of girder/ Activity Min Strength
Slab in days of Conc.
N/sqmm
Page 147
589. LOAD LIST 1
590. ** SELF WEIGHT OF GIRDER
591. ****OUTER GIRDER
592. PRINT MAXFORCE ENVELOPE LIST 356 364 386 402
MAXFORCE ENVELOPE LIST 356
DXF IMPORT OF STAAD.DXF -- PAGE NO. 13
356
364
386
402
342
350
391
401
356
364
386
402
342
350
391
401
356
364
386
402
342
350
391
401
356
364
386
402
********** END OF FORCE ENVELOPE FROM INTERNAL STORAGE **********
342
350
391
401
356
364
386
402
342
350
391
401
631. FINISH
19.0STRESS SUMMARY
1 Prestressing stage-1 (14) days after casting of Permitted Compressive Strength .48*fck 2381 T/SQM
girder on ground
2 Prestressing stage-2 (21) days after casting of Permitted Compressive Strength .48*fck 2694 T/SQM
girder on ground
Permitted Tensile Strength -469 T/SQM
Page 157
19.0STRESS SUMMARY
AFTER LONG TERM (INFINITY) LOSSES (WITH -10% JACKING FORCE) WITH TEMP WITHOUT LL
TOP BOTTOM TOP
ACTUAL PERM. STATUS ACTUAL PERM. STATUS ACTUAL PERM. STATUS
MAX (T/SQM) 1392.8 2694 SAFE 911.5 2694 SAFE 476.4 2204.08 SAFE
MIN (T/SQM) -109.0 -469 SAFE 135.9 -469 SAFE -218.6 -469 SAFE
FREQUENT CASE
TOP BOTTOM TOP
ACTUAL PERM. STATUS ACTUAL PERM. STATUS ACTUAL PERM. STATUS
MAX (T/SQM) 1618.6 2694 SAFE 816.5 2694 SAFE 510.1 2204.08 SAFE
MIN (T/SQM) 41.6 -469 SAFE -81.9 -469 SAFE -145.6 -469 SAFE
RARE CASE
TOP BOTTOM TOP
ACTUAL PERM. STATUS ACTUAL PERM. STATUS ACTUAL PERM. STATUS
MAX (T/SQM) 1695.8 2694 SAFE 876.9 2694 SAFE 742.3 2204 SAFE
MIN (T/SQM) -2.1 -469 SAFE -307.2 -469 SAFE -234.6 -469 SAFE
Page 158
19.0STRESS SUMMARY
HOGG SAGG SHEAR
ACTUAL PERM. STATUS ACTUAL PERM. STATUS ACTUAL PERM. STATUS
Prov. Sh.
ULS (kN-m) 1063 1765 SAFE 638 1315 SAFE 1063.13 195.8
Re.nf
SLS-QUASI
3.98 10.80 SAFE 2.28 10.80 SAFE
(N/mm2)
SLS-RARE
3.98 14.40 SAFE 2.28 14.40 SAFE
(N/mm2)
CRACK (mm) 0.26 0.30 SAFE 0.21 0.30 SAFE
FINISH
Page 159
20.0 MATERIALPROPERTIES
CONCRETE DETAILS
Girder Concrete
Page 160
20.0 MATERIALPROPERTIES
=
S= Coeff. With value , ( for OPC ) = 0.25
=
(t/t1) = 14.00
=
[ 1- (28/t/t1)^0.5 ] = -0.41
=
Ecm(t) = (Eq. 6.1) [fcm(t)/fcm]^0.3 Ecm = 33929 N/sqmm
=
Modulur ratio at 1st stage stressing = 5.75
No of cables 1 2 3 4 5
Cables to 1 2
be stressed
M- 55.00
At transfer= -4.6 N/sqmm
At Service= -2.50 N/sqmm
fctm(t) = [βcc(t)]^α * fctm
α= 1.00 for t< 28.00 days
Page 161
20.0 MATERIALPROPERTIES
STRAND DETAILS
HT strand shall be Uncoated Stress Relieved Low Relaxation Steel conforming to IS : 14268.
Page 162