0% found this document useful (0 votes)
31 views56 pages

Unit 7A Whatsapp

The document contains a series of trigonometry exercises and problems, including calculations involving angles, side lengths, and properties of triangles and rhombuses. It also includes verification of trigonometric identities and simplifications without calculators. Additionally, there are applications of trigonometry in real-world scenarios, such as determining if a ladder reaches a window.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
31 views56 pages

Unit 7A Whatsapp

The document contains a series of trigonometry exercises and problems, including calculations involving angles, side lengths, and properties of triangles and rhombuses. It also includes verification of trigonometric identities and simplifications without calculators. Additionally, there are applications of trigonometry in real-world scenarios, such as determining if a ladder reaches a window.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 56

Unit 7A: Trigonometry

Classwork/Homework
Activity 7A.1. P.10
1. If 𝑝 = 49° and 𝑞 = 32°, use a calculator to determine whether the
following statements are true or false.
1.1. sin 𝑝 + 3 sin 𝑝 = 4 sin 𝑝
1.2. cos(𝑝 − 𝑞) = cos 𝑝 − cos 𝑞
1.3. sin(2𝑝) = 2 sin 𝑝 cos 𝑝

2. Determine the following angles (correct to one decimal place):


2.1. cos 𝛼 = 0,64
1
2.2. cos 2𝛽 = 0,3
2
2.3. 2 sin 3𝛽 + 1 = 2,6
2.4. sin 𝜃 2
=4
cos 𝜃 3

3. In ∆𝐴𝐵𝐶, 𝐴𝐶̂ 𝐵 = 30°, 𝐴𝐶 = 20 cm and 𝐵𝐶 = 22 cm. The perpendicular


line from 𝐴 intersects 𝐵𝐶 at 𝑇.

Determine:
3.1. the length 𝑇𝐶 (Leave your answer in simplest surd form)
3.2. the length 𝐴𝑇
3.3. the angle 𝐵𝐴̂𝑇 (Round your answer off to 2 decimal places)

4. A rhombus has a perimeter of 40 cm and one of the internal angles is 30°.


Round your answer off to 2 decimal places.
4.1. Determine the lengths of the sides.
4.2. Determine the lengths of the diagonals.
4.3. Calculate the area of the rhombus.

5. Simplify the following without using a calculator:


5.1. 2 sin 45° × 2 cos 45°
5.2. cos2 30° − sin2 60°
5.3. 4 sin 60° cos 30° − 2 tan 45° + tan 60° − 2 sin 60°
5.4. sin 60° × √2 tan 45° + 1 − sin 30°
6. Given the diagram below.

B(2; 2√3)

Determine the following without using a calculator:

6.1. 𝛽
6.2. cos 𝛽
6.3. cos2 𝛽 + sin2 𝛽

7. The 10 m ladder of a fire truck leans against the wall of a burning building
at an angle of 60°. The height of an open window is 9 m from the ground.
Will the ladder reach the window?

Answers:

1. 𝑝 = 49° and 𝑞 = 32°


1.1. sin 𝑝 + 3 sin 𝑝 = 4 sin 𝑝

𝐿𝐻𝑆 = sin 49° + 3 sin 49°


𝐿𝐻𝑆 = 0,75470958 + 3(0,75470958)
𝐿𝐻𝑆 = 0,75470958 + 2,264128741
𝐿𝐻𝑆 = 3,018838321
𝐿𝐻𝑆 = 3,02

𝑅𝐻𝑆 = 4 sin 49°


𝑅𝐻𝑆 = 4(0,75470958)
𝑅𝐻𝑆 = 3,018838321
𝑅𝐻𝑆 = 3,02

∴ True, 𝐿𝐻𝑆 = 𝑅𝐻𝑆

1.2. cos(𝑝 − 𝑞) = cos 𝑝 − cos 𝑞

𝐿𝐻𝑆 = cos(49° − 32°)


𝐿𝐻𝑆 = cos 17°
𝐿𝐻𝑆 = 0,956304756
𝐿𝐻𝑆 = 0,96
𝑅𝐻𝑆 = cos 49° − cos 32°
𝑅𝐻𝑆 = 0,656059029 − 0,848048096
𝑅𝐻𝑆 = −0,191989067
𝑅𝐻𝑆 = −0,19

∴ False, 𝐿𝐻𝑆 ≠ 𝑅𝐻𝑆

1.3. sin(2𝑝) = 2 sin 𝑝 cos 𝑝

𝐿𝐻𝑆 = sin 2(49°)


𝐿𝐻𝑆 = sin 98°
𝐿𝐻𝑆 = 0,990268068
𝐿𝐻𝑆 = 0,99

𝑅𝐻𝑆 = 2 sin 49° cos 49°


𝑅𝐻𝑆 = 2(0,75470958)(0,656059029)
𝑅𝐻𝑆 = 0,990268068
𝑅𝐻𝑆 = 0,99

∴ True, 𝐿𝐻𝑆 = 𝑅𝐻𝑆

1
2.1. cos 𝛼 = 0,64 2.2. cos 2𝛽 = 0,3
2
𝛼 = cos −1 0,64 cos 2𝛽 = 0,6
𝛼 = 50,2081805° 2𝛽 = cos −1 0,6
𝛼 = 50,2° 2𝛽 = 53,13010235°
𝛽 = 26,56505118°
𝛽 = 26,6°

2.3. 2 sin 3𝛽 + 1 = 2,6 2.4. sin 𝜃 2


=4
cos 𝜃 3
2
2 sin 3𝛽 = 1,6 tan 𝜃 = 4
3
2
sin 3𝛽 = 0,8 𝜃= tan−1 4
3
3𝛽 = sin−1 0,8 𝜃 = 77,90524292°
3𝛽 = 53,13010235° 𝜃 = 77,9°
𝛽 = 17,71003412°
𝛽 = 17,7°

𝑎𝑑𝑗 𝑜𝑝𝑝
3.1 cos 𝜃 = 3.2 sin 𝜃 =
ℎ𝑦𝑝 ℎ𝑦𝑝
𝐶𝑇 𝐴𝑇
cos 30° = sin 30° =
20 20
𝐶𝑇 = 20 cos 30° 𝐴𝑇 = 20 sin 30°
√3 1
𝐶𝑇 = 20 ( ) 𝐴𝑇 = 20 ( )
2 2
𝐶𝑇 = 10√3 𝐴𝑇 = 10 cm
𝐶𝑇 = 17,32050808
𝐶𝑇 = 17,32 cm

3.3. 𝐶𝐵 = 𝐶𝑇 + 𝑇𝐵 4.1. 𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 = 4 × 𝑙


22 = 17,32 + 𝑇𝐵 40 = 4 × 𝑙
𝑇𝐵 = 22 − 17,32 𝑙 = 10 𝑐𝑚
𝑇𝐵 = 4,68 cm

𝑜𝑝𝑝
tan 𝛼 =
𝑎𝑑𝑗
4,68
tan 𝐵𝐴̂𝑇 =
10
tan 𝐵𝐴̂𝑇 = 0,468
𝐵𝐴̂𝑇 = tan−1 0,468
𝐵𝐴̂𝑇 = 25,07959402°
𝐵𝐴̂𝑇 = 25,08°

4.2. Determine the lengths of the diagonals.

• Two diagonals are perpendicular


• Diagonals bisect opposite angles
• Diagonals bisect each other

In ∆𝐸𝐷𝐶:

𝐷𝐸
⇝ 𝐷𝐸: sin 15° =
𝐷𝐶
𝐷𝐸
𝐷𝐸: sin 15° =
10
𝐷𝐸: 𝐷𝐸 = 10 sin 15°
𝐷𝐸: 𝐷𝐸 = 10(0,258819045)
𝐷𝐸: 𝐷𝐸 = 2,588190451
𝐷𝐸: 𝐷𝐸 = 2,59 cm
∴ 𝐷𝐵 = 2𝐷𝐸
∴ 𝐷𝐵 = 2(2,59)
∴ 𝐷𝐵 = 5,18 cm

𝐸𝐶
⇝ 𝐷𝐸: cos 15° =
𝐷𝐶
𝐸𝐶
𝐷𝐸: cos 15° =
10
𝐷𝐸: 𝐸𝐶 = 10 cos 15°
𝐷𝐸: 𝐸𝐶 = 10(0,965925826)
𝐷𝐸: 𝐸𝐶 = 9,659258263
𝐷𝐸: 𝐸𝐶 = 9,66 cm

∴ 𝐴𝐶 = 2𝐸𝐶
∴ 𝐴𝐶 = 2(9,66)
∴ 𝐴𝐶 = 19,32 cm

4.3. 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 = 1 (𝑏𝑎𝑠𝑒)(𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟 ℎ𝑒𝑖𝑔ℎ𝑡)


2
1
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 = (19,32)(2,59)
2
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 = 25,0194 cm2

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑟ℎ𝑜𝑚𝑏𝑢𝑠 = 2(𝐴𝑟𝑒𝑎 𝑜𝑓 𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒)


𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑜𝑚𝑏𝑢𝑠 = 2(25,0194 )
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑜𝑚𝑏𝑢𝑠 = 50,0388
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑜𝑚𝑏𝑢𝑠 = 50,04 cm2

OR

⏊ℎ
⏊ℎ𝑒𝑖𝑔ℎ𝑡: sin 30° =
10
⏊ℎ𝑒𝑖𝑔ℎ𝑡: ⏊ℎ = 10 sin 30°
1
⏊ℎ𝑒𝑖𝑔ℎ𝑡: ⏊ℎ = 10 ( )
2
⏊ℎ𝑒𝑖𝑔ℎ𝑡: ⏊ℎ = 5 cm

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑟ℎ𝑜𝑚𝑏𝑢𝑠 = (𝑏𝑎𝑠𝑒)(⏊ℎ𝑒𝑖𝑔ℎ𝑡 )


𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑜𝑚𝑏𝑢𝑠 = 10(5)
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑜𝑚𝑏𝑢𝑠 = 50 cm2
5.

5.1. 2 sin 45° × 2 cos 45° 5.2. cos2 30° − sin2 60°
1 1 2 2
√3 √3
= 2( ) × 2( ) =( ) −( )
√2 √2 2 2
2 2 3 3
= × = −
√2 √2 4 4
4
= =0
2
=2

5.3. 4 sin 60° cos 30° − 2 tan 45° + tan 60° − 2 sin 60°
√3 √3 √3
= 4 ( ) ( ) − 2(1) + (√3) − 2 ( )
2 2 2
3
= 4 ( ) − 2 + √3 − √3
4
=3−2
=1

5.4. sin 60° × √2 tan 45° + 1 − sin 30°


√3 1
= ( ) × √2(1) + 1 − ( )
2 2
√3 1
= ( ) × √3 −
2 2
3 1
= −
2 2
=1

6.1. tan 𝛽 = 𝑜𝑝𝑝 6.2. 𝑟 2 = 𝑥 2 + 𝑦 2


𝑎𝑑𝑗
2√3
tan 𝛽 =
2
𝑟 = √(2)2 + (2√3)

tan 𝛽 = √3 𝑟 = √4 + 4.3
𝛽 = tan−1 √3 𝑟 = √4 + 12
𝛽 = 60° 𝑟 = √16
𝑟 =4

𝑥
cos 𝛽 =
𝑟
2
cos 𝛽 =
4
1
cos 𝛽 =
2

6.3. cos2 𝛽 + sin2 𝛽 7.


2
1 2 2√3
=( ) +( )
2 4
1 4.3
= +
4 16
1 12
= +
4 16
1 3
= +
4 4
=1
𝐻𝑒𝑖𝑔ℎ𝑡
sin 60° =
10
𝐻𝑒𝑖𝑔ℎ𝑡 = 10 sin 60°
√3
𝐻𝑒𝑖𝑔ℎ𝑡 = 10 ( )
2
𝐻𝑒𝑖𝑔ℎ𝑡 = 5√3
𝐻𝑒𝑖𝑔ℎ𝑡 = 8,66 m

∴ The ladder is too short

Classwork/Homework
Activity 7A.2. P.16
1. Reduce the following to one trigonometric ratio:

1.1. sin 𝛼
tan 𝛼
1.2. cos 𝜃 tan2 𝜃 + tan2 𝜃 sin2 𝜃
2

1.3. 1 − sin 𝜃 cos 𝜃 tan 𝜃


1.4. 1−cos2 𝛽
( ) − tan2 𝛽
cos2 𝛽

2. Prove the following identities:

2.1. 1+sin 𝜃 cos 𝜃


=
cos 𝜃 1−sin 𝜃
2.2. sin 𝛼 + (cos 𝛼 − tan 𝛼)(cos 𝛼 + 𝑡𝑎𝑛𝛼) = 1 − tan2 𝛼
2

2.3. 1 cos 𝜃 tan2 𝜃


− = cos 𝜃
cos 𝜃 1
2.4. 2 sin 𝜃 cos 𝜃 1
= sin 𝜃 + cos 𝜃 −
sin 𝜃+cos 𝜃 sin 𝜃+cos 𝜃
2.5. cos 𝛽 1
( + tan 𝛽) 𝑐𝑜𝑠𝛽 =
sin 𝛽 sin 𝛽
2.6. 1 1 2 tan 𝜃
+ =
1+sin 𝜃 1−sin 𝜃 sin 𝜃 cos 𝜃
2.7. (1+tan2 𝛼) cos 𝛼 1
=
(1−tan 𝛼) cos 𝛼−sin 𝛼

Answers:

1.1. sin 𝛼
tan 𝛼
sin 𝛼 sin 𝛼
= sin 𝛼 = tan 𝛼
cos 𝛼 cos 𝛼
cos 𝛼
= sin 𝛼 ×
sin 𝛼
= cos 𝛼
1.2. cos2 𝜃 tan2 𝜃 + tan2 𝜃 sin2 𝜃
= tan2 𝜃 (cos2 𝜃 + sin2 𝜃)
= tan2 𝜃 (1) sin2 𝜃 + cos 2 𝜃 = 1
= tan2 𝜃

1.3. 1 − sin 𝜃 cos 𝜃 tan 𝜃


sin 𝜃 sin 𝜃
= 1 − sin 𝜃 cos 𝜃 = tan 𝜃
cos 𝜃 cos 𝜃
= 1 − sin 𝜃 sin 𝜃
= 1 − sin2 𝜃
= cos2 𝜃 cos2 𝜃 = 1 − sin2 𝜃

1.4. (1−cos2 𝛽) − tan2 𝛽


2
cos 𝛽
sin2 𝛽
=( ) − tan2 𝛽 sin2 𝛽 = 1 − cos2 𝛽
cos2 𝛽
sin2 𝛽
=( ) − tan2 𝛽
cos2 𝛽
sin2 𝛽
= tan2 𝛽 − tan2 𝛽 = tan2 𝛽
cos2 𝛽
=0

2.1. 1+sin 𝜃 cos 𝜃


=
cos 𝜃 1−sin 𝜃

1+sin 𝜃
𝐿𝐻𝑆 =
cos 𝜃
(1+sin 𝜃) (1−sin 𝜃)
𝐿𝐻𝑆 = ×
cos 𝜃 (1−sin 𝜃)
1−sin2 𝜃
𝐿𝐻𝑆 =
cos 𝜃(1−sin 𝜃)
cos2 𝜃 = 1 − sin2 𝜃
cos2 𝜃
𝐿𝐻𝑆 =
cos 𝜃(1−sin 𝜃)
cos 𝜃 cos 𝜃
𝐿𝐻𝑆 =
cos 𝜃(1−sin 𝜃)
cos 𝜃
𝐿𝐻𝑆 =
1−sin 𝜃

cos 𝜃
𝑅𝐻𝑆 =
1−sin 𝜃

∴ 𝐿𝐻𝑆 = 𝑅𝐻𝑆

2.2. sin2 𝛼 + (cos 𝛼 − tan 𝛼)(cos 𝛼 + 𝑡𝑎𝑛𝛼) = 1 − tan2 𝛼

𝐿𝐻𝑆 = sin2 𝛼 + (cos 𝛼 − tan 𝛼)(cos 𝛼 + 𝑡𝑎𝑛𝛼 )


𝐿𝐻𝑆 = sin2 𝛼 + cos 2 𝛼 − tan2 𝛼
𝐿𝐻𝑆 = 1 − tan2 𝛼 sin2 𝛼 + cos 2 𝛼 = 1

𝑅𝐻𝑆 = 1 − tan2 𝛼

∴ 𝐿𝐻𝑆 = 𝑅𝐻𝑆

2.3. 1 cos 𝜃 tan2 𝜃


− = cos 𝜃
cos 𝜃 1

1 cos 𝜃 tan2 𝜃
𝐿𝐻𝑆 = −
cos 𝜃 1
sin2 𝜃
cos 𝜃 sin2 𝜃
𝐿𝐻𝑆 =
1
− cos2 𝜃 = tan2 𝜃
cos 𝜃 1 cos2 𝜃
sin2 𝜃
1 cos 𝜃
cos 𝜃 cos 𝜃
𝐿𝐻𝑆 = −
cos 𝜃 1
1 sin2 𝜃
𝐿𝐻𝑆 = −
cos 𝜃 cos 𝜃
1−sin2 𝜃
𝐿𝐻𝑆 = cos2 𝜃 = 1 − sin2 𝜃
cos 𝜃
cos2 𝜃
𝐿𝐻𝑆 =
cos 𝜃
cos 𝜃 cos 𝜃
𝐿𝐻𝑆 =
cos 𝜃
𝐿𝐻𝑆 = cos 𝜃

𝑅𝐻𝑆 = cos 𝜃

∴ 𝐿𝐻𝑆 = 𝑅𝐻𝑆

2.4. 2 sin 𝜃 cos 𝜃 1


= sin 𝜃 + cos 𝜃 −
sin 𝜃+cos 𝜃 sin 𝜃+cos 𝜃

1
𝑅𝐻𝑆 = sin 𝜃 + cos 𝜃 −
sin 𝜃+cos 𝜃
sin 𝜃(sin 𝜃+cos 𝜃) cos 𝜃(sin 𝜃+cos 𝜃) 1
𝑅𝐻𝑆 = + −
sin 𝜃+cos 𝜃 sin 𝜃+cos 𝜃 sin 𝜃+cos 𝜃
sin2 𝜃+sin 𝜃 cos 𝜃+sin 𝜃 cos 𝜃+cos2 𝜃−1
𝑅𝐻𝑆 =
sin 𝜃+cos 𝜃
sin2 𝜃+cos2 𝜃+2sin 𝜃 cos 𝜃−1
𝑅𝐻𝑆 = sin2 𝜃 + cos 2 𝜃 = 1
sin 𝜃+cos 𝜃
1+2sin 𝜃 cos 𝜃−1
𝑅𝐻𝑆 =
sin 𝜃+cos 𝜃
2sin 𝜃 cos 𝜃
𝑅𝐻𝑆 =
sin 𝜃+cos 𝜃

2 sin 𝜃 cos 𝜃
𝐿𝐻𝑆 =
sin 𝜃+cos 𝜃

∴ 𝐿𝐻𝑆 = 𝑅𝐻𝑆
2.5. (cos 𝛽 + tan 𝛽) 𝑐𝑜𝑠𝛽 = 1
sin 𝛽 sin 𝛽

cos 𝛽
𝐿𝐻𝑆 = ( + tan 𝛽) 𝑐𝑜𝑠𝛽
sin 𝛽
cos 𝛽 sin 𝛽 sin 𝛽
𝐿𝐻𝑆 = ( + ) 𝑐𝑜𝑠𝛽 = tan 𝛽
sin 𝛽 cos 𝛽 cos 𝛽
cos2 𝛽 sin 𝛽𝑐𝑜𝑠𝛽
𝐿𝐻𝑆 = +
sin 𝛽 cos 𝛽
cos2 𝛽
𝐿𝐻𝑆 = + sin 𝛽
sin 𝛽
cos2 𝛽+sin2 𝛽
𝐿𝐻𝑆 =
sin 𝛽
sin2 𝛽 + cos2 𝛽 = 1
1
𝐿𝐻𝑆 =
sin 𝛽

1
𝑅𝐻𝑆 =
sin 𝛽

∴ 𝐿𝐻𝑆 = 𝑅𝐻𝑆

2.6. 1 1 2 tan 𝜃
+ =
1+sin 𝜃 1−sin 𝜃 sin 𝜃 cos 𝜃

1 1
𝐿𝐻𝑆 = +
1+sin 𝜃 1−sin 𝜃
1(1−sin 𝜃)
𝐿𝐻𝑆 = +
(1+sin 𝜃)(1−sin 𝜃)
1(1+sin 𝜃)
(1−sin 𝜃)(1+sin 𝜃)
1−sin 𝜃+1+sin 𝜃
𝐿𝐻𝑆 =
1−sin2 𝜃
2
𝐿𝐻𝑆 =
cos2 𝜃
cos2 𝜃 = 1 − sin2 𝜃

2 tan 𝜃
𝑅𝐻𝑆 =
sin 𝜃 cos 𝜃
sin 𝜃
2 sin 𝜃
𝑅𝐻𝑆 = cos 𝜃 = tan 𝜃
sin 𝜃 cos 𝜃 cos 𝜃
2 sin 𝜃 1
𝑅𝐻𝑆 = ×
cos 𝜃 sin 𝜃 cos 𝜃
2
𝑅𝐻𝑆 =
cos2 𝜃

∴ 𝐿𝐻𝑆 = 𝑅𝐻𝑆
2.7. (1+tan2 𝛼) cos 𝛼 1
=
(1−tan 𝛼) cos 𝛼−sin 𝛼

(1+tan2 𝛼) cos 𝛼
𝐿𝐻𝑆 =
(1−tan 𝛼)
sin2 𝛼
(1+ ) cos 𝛼 sin2 𝛼
cos2 𝛼
𝐿𝐻𝑆 = sin 𝛼 = tan 𝛼
(1− ) cos2 𝛼
cos 𝛼
2
cos 𝛼+sin 𝛼 2
( ) cos 𝛼 sin 𝛼
cos2 𝛼
𝐿𝐻𝑆 = cos 𝛼−sin 𝛼
= tan 𝛼
( ) cos 𝛼
cos 𝛼
2
cos 𝛼+sin 𝛼 2
( ) cos 𝛼
𝐿𝐻𝑆 =
cos 𝛼 cos 𝛼
cos 𝛼−sin 𝛼
sin2 𝛼 + cos 2 𝛼 = 1
( )
cos 𝛼
1
( )
cos 𝛼
𝐿𝐻𝑆 = cos 𝛼−sin 𝛼
( )
cos 𝛼
1 cos 𝛼
𝐿𝐻𝑆 = ×
cos 𝛼 cos 𝛼−sin 𝛼
1
𝐿𝐻𝑆 =
cos 𝛼−sin 𝛼

1
𝑅𝐻𝑆 =
cos 𝛼−sin 𝛼

∴ 𝐿𝐻𝑆 = 𝑅𝐻𝑆

Classwork/Homework
Activity 7A.3. P.23
1. Rewrite each ratio as a ratio of an acute angle:
1.1. cos 156°
1.2. sin 166°
1.3. cos 99°
1.4. cos 225°
1.5. tan 209°
1.6. sin 216°
1.7. cos 300°
1.8. sin 302°
1.9. tan 322°

2. Rewrite each ratio as a ratio of a positive acute angle:


2.1. cos(−125°)
2.2. sin(−106°)
2.3. sin(−204°)
2.4. tan (−189°)
2.5. cos(−251°)
2.6. cos(−292°)
2.7. tan(−286°)

3. Determine the value of the following expressions without using a


calculator:
3.1. tan 150° sin 30° − cos 210°
3.2. (1 + cos 120°)(1 − sin2 240°)
3.3. cos2 140° + sin2 220°

4. Write the following in terms of a single trigonometric ratio:


4.1. (tan 180° − 𝜃) × sin(180° + 𝜃)
4.2. tan(180°+𝜃) cos(180°−𝜃)
sin(180°−𝜃)

5. If 𝑡 = tan 40°, express the following in terms of 𝑡:


5.1. tan 140° + 3 tan 220°
5.2. cos 220°
sin 140°

6. Simplify the following:


6.1. tan(180°−𝜃) sin(360°−𝜃)
cos(180°+𝜃) tan(360°−𝜃)
2(
6.2. cos 360° + 𝜃 + cos(180° + 𝜃) tan(360° − 𝜃) sin(360° + 𝜃)
)
6.3. 𝑠𝑖𝑛(360°+𝛼) tan(180°+𝛼)
cos(360°−𝛼) tan2 (360°+𝛼)

7. Write the following in terms of cos 𝛽:


cos(360°−𝛽) cos(−𝛽)−1
sin(360°+𝛽) tan(360°−𝛽)

8. Simplify the following without using a calculator:


8.1. cos 300° tan 150°
sin 225°cos (−45°)
8.2. 3 tan 405° + 2 tan 330° cos 750°
8.3. cos 315° cos 405°+sin 45° sin 135°
sin 750°
8.4. tan 150° cos 390° − 2 sin 510°
8.5. 2 sin 120°+3 cos 765°−2 sin 240°−3 cos 45°
5 sin 300°+3 tan 225°−6 cos 60°

9. Simplify the following:


9.1. cos(90°+𝜃) sin(𝜃+90°)
sin (−𝜃)
9.2. 2 sin(90°−𝑥)+sin (90°+𝑥)
sin(90°−𝑥)+cos (180°+𝑥)
10. Given cos 36° = 𝑝, express the following in terms of 𝑝:
10.1. sin 54°
10.2. sin 36°
10.3. tan 126°
10.4. cos 324°

11. Write 𝐴 and 𝐵 as a single trigonometric ratio:


11.1. 𝐴 = sin(360° − 𝜃) cos(180° − 𝜃)tan (360° + 𝜃)
11.2. cos(360°+𝜃)cos (−𝜃)sin (−𝜃)
𝐵=
cos (90°+𝜃)
11.3. Hence, determine:
11.3.1. 𝐴 + 𝐵 =. ….
11.3.2. 𝐴 =. ….
𝐵

12. Write the following as a function of an acute angle:


12.1. sin 163°
12.2. cos 327°
12.3. tan 248°
12.4 cos(−213°)

13. Determine the value of the following, without using a calculator:


13.1. sin (−30°)
+ cos 330°
tan(150°)
13.2. tan 300° cos 120°
13.3. (1 − cos 30°)(1 − cos 210°)
13.4. cos 780° − (sin 315°)(cos 405°)

14. Prove that the following identity is true and state any restrictions:
sin(180°+𝛼) tan(360°+𝛼) cos 𝛼
= sin 𝛼
cos (90°−𝛼)

Answers:

1.1. cos 156°


= cos(180° − 24°)
= − cos 24°

1.2. sin 166°


= sin(180° − 14°)
= sin 14°

1.3. cos 99°


= cos(180° − 81°)
= − cos 81°
1.4. cos 225°
= cos(180° + 45°)
= − cos 45°
1.5. tan 209°
= tan(180° + 29°)
= tan 29°

1.6. sin 216°


= sin(180° + 36°)
= −sin 36°

1.7. cos 300°


= cos(360° − 60°)
= cos 60°

1.8. sin 302°


= sin(360° − 58°)
= −sin 58°

1.9. tan 322°


= tan(360° − 38°)
= − tan 38°

2.1. cos(−125°)
= cos(125°) cos(−𝜃) = cos 𝜃
= cos(180° − 55°)
= cos 55°

2.2. sin(−106°)
= −sin(106°) sin(−𝜃) = − sin 𝜃
= −sin(180° − 74°)
= − sin 74°

2.3. sin(−204°)
= −sin(204°) sin(−𝜃) = − sin 𝜃
= −sin(180° + 24°)
= −(− sin 24°)
= sin 24°

2.4. tan (−189°)


= −tan(189°) tan(−𝜃) = − tan 𝜃
= −tan(180° + 9°)
= − tan 9°
2.5. cos(−251°)
= cos(251°) cos(−𝜃) = cos 𝜃
= cos(180° + 71°)
= −cos 71°

2.6. cos(−292°)
= cos(292°) cos(−𝜃) = cos 𝜃
= cos(360° − 68°)
= cos 68°

2.7. tan(−286°)
= −tan(286°) tan(−𝜃) = − tan 𝜃
= −tan(360° − 74°)
= −(− tan 74°)
= tan 74°

3.1. tan 150° sin 30° − cos 210°


= tan(180° − 30°) sin 30° − cos(180° + 30°)
= (− tan 30°)(sin 30°) − (− cos 30°)
1 1 √3
= (− )( ) + ( )
√3 2 2
−1 √3
= +
2√3 2
−1+√3×√3
=
2√3
−1+3
=
2√3
2
=
2√3
1
=
√3

3.2. (1 + cos 120°)(1 − sin2 240°)


= (1 + cos(180° − 60°))(1 − sin2 (180° + 60°))
= (1 + (− cos 60°))(1 − (− sin 60°)2 )
= (1 − cos 60°)(1 − (sin 60°)2
2
1 √3
= (1 − ) (1 − ( ) )
2 2
1 3
= ( ) (1 − )
2 4
1 1
= ( )( )
2 4
1
=
8
3.3. cos2 140° + sin2 220°
= cos2 (180° − 40°) + sin2 (180° + 40°)
= (− cos 40°)2 + (− sin 40°)2
= cos2 40° + sin2 40°
=1

4.1. (tan 180° − 𝜃) × sin(180° + 𝜃)


= (− tan 𝜃) × (− sin 𝜃)
sin 𝜃
= (− ) (− sin 𝜃)
cos 𝜃
sin2 𝜃
=
cos 𝜃
1−cos2 𝜃
=
cos 𝜃

4.2. tan(180°+𝜃) cos(180°−𝜃)


sin(180°−𝜃)
(tan 𝜃)(− cos 𝜃)
=
sin 𝜃
sin 𝜃
( )(− cos 𝜃)
𝑐𝑜𝑠𝜃
=
sin 𝜃
− sin 𝜃
=
sin 𝜃
= −1

5. 𝑡 = tan 40°
5.1. tan 140° + 3 tan 220°
= tan(180° − 40°) + 3 tan(180° + 40°)
= (− tan 40°) + 3 tan 40°
= 2 tan 40°
= 2𝑡

5.2. cos 220°


sin 140°
cos(180°+40°)
=
sin(180°−40°)
− cos 40°
=
sin 40°
sin 40° −1
= −( )
cos 40°
= −(𝑡𝑎𝑛40°)−1
= −(𝑡 )−1
−1
=
𝑡
6.1. tan(180°−𝜃) sin(360°−𝜃)
cos(180°+𝜃) tan(360°−𝜃)
(− tan 𝜃)(− sin 𝜃)
=
(− cos 𝜃)(− tan 𝜃)
−sin 𝜃
=
− cos 𝜃
= tan 𝜃

6.2. cos2 (360° + 𝜃) + cos(180° + 𝜃) tan(360° − 𝜃) sin(360° + 𝜃)


= cos2 𝜃 + (− cos 𝜃)(− tan 𝜃)(sin 𝜃)
sin 𝜃
= cos2 𝜃 + (cos 𝜃) ( ) (sin 𝜃)
cos 𝜃
= cos2 𝜃 + sin2 𝜃
=1

6.3. 𝑠𝑖𝑛(360°+𝛼) tan(180°+𝛼)


cos(360°−𝛼) tan2 (360°+𝛼)
(sin 𝛼)(tan 𝛼)
= (cos
𝛼)(tan2 𝛼)
(sin 𝛼)(tan 𝛼)
= (cos
𝛼)(tan 𝛼)(tan 𝛼)
(sin 𝛼)
= (cos
𝛼)(tan 𝛼)
(sin 𝛼)
= sin 𝛼
(cos 𝛼)( )
cos 𝛼
sin 𝛼
=
sin 𝛼
=1

7. cos(360°−𝛽) cos(−𝛽)−1
sin(360°+𝛽) tan(360°−𝛽)
(cos 𝛽)(cos 𝛽)−1
=
(sin 𝛽)(− tan 𝛽)
cos2 𝛽−(sin2 𝛽+cos2 𝛽)
= sin 𝛽
sin 𝛽(− )
cos 𝛽
cos2 𝛽−sin2 𝛽−cos2 𝛽
= sin2 𝛽
(− )
cos 𝛽
− sin2 𝛽
= sin2 𝛽
(− )
cos 𝛽
− sin2 𝛽 cos 𝛽
= ×
1 − sin2 𝛽
= cos 𝛽
8.1. cos 300° tan 150°
sin 225°cos (−45°)
cos(360°−60°) tan(180°−30°)
=
sin(180°−45°) cos 45°
(cos 60°)(− tan 30°)
=
(sin 45°)(cos 45°)
1 1
( )(− )
2 √3
= 1 1
( )( )
√2 √2
1 1
( )(− )
2 √3
= 1
( )
2
1
=−
√3

8.2. 3 tan 405° + 2 tan 330° cos 750°


= 3 tan(360° + 45°) + 2 tan(360° − 30°) cos(2(360°) + 30°)
= 3 tan 45° + 2(− tan 30°)(cos 30°)
1 √3
= 3(1) + 2 (− )( )
√3 2
1
= 3 + 2 (− )
2
=3−1
=2

8.3. cos 315° cos 405°+sin 45° sin 135°


sin 750°
cos(360°−45°) cos(360°+45°)+sin 45° sin(180°−45°)
=
sin(2(360°)+30°)
(cos 45°)(cos 45°)+(sin 45°)(sin 45°)
=
sin 30°
1 1 1 1
( )( )+( )( )
√2 √2 √2 √2
= 1
( )
2
1 1
+
2 2
= 1
2
1
= 1
2
=2

8.4. tan 150° cos 390° − 2 sin 510°


= tan(180° − 30°) cos(360° + 30°) − 2sin (150°)
= tan(180° − 30°) cos(360° + 30°) − 2sin (180° − 30°)
= (− tan 30°)(cos 30°) − 2 sin 30°
1 √3 1
= (− )( ) − 2( )
√3 2 2
1
=− −1
2
3
=−
2
8.5. 2 sin 120°+3 cos 765°−2 sin 240°−3 cos 45°
5 sin 300°+3 tan 225°−6 cos 60°
2 sin(180°−60°)+3 cos(2(360°)+45°)−2 sin(180°+60°)−3 cos 45°
=
5 sin(360°−60°)+3 tan(180°+45°)−6 cos 60°
2 sin 60°+3 cos 45°−2(− sin 60°)−3 cos 45°
=
5(− sin 60°)+3 tan 45°−6 cos 60°
√3 1 √3 1
2( )+3( )+2( )−3( )
2 √2 2 √2
= √3 1
5(− )+3(1)−6( )
2 2
√3
4( )
2
= √3
−5( )+3−3
2
√3
4( )
2
= √3
−5( )
2
4
=−
5

9.1. cos(90°+𝜃) sin(𝜃+90°)


sin (−𝜃)
− sin 𝜃.𝑐𝑜𝑠𝜃
=
− sin 𝜃
= cos 𝜃

9.2. 2 sin(90°−𝑥)+sin (90°+𝑥)


sin(90°−𝑥)+cos (180°+𝑥)
2 cos 𝑥+cos 𝑥
=
cos 𝑥+(− cos 𝑥)
3 cos 𝑥
=
0
∴ undefined

10. cos 36° = 𝑝


10.1. sin 54°
= sin(90° − 36°)
= cos 36°
=𝑝

10.2. sin 36°


sin2 36° = 1 − cos2 36°
sin2 36° = 1 − 𝑝2
√sin2 36° = √1 − 𝑝2
∴ sin 36° = √1 − 𝑝2
10.3. tan 126°
sin 126°
=
cos 126°
sin(90°+36°)
=
cos(90°+36°)
cos 36°
=
− sin 36°
𝑝
=
−√1−𝑝2

10.4. cos 324°


= cos(360° − 36°)
= cos 36°
=𝑝

11.1. 𝐴 = sin(360° − 𝜃 ) cos(180° − 𝜃)tan (360° + 𝜃)


𝐴 = (− sin 𝜃)(− cos 𝜃)(tan 𝜃)
sin 𝜃
𝐴 = (− sin 𝜃)(− cos 𝜃) ( )
cos 𝜃
𝐴 = sin2 𝜃

11.2. cos(360°+𝜃)cos (−𝜃)sin (−𝜃)


𝐵=
cos (90°+𝜃)
(cos 𝜃)(cos 𝜃)(− sin 𝜃)
𝐵=
(− sin 𝜃)
2
𝐵 = cos 𝜃

11.3.1. 𝐴 + 𝐵 =. ….
= sin2 𝜃 + cos 2 𝜃
=1

𝐴
11.3.2. =. ….
𝐵
sin2 𝜃
=
cos2 𝜃
2
= tan 𝜃

12.1. sin 163°


= sin(180° − 17°)
= sin 17°

12.2. cos 327°


= cos(360° − 33°)
= cos 33°

12.3 tan 248°


= tan (180° + 68°)
= tan 68°
12.4. cos(−213°)
= cos(−(213°))
= cos 213°
= cos(180° + 33°)
= − cos 33°

13.1. sin (−30°)


+ cos 330°
tan(150°)
− sin 30°
= + cos(360° − 30°)
tan (180°−30°)
− sin 30°
= + cos 30°
− tan 30°
1
(− ) √3
2
= 1 +( )
(− ) 2
√3
√3 √3
= +
2 2
2√3
=
2
= √3

13.2. tan 300° cos 120°


= tan(360° − 60°) cos(180° − 60°)
= (− tan 60°) (− cos 60°)
1
= (−√3) (− )
2
√3
=
2

13.3. (1 − cos 30°)(1 − cos 210°)


= (1 − cos 30°)(1 − cos(180° + 30°))
= (1 − cos 30°)(1 − (− cos 30°))
= (1 − cos 30°)(1 + cos 30°)
= 1 − cos2 30°
2
√3
=1−( )
2
3
=1−
4
1
=
4

13.4. cos 780° − (sin 315°)(cos 405°)


= cos(2(360°) + 60°) − sin(360° − 45°) cos(360° + 45°)
= cos 60° − (− sin 45°)(cos 45°)
1 1 1
= + ( )( )
2 √2 √2
1 1
= +
2 2
=1
14. sin(180°−𝛼) tan(360°+𝛼) cos 𝛼
= sin 𝛼
cos (90°−𝛼)

Restriction: denominator may not equal to 0


∴ cos(90° − 𝛼) ≠ 0
∴ sin 𝛼 ≠ 0
𝛼 ≠ 0°; 180°; 360°; 𝑒𝑡𝑐

sin(180°+𝛼) tan(360°+𝛼) cos 𝛼


𝐿𝐻𝑆 =
cos (90°−𝛼)
(sin 𝛼) (tan 𝛼)(cos 𝛼)
𝐿𝐻𝑆 =
sin 𝛼
sin 𝛼
(sin 𝛼)( )(cos 𝛼)
cos 𝛼
𝐿𝐻𝑆 =
sin 𝛼
𝐿𝐻𝑆 = sin 𝛼

∴ 𝐿𝐻𝑆 = 𝑅𝐻𝑆

Classwork/Homework
Activity 7A.4. P.26
1. Given tan 𝑥 = √5 where 𝑥 ∈ [90°; 270°] and √2 cos 𝑦 + 1 = 0 where
sin 𝑦 > 0. Determine the following using relevant diagrams.
1.1. sin2 𝑥
cos2 𝑦
1.2. cos(180° + 𝑥)

2. If 2 sin 𝑥 − √3 = 0 and cos 𝑥 < 0, find the following using a relevant


diagram:
2.1. cos2 𝑥
2.2. sin(180°+𝑥)
tan(360°−𝑥)
2.3. cos(90° − 𝑥) . cos 30°

𝑝
3. If tan 𝐴 = and 𝐴 < 90°, find the following in terms of 𝑝 and 𝑘.
𝑘
3.1. sin 𝐴
1
3.2. cos 𝐴
𝑘

−3
4. If cos 𝑃 = and sin 𝑃 > 0, use a sketch (no calculator) to find the value
4
of:
√7 cos(90° + 𝑃)
Answers:

1. tan 𝑥 = √5 where 𝑥 ∈ [90°; 270°] √2 cos 𝑦 + 1 = 0 where sin 𝑦 > 0


−√5 𝑦 −1 𝑥
tan 𝑥 = = cos 𝑦 = =
−1 𝑥 √2 𝑟

√2

𝑥 𝑦
−1
−1
−√5

𝑟2 = 𝑥2 + 𝑦2 𝑦2 = 𝑟2 − 𝑥2
2 2
𝑟 = √(−1)2 + (−√5) 𝑦 = √(√2) − (−1)2
𝑟 = √1 + 5 𝑦 = √4 − 1
𝑟 = √6 𝑦 = √3

1.1. sin2 𝑥
cos2 𝑦
2
−√5
( )
√6
= −1 2
( )
√2
5
6
= 1
2
5 2
= ×
6 1
10 5 2
= = =1
6 3 3

1.2. cos(180° + 𝑥)
= − cos 𝑥
−1
=
√6

2. 2 sin 𝑥 − √3 = 0 and cos 𝑥 < 0


√3 𝑦
sin 𝑥 = =
2 𝑟
2
√3
𝑥

𝑥2 = 𝑟2 − 𝑦2
2
𝑥 = √(2)2 − (√3)
𝑥 = √4 − 3
𝑥 = ±√1
𝑥 = ±1
But 2nd quadrant 𝑥 is negative
∴ 𝑥 = −1

2.1. cos2 𝑥
−1 2
=( )
2
1
=
4

2.2. sin(180°+𝑥)
tan(360°−𝑥)
√3

2
= √3

1
−√3 −1
= ×
2 √3
1
=
2

2.3. cos(90° − 𝑥) . cos 30°


= sin 𝑥 . cos 30°
√3 √3
= ×
2 2
3
=
4

𝑝
3. tan 𝐴 = and 𝐴 < 90°
𝑘
𝑝 𝑦
tan 𝐴 = =
𝑘 𝑥
𝑝
𝐴
𝑘

𝑟2 = 𝑥2 + 𝑦2
𝑟 = √(𝑘 )2 + (𝑝)2
𝑟 = √𝑘 2 + 𝑝2

3.1. sin 𝐴
𝑝
= 2
√𝑘 +𝑝2

1
3.2. cos 𝐴
𝑘
1 𝑘
= ×
𝑘 √𝑘 2 +𝑝2
1
=
√𝑘 2 +𝑝2
−3
4. cos 𝑃 = and sin 𝑃 > 0
4
−3 𝑥
cos 𝑃 = =
4 𝑟

𝑃
−3

𝑟2 = 𝑥2 + 𝑦2
𝑦 = √(4)2 − (−3)2
𝑟 = √16 − 9
𝑟 = ±√7
But 𝑟 is always positive
∴ 𝑟 = √7
√7 cos(90° + 𝑃)
= √7(− sin 𝑃)
√7
= −√7 ( )
4
7 3
= − = −1 = −1,75
4 4
Classwork/Homework
Activity 7A.5. P.30
1. Determine the value of 𝛼 for 𝛼 ∈ [0°; 360°] if:
1.1. 4 cos 𝛼 = 2
1.2. sin 𝛼 + 3,65 = 3
1
1.3. tan 𝛼 = 5 4
1.4. cos 𝛼 + 0,939 = 0
1.5. 5 sin 𝛼 = 3
1
1.6. tan 𝛼 = −1,4
2

2. Determine the value of 𝜃 for 𝜃 ∈ [−180°; 180°] if:


2.1. sin 𝜃 = 0,6
3
2.2. cos 𝜃 + 4 = 0
2.3. 3 tan 𝜃 = 20
2.4. sin 𝜃 = cos 180°
4
2.5. 2 cos 𝜃 = 5

Answers:

1.1. 4 cos 𝛼 = 2
2
cos 𝛼 = 4
1
cos 𝛼 = 2

ref ∠ for 𝛼 = cos −1 0,5


ref ∠ for 𝛼 = 60°

1st Quadrant

𝛼 = 60°

4th Quadrant

𝛼 = 360° − 60°
𝛼 = 300°

∴ 𝛼 = 60° 𝑜𝑟 300°

1.2. sin 𝛼 + 3,65 = 3


sin 𝛼 = 3 − 3,65 m
sin 𝛼 = 0,65

ref ∠ for 𝛼 = sin−1 0,65


ref ∠ for 𝛼 = 40,54160187°

1st Quadrant
𝛼 = 40,54°

2nd Quadrant

𝛼 = 180° − 40,54160187°
𝛼 = 139,46°

∴ 𝛼 = 40,54° 𝑜𝑟 139,46°

1
1.3. tan 𝛼 = 5 4

ref ∠ for 𝛼 = tan−1 5,25


ref ∠ for 𝛼 = 79,21570213°

1st Quadrant
m
𝛼 = 79,22°

3rd Quadrant

𝛼 = 180° + 79,21570213°
𝛼 = 259,22°

∴ 𝛼 = 79,22° 𝑜𝑟 259,22° °

1.4. cos 𝛼 + 0,939 = 0


cos 𝛼 = −0,939

ref ∠ for 𝛼 = cos −1 0,939


ref ∠ for 𝛼 = 20,11570805°

2nd Quadrant

𝛼 = 180° − 20,11570805°
𝛼 = 159,88°

3rd Quadrant

𝛼 = 180° + 20,11570805°
𝛼 = 200,12°

∴ 𝛼 = 159,88° 𝑜𝑟 200,12°

1.5. 5 sin 𝛼 = 3
3
sin 𝛼 = 5 m

ref ∠ for 𝛼 = sin−1 0,6


ref ∠ for 𝛼 = 36,86989765°

1st Quadrant

𝛼 = 36,87°

2nd Quadrant
𝛼 = 180° − 36,86989765°
𝛼 = 143,13°

∴ 𝛼 = 36,87° 𝑜𝑟 143,13°
1
1.6. tan 𝛼 = −1,4
2
tan 𝛼 = −2,8

ref ∠ for 𝛼 = tan−1 2,8


ref ∠ for 𝛼 = 70,34617594°

2nd Quadrant m

𝛼 = 180° − 70,34617594°
𝛼 = 109,65°

4th Quadrant

𝛼 = 360° − 70,34617594°
𝛼 = 289,65°

∴ 𝛼 = 109,65° 𝑜𝑟 289,65°

2.1. sin 𝜃 = 0,6

ref ∠ for 𝜃 = sin−1 0,6 m


ref ∠ for 𝜃 = 36,86989765°

1st Quadrant

𝜃 = 36,87°

2nd Quadrant

𝜃 = 180° − 36,86989765°
𝜃 = 143,13°

∴ 𝜃 = 36,87° 𝑜𝑟 143,13°

3
2.2. cos 𝜃 + 4 = 0
3
cos 𝜃 = − 4
3
ref ∠ for 𝜃 = cos −1 4
ref ∠ for 𝜃 = 41,40962211°

2nd Quadrant

𝜃 = 180° − 41,40962211°
𝜃 = 138,59°

3rd Quadrant

𝜃 = 180° + 41,40962211°
𝜃 = 221,41°

∴ 𝜃 = −138,59° 𝑜𝑟 138,59°
2.3. 3 tan 𝜃 = 20
20
tan 𝜃 = 3

20
ref ∠ for 𝜃 = tan−1 3
ref ∠ for 𝜃 = 81,46923439°

1st Quadrant
m
𝜃 = 81,47°

3rd Quadrant

𝜃 = 180° + 81,46923439°
𝜃 = 261,47°

∴ 𝜃 = −98,53° 𝑜𝑟 81,47°

2.4. sin 𝜃 = cos 180°


sin 𝜃 = −1

ref ∠ for 𝜃 = sin−1 1


ref ∠ for 𝜃 = 90°

3rd Quadrant m
𝜃 = 180° + 90°
𝜃 = 270°

4th Quadrant

𝛼 = 360° − 90°
𝛼 = 270°

∴ 𝜃 = −90°

4
2.5. 2 cos 𝜃 = 5
2
cos 𝜃 = 5

ref ∠ for 𝜃 = cos −1 0,4


ref ∠ for 𝜃 = 66,42182152°

1st Quadrant

𝜃 = 66,42°

4th Quadrant

𝜃 = 360° − 66,42182152°
𝜃 = 293,58°

∴ 𝜃 = −66,42° 𝑜𝑟 66,42°
Classwork/Homework
Activity 7A.6. P.34
1. Find the general solution for each equation.
1.1. cos(𝜃 + 20°) = 0 1.4. cos(𝛼 − 25°) = 0,707
1.2. 3𝜃
sin 3𝛼 = −1 1.5. 2 sin = −1
2
1.3. 5
tan 4𝛽 = 0,866 1.6. 5 tan(𝛽 + 15°) = −
√3

2. • Find the general solution for each equation.


• Hence, find all the solutions in the interval [−180°; 180°].
2.1. cos(𝜃 + 25°) = 0,231 2.6 cos 𝜃 = −1
2.2. sin 2𝛼 = −0,327 2.7. 4 sin 𝜃 = 0
2.3. 𝜃
2 tan 𝛽 = −2,68 2.8. tan 2 = 0,9
2.4. cos 𝛼 = 1 2.9. 2 sin 2𝜃 = −
√3
2
2.5. 4 cos 𝜃 + 3 = 1

Answers:

1.1. cos(𝜃 + 20°) = 0

ref ∠ for 𝜃 + 20° = cos −1 0


ref ∠ for 𝜃 + 20° = 90°

1st Quadrant

𝜃 + 20° = 90° + 𝑛. 360° 𝑛∈ℤ


𝜃 = 70° + 𝑛. 360°

4th Quadrant

𝜃 + 20° = 360° − 90° + 𝑛. 360°


𝜃 = 250° + 𝑛. 360°

∴ 𝜃 = 70° + 𝑛. 360° 𝑜𝑟 250° + 𝑛. 360°

1.2. sin 3𝛼 = −1

ref ∠ for 3𝛼 = sin−1 1


ref ∠ for 3𝛼 = 90°

3rd Quadrant

3𝛼 = 180° + 90° + 𝑛. 360° 𝑛∈ℤ


3𝛼 = 270° + 𝑛. 360°
3𝛼 270° 𝑛.360°
= +
3 3 3
𝛼 = 90° + 𝑛. 120°
4th Quadrant

3𝛼 = 360° − 90° + 𝑛. 360°


3𝛼 = 270° + 𝑛. 360°
3𝛼 270° 𝑛.360°
= +
3 3 3
𝛼 = 90° + 𝑛. 120°

∴ 𝛼 = 90° + 𝑛. 120°

1.3. tan 4𝛽 = 0,866

ref ∠ for 4𝛽 = tan−1 0,866


ref ∠ for 4𝛽 = 40,89256291°

1st Quadrant

4𝛽 = 40,89256291° + 𝑛. 180° 𝑛∈ℤ


4𝛽 40,89256291° 𝑛. 180°
= +
4 4 4
𝛽 = 10,22° + 𝑛. 45°
3rd Quadrant

4𝛽 = 180° + 40,89256291° + 𝑛. 180°


4𝛽 = 220,89256291° + 𝑛. 180°
4𝛽 220,89256291° 𝑛.180°
= +
4 4 4
𝛽 = 55,22° + 𝑛. 45°

∴ 𝛽 = 10,22° + 𝑛. 45° 𝑜𝑟 55,22° + 𝑛. 45°

1.4. cos(𝛼 − 25°) = 0,707

ref ∠ for 𝛼 − 25° = cos −1 0,707


ref ∠ for 𝛼 − 25° = 45,00865166°

1st Quadrant

𝛼 − 25° = 45,00865166° + 𝑛. 360° 𝑛∈ℤ


𝛼 = 70,01° + 𝑛. 360°

4th Quadrant

𝛼 − 25° = 360° − 45,00865166° + 𝑛. 360°


𝛼 − 25° = 314,9913483° + 𝑛. 360°
𝛼 = 339,99° + 𝑛. 360°

∴ 𝛼 = 70,01° + 𝑛. 360° 𝑜𝑟 339,99° + 𝑛. 360°

1.5. 3𝜃
2 sin = −1
2
3𝜃 −1
sin =
2 2
3𝜃
ref ∠ for = sin−1 0,5
2
3𝜃
ref ∠ for = 30°
2

3rd Quadrant
3𝜃
= 180° + 30° + 𝑛. 360° 𝑛∈ℤ
2
3𝜃
= 210° + 𝑛. 360°
2
3𝜃° = 420° + 𝑛. 720°
3𝜃 420° 𝑛.720°
= +
3 3 3
𝜃 = 140° + 𝑛. 240°

4th Quadrant
3𝜃
= 360° − 30° + 𝑛. 360°
2
3𝜃
= 330° + 𝑛. 360°
2
3𝜃° = 660° + 𝑛. 720°
3𝜃 660° 𝑛.720°
= +
3 3 3
𝜃 = 220° + 𝑛. 240°

∴ 𝜃 = 140° + 𝑛. 240° 𝑜𝑟 220° + 𝑛. 240°

1.6. 5
5 tan(𝛽 + 15°) = −
√3
1
tan(𝛽 + 15°) = −
√3

1
ref ∠ for 𝛽 + 15° = tan−1
√3
ref ∠ for 𝛽 + 15° = 30°

2nd Quadrant

𝛽 + 15° = 180° − 30° + 𝑛. 180° 𝑛∈ℤ


𝛽 + 15° = 150° + 𝑛. 180°
𝛽 = 135° + 𝑛. 180°

4th Quadrant

𝛽 + 15° = 360° − 30° + 𝑛. 180°


𝛽 + 15° = 330° + 𝑛. 180°
𝛽 = 315° + 𝑛. 180°

∴ 𝛽 = 135° + 𝑛. 180° 𝑜𝑟 315° + 𝑛. 180°


2.1. cos(𝜃 + 25°) = 0,231 for −180° ≤ 𝑥 ≤ 180°

ref ∠ for 𝜃 + 25° = cos −1 0,231


ref ∠ for 𝜃 + 25° = 76,64404693°

1st Quadrant

𝜃 + 25° = 76,64404693° + 𝑛. 360° 𝑛∈ℤ


𝜃 = 51,64° + 𝑛. 360°

4th Quadrant

𝜃 + 25° = 360° − 76,64404693° + 𝑛. 360°


𝜃 + 25° = 283,3559531° + 𝑛. 360°
𝜃 = 258,36° + 𝑛. 360°

∴ 𝜃 = 51,64° + 𝑛. 360° 𝑜𝑟 258,36° + 𝑛. 360°

𝜃 = 51,64° + 𝑛. 360° 𝜃 = 258,36° + 𝑛. 360°


𝑛 = −2 −668,36  −461,64° 
𝑛 = −1 −308,36°  −101,64° ✓
𝑛=0 51,64° ✓ 258,36° ✓
𝑛=1 411,64°  618,36° 
∴ 𝜃 = −101,64°; 51,64°; 258,36°

2.2. sin 2𝛼 = −0,327 for −180° ≤ 𝑥 ≤ 180°

ref ∠ for 2𝛼 = sin−1 0,327


ref ∠ for 2𝛼 = 19,0867885°

3rd Quadrant

2𝛼 = 180° + 19,0867885° + 𝑛. 360° 𝑛∈ℤ


2𝛼 = 199,0867885° + 𝑛. 360°
2𝛼 199,0867885° 𝑛.360°
= +
2 2 2
𝛼 = 99,54° + 𝑛. 180°

4th Quadrant

2𝛼 = 360° − 19,0867885° + 𝑛. 360°


2𝛼 = 340,9132115° + 𝑛. 360°
2𝛼 340,9132115° 𝑛.360°
= +
2 2 2
𝛼 = 170,46° + 𝑛. 180°

∴ 𝛼 = 99,54° + 𝑛. 180° 𝑜𝑟 170,46° + 𝑛. 180°

𝛼 = 99,54° + 𝑛. 180° 𝛼 = 170,46° + 𝑛. 180°


𝑛 = −2 −260,46°  −189,54° 
𝑛 = −1 −80,46° ✓ −9,54° ✓
𝑛=0 99,54° ✓ 170,46° ✓
𝑛=1 279,54°  350,46° 
∴ 𝑥 = −80,46°; −9,54°; 99,54°; 170,46°

2.3. 2 tan 𝛽 = −2,68 for −180° ≤ 𝑥 ≤ 180°


tan 𝛽 = −1,34

ref ∠ for 𝛽 = tan−1 1,34


ref ∠ for 𝛽 = 53,26717334°

2nd Quadrant

𝛽 = 180° − 53,26717334° + 𝑛. 180° 𝑛∈ℤ


𝛽 = 126,73° + 𝑛. 180°

4th Quadrant

𝛽 = 360° − 53,26717334° + 𝑛. 180°


𝛽 = 306,73° + 𝑛. 180°

∴ 𝛽 = 126,73° + 𝑛. 180° 𝑜𝑟 306,73° + 𝑛. 180°

𝛽 = 126,73° + 𝑛. 180° 𝛽 = 306,73° + 𝑛. 180°


𝑛 = −2 −233,27°  −53,27° ✓
𝑛 = −1 −53,27° ✓ 126,73° ✓
𝑛=0 126,73° ✓ 306,73° 
𝑛=1 306,73°  486,73° 
∴ 𝛽 = −53,27°; 126,73°

2.4. cos 𝛼 = 1 for −180° ≤ 𝑥 ≤ 180°

ref ∠ for 𝛼 = cos −1 1


ref ∠ for 𝛼 = 0°

1st Quadrant

𝛼 = 0° + 𝑛. 360° 𝑛∈ℤ

4th Quadrant

𝛼 = 360° − 0° + 𝑛. 360°
𝛼 = 360° + 𝑛. 360°

∴ 𝛼 = 0° + 𝑛. 360° 𝑜𝑟 360° + 𝑛. 360°

𝛼 = 0° + 𝑛. 360° 𝛼 = 360° + 𝑛. 360°


𝑛 = −1 −360°  0° ✓
𝑛=0 0° ✓ 360° 
𝑛=1 360°  720° 
∴ 𝛼 = 0°

2.5. 4 cos 𝜃 + 3 = 1 for −180° ≤ 𝑥 ≤ 180°


4 cos 𝜃 = −2
1
cos 𝜃 = − 2
1
ref ∠ for 𝜃 = cos −1 2
ref ∠ for 𝜃 = 60°

2nd Quadrant

𝜃 = 180° − 60° + 𝑛. 360° 𝑛∈ℤ


𝜃 = 120° + 𝑛. 360°
3rd Quadrant

𝜃 = 180° + 60° + 𝑛. 360°


𝜃 = 240° + 𝑛. 360°

∴ 𝜃 = 120° + 𝑛. 360° 𝑜𝑟 240° + 𝑛. 360°

𝜃 = 120° + 𝑛. 360° 𝜃 = 240° + 𝑛. 360°


𝑛 = −2 −600°  −480° 
𝑛 = −1 −240°  −120° ✓
𝑛=0 120° ✓ 240° 
𝑛=1 480°  600° 
∴ 𝜃 = −120°; 120°

2.6. cos 𝜃 = −1 for −180° ≤ 𝑥 ≤ 180°

ref ∠ for 𝜃 = cos −1 1


ref ∠ for 𝜃 = 0°

2nd Quadrant

𝜃 = 180° − 0° + 𝑛. 360° 𝑛∈ℤ


𝜃 = 180° + 𝑛. 360°

3rd Quadrant

𝜃 = 180° + 0° + 𝑛. 360°
𝜃 = 180° + 𝑛. 360°

∴ 𝜃 = 180° + 𝑛. 360° 𝑜𝑟 180° + 𝑛. 360°

𝜃 = 180° + 𝑛. 360° 𝜃 = 180° + 𝑛. 360°


𝑛 = −1 −180°  −180° 
𝑛=0 180° ✓ 180° ✓
𝑛=1 540°  540° 
∴ 𝜃 = −180°; 180°

2.7. 4 sin 𝜃 = 0 for −180° ≤ 𝑥 ≤ 180°


sin 𝜃 = 0

ref ∠ for 𝜃 = sin−1 0


ref ∠ for 𝜃 = 0°

1st Quadrant

𝜃 = 0° + 𝑛. 360° 𝑛∈ℤ

2nd Quadrant

𝜃 = 180° − 0° + 𝑛. 360°
𝜃 = 180° + 𝑛. 360°

∴ 𝜃 = 0° + 𝑛. 360° 𝑜𝑟 180° + 𝑛. 360°

𝜃 = 0° + 𝑛. 360° 𝜃 = 180° + 𝑛. 360°


𝑛 = −1 −360°  −180° ✓
𝑛=0 0° ✓ 180° ✓
𝑛=1 360°  540° 
∴ 𝜃 = −180°; 0°; 180°

2.8. 𝜃
tan 2 = 0,9 for −180° ≤ 𝑥 ≤ 180°

𝜃
ref ∠ for 2 = tan−2 0,9
𝜃
ref ∠ for 2 = 41,9872125°

1st Quadrant
𝜃
= 41,9872125° + 𝑛. 180° 𝑛∈ℤ
2
𝜃 = 83,97° + 𝑛. 360°

3rd Quadrant
𝜃
= 180° + 41,9872125° + 𝑛. 180°
2
𝜃
= 221,9872125° + 𝑛. 180°
2
𝜃 = 443,97° + 𝑛. 360°

∴ 𝜃 = 83,97° + 𝑛. 360° 𝑜𝑟 443,97° + 𝑛. 360°

𝜃 = 83,97° + 𝑛. 360° 𝜃 = 443,97° + 𝑛. 360°


𝑛 = −2 −636,03°  −276,03° 
𝑛 = −1 −276,03°  83,97° ✓
𝑛=0 83,97° ✓ 443,97° 
𝑛=1 443,97°  803,97° 

∴ 𝜃 = 83,97°
2.9. 2 sin 2𝜃 = −
√3
for −180° ≤ 𝑥 ≤ 180°
2
√3
sin 2𝜃 = −4

√3
ref ∠ for 2𝜃 = sin−1 4
ref ∠ for 2𝜃 = 25,65890627°

3rd Quadrant

2𝜃 = 180° + 25,65890627° + 𝑛. 360° 𝑛∈ℤ


2𝜃 = 205,65890627° + 𝑛. 360°
𝜃 = 102,83° + 𝑛. 180°

4th Quadrant

2𝜃 = 360° − 25,65890627° + 𝑛. 360° 𝑛∈ℤ


2𝜃 = 334,3410937° + 𝑛. 360°
𝜃 = 167,17° + 𝑛. 180°

∴ 𝜃 = 102,83° + 𝑛. 180° 𝑜𝑟 167,17° + 𝑛. 180°

𝜃 = 102,83° + 𝑛. 180° 𝜃 = 167,17° + 𝑛. 180°


𝑛 = −2 −257,17°  −192,83° 
𝑛 = −1 −77,17° ✓ −12,83° ✓
𝑛=0 102,83° ✓ 167,17° ✓
𝑛=1 282,83°  347,17° 
∴ 𝜃 = −77,17°; −12,83°; 102,83°; 167,17°

Classwork/Homework
Activity 7A.7. P.38
1
1. Find 𝜃 if sin2 𝜃 + 2 sin 𝜃 = 0 for 𝜃 ∈ [0°; 360°].

2. Determine the general solution for each of the following:


2.1. 2 cos2 𝜃 − 3 cos 𝜃 = 2 2.5. sin(𝛼 + 15°) = 2 cos(𝛼 + 15°)
2
2.2. 3 tan 𝜃 + 2 tan 𝜃 = 0 2.6. sin2 𝜃 − 4 cos2 𝜃 = 0
2.3. cos(2𝜃+30°)
cos2 𝛼 = 0,64 2.7. + 0,38 = 0
2
2.4. sin(4𝛽 + 35°) = cos(10° − 𝛽)

1
3. Find 𝛽 if 3 tan 𝛽 = cos 200° for 𝛽 ∈ [−180°; 180°].
Answers:

1. 1
Find 𝜃 if sin2 𝜃 + sin 𝜃 = 0 for 𝜃 ∈ [0°; 360°].
2

1
sin2 𝜃 + 2 sin 𝜃 = 0
1
sin 𝜃 (sin 𝜃 + 2) = 0

1
sin 𝜃 = 0 sin 𝜃 + 2 = 0
1
sin 𝜃 = − 2

1
ref ∠ for 𝜃 = sin−1 0 ref ∠ for 𝜃 = sin−1 2
ref ∠ for 𝜃 = 0° ref ∠ for 𝜃 = 30°

1st Quadrant 3rd Quadrant

𝜃 = 0° + 𝑛. 360° 𝑛∈ℤ 𝜃 = 180° + 0° + 𝑛. 360°


𝜃 = 180° + 𝑛. 360°

2nd Quadrant 4th Quadrant

𝜃 = 180° − 0° + 𝑛. 360° 𝜃 = 360° − 0° + 𝑛. 360°


𝜃 = 180° + 𝑛. 360° 𝜃 = 360° + 𝑛. 360°

∴ 𝜃 = 0° + 𝑛. 360° 𝑜𝑟 180° + 𝑛. 360° 𝑜𝑟 180° + 𝑛. 360° 𝑜𝑟 360° + 𝑛. 360°

𝜃 = 0° + 𝑛. 360° 𝜃 = 360° + 𝑛. 360°


𝑛 = −1 −360°  0° ✓
𝑛=0 0° ✓ 360° ✓
𝑛=1 360° ✓ 720° 
𝜃 = 180° + 𝑛. 360° 𝜃 = 360° + 𝑛. 360°
𝑛 = −1 −180° ✓ 0° ✓
𝑛=0 180° ✓ 360° ✓
𝑛=1 540°  720° 
∴ 𝜃 = 0°; 180°; 360°

2.1. 2 cos 2 𝜃 − 3 cos 𝜃 = 2


2 cos 2 𝜃 − 3 cos 𝜃 − 2 = 0
(2 cos 𝜃 + 1)(cos 𝜃 − 2) = 0

2 cos 𝜃 + 1 = 0 cos 𝜃 − 2 = 0
1
cos 𝜃 = − 2 cos 𝜃 = 2
1
ref ∠ for 𝜃 = cos −1 2 N.A.
ref ∠ for 𝜃 = 60°

2nd Quadrant

𝜃 = 180° − 60° + 𝑛. 360°


𝑛∈ℤ
𝜃 = 120° + 𝑛. 360°

3rd Quadrant

𝜃 = 180° + 60° + 𝑛. 360°


𝜃 = 240° + 𝑛. 360°

∴ 𝜃 = 120° + 𝑛. 360° 𝑜𝑟 240° + 𝑛. 360°

2.2. 3 tan2 𝜃 + 2 tan 𝜃 = 0


tan 𝜃 (3 tan 𝜃 + 2) = 0

tan 𝜃 = 0 3 tan 𝜃 + 2 = 0
2
tan 𝜃 = −
3

2
ref ∠ for 𝜃 = tan−1 0 ref ∠ for 𝜃 = tan−1 3
ref ∠ for 𝜃 = 0° ref ∠ for 𝜃 = 33,69006753°

1st Quadrant 2nd Quadrant


𝜃 = 0° + 𝑛. 180° 𝑛∈ℤ 𝜃 = 180° − 33,69006753° + 𝑛. 180°
𝜃 = 146,31 ° + 𝑛. 180°
3rd Quadrant 4th Quadrant

𝜃 = 180° + 0° + 𝑛. 180° 𝜃 = 360° − 33,69006753° + 𝑛. 180°


𝜃 = 180° + 𝑛. 180° 𝜃 = 326,31° + 𝑛. 180°

∴ 𝜃 = 0° + 𝑛. 180° 𝑜𝑟 180° + 𝑛. 180° 𝑜𝑟 146,31 ° + 𝑛. 180° 𝑜𝑟 326,31° + 𝑛. 180°

2.3. cos2 𝛼 = 0,64


√cos 2 𝛼 = ±√0,64
cos 𝛼 = ±0,8

cos 𝛼 = 0,8 cos 𝛼 = −0,8


ref ∠ for 𝛼 = cos−1 0,8 ref ∠ for 𝛼 = cos−1 0,8
ref ∠ for 𝛼 = 36,86989765° ref ∠ for 𝛼 = 36,86989765°

1st Quadrant 2nd Quadrant

𝛼 = 36,87° + 𝑛. 360°
𝛼 = 180° − 36,86989765° + 𝑛. 360°
𝑛∈ℤ
𝛼 = 143,13° + 𝑛. 360°
4th Quadrant 3rd Quadrant

𝛼 = 360° −
𝛼 = 180° + 36,86989765° + 𝑛. 360°
36,86989765° + 𝑛. 360°
𝛼 = 323,13° + 𝑛. 360° 𝛼 = 216,87° + 𝑛. 360°

∴ 𝛼 = 36,87° + 𝑛. 360° 𝑜𝑟 323,13° + 𝑛. 360° 𝑜𝑟 143,13° + 𝑛. 360° 𝑜𝑟 216,87° + 𝑛. 360°

2.4. sin(4𝛽 + 35°) = cos(10° − 𝛽)


sin(4𝛽 + 35°) = sin(90° −(10° −
𝛽))
sin(4𝛽 + 35°) = sin(80° + 𝛽)

ref ∠ for 4𝛽 + 35° = 80° + 𝛽

1st Quadrant

4𝛽 + 35° = 80° + 𝛽 + 𝑛. 360° 𝑛∈ℤ


3𝛽 = 45° + 𝑛. 360°
𝛽 = 15° + 𝑛. 120°

2nd Quadrant
4𝛽 + 35° = 180° − (80° + 𝛽) +
𝑛. 360°
4𝛽 + 35° = 180° − 80° − 𝛽 + 𝑛. 360°
5𝛽 = 65° + 𝑛. 360°
𝛽 = 13° + 𝑛. 72°

∴ 𝛽 = 15° + 𝑛. 120° 𝑜𝑟 13° + 𝑛. 72°

2.5. sin(𝛼 + 15°) = 2 cos(𝛼 + 15°)


sin(𝛼+15°)
cos(𝛼+15°)
=2
tan(𝛼 + 15°) = 2

ref ∠ for 𝛼 + 15° = tan−1 2


ref ∠ for 𝛼 + 15° = 63,43494882°

1st Quadrant

𝛼 + 15° = 63,43494882° − 15° + 𝑛. 180° 𝑛∈ℤ


𝛼 = 63,43494882° − 15° + 𝑛. 180°
𝛼 = 48,43° − 15° + 𝑛. 180°
3rd Quadrant

𝛼 + 15° = 180° + 63,43494882° + 𝑛. 180°


𝛼 = 243,43494882° − 15° + 𝑛. 180°
𝛼 = 228,43° + 𝑛. 180°
∴ 𝛼 = 48,43° + 𝑛. 180° 𝑜𝑟 228,43° + 𝑛. 180°

2.6. sin2 𝜃 − 4 cos2 𝜃 = 0


sin2 𝜃 = 4 cos 2 𝜃
sin2 𝜃
=4
cos2 𝜃
tan2 𝜃 = 4
√tan2 𝜃 = ±√4
tan 𝜃 = ±2

tan 𝜃 = 2 tan 𝜃 = −2

ref ∠ for 𝜃 = tan−1 2 ref ∠ for 𝜃 = tan−1 2


ref ∠ for 𝜃 = 63,43494882° ref ∠ for 𝜃 = 63,43494882°

1st Quadrant 2nd Quadrant

𝜃 = 63,43° + 𝑛. 180° 𝑛∈ℤ 𝜃 = 180° − 63,43494882° + 𝑛. 180°


𝜃 = 116,57° + 𝑛. 180°

3rd Quadrant 4th Quadrant

𝜃 = 180° + 63,43494882° + 𝑛. 180° 𝜃 = 360° − 63,43494882° + 𝑛. 180°


𝜃 = 243,43° + 𝑛. 180° 𝜃 = 296,57° + 𝑛. 180°

∴ 𝜃 = 63,43° + 𝑛. 180° 𝑜𝑟 243,43° + 𝑛. 180° 𝑜𝑟 116,57° + 𝑛. 180° or 296,57° + 𝑛. 180°

2.7. cos(2𝜃+30°)
+ 0,38 = 0
2
cos(2𝜃+30°)
= −0,38
2
cos(2𝜃 + 30°) = −0,76

ref ∠ for 2𝜃 + 30° = cos−1 0,76


ref ∠ for 2𝜃 + 30° = 40,53580211°

2nd Quadrant

2𝜃 + 30° = 180° − 40,53580211° + 𝑛. 360°


2𝜃 = 139,4641979° − 30° + 𝑛. 360°
2𝜃 = 109,4641979° + 𝑛. 360°
𝜃 = 54,73° + 𝑛. 180°

3rd Quadrant

2𝜃 + 30° = 180° + 40,53580211° + 𝑛. 360°


2𝜃 = 220,53580211° − 30° + 𝑛. 360°
2𝜃 = 190,53580211° + 𝑛. 360°
𝜃 = 95,27° + 𝑛. 180°
∴ 𝜃 = 54,73° + 𝑛. 180° 𝑜𝑟 95,27° + 𝑛. 180°

3. 1
Find 𝛽 if 3 tan 𝛽 = cos 200° for 𝛽 ∈ [−180°; 180°].
1
tan 𝛽 = cos 200°
3
1
tan 𝛽 = −0,93969262
3
tan 𝛽 = −2,819077862

ref ∠ for 𝛽 = tan−1 2


ref ∠ for 𝛽 = 70,46908474°

2nd Quadrant

𝛽 = 180° − 70,46908474° + 𝑛. 180°


𝛽 = 109,53° + 𝑛. 180°

4th Quadrant
𝛽 = 360° − 70,46908474° + 𝑛. 180°
𝛽 = 289,53° + 𝑛. 180°

∴ 𝛽 = 109,53° + 𝑛. 180° 𝑜𝑟 289,53° + 𝑛. 180°

𝛽 = 109,53° + 𝑛. 180° 𝛽 = 289,53° + 𝑛. 180°


𝑛 = −2 −250,47°  −70,47° ✓
𝑛 = −1 −70,47° ✓ 109,53° ✓
𝑛=0 109,53° ✓ 289,53° 
𝑛=1 289,53°  496,53° 

𝛽 = −70,47°; 109,53°

Classwork/Homework
Activity 7A.8. P.39
1. Prove the following identities:
1 −1
1.1. = tan2 𝑥 cos2 𝑥
(cos 𝑥−1)(cos 𝑥+1)
1.2. (1 − tan 𝛼) cos 𝛼 = sin(90° + 𝛼) + cos(90° + 𝛼)

1 1
2.1. Prove: tan 𝑦 + tan 𝑦 = cos2 𝑦 tan 𝑦
2.2. For which values of 𝑦 ∈ [0°; 360°] is the identity above undefined?

3.1. sin(180°+𝜃) tan(360°−𝜃)


Simplify: sin(−𝜃) tan(180°+𝜃)
3.2. sin(180°+𝜃) tan(360°−𝜃)
Hence, solve the equation = tan 𝜃 for 𝜃 ∈ [0°; 360°].
sin(−𝜃) tan(180°+𝜃)

4. Given 12 tan 𝜃 = 5 and 𝜃 > 90°.


4.1. Draw a sketch.
4.2. Determine without using a calculator sin 𝜃 and cos(180° + 𝜃).
4.3. Use a calculator to find 𝜃 (correct to two decimal places).

Answers:
1 −1
1.1. = tan2 𝑥 cos2 𝑥
(cos 𝑥−1)(cos 𝑥+1)
1 1
𝐿𝐻𝑆 = (cos 𝑥+1)(cos 𝑥−1) 𝑅𝐻𝑆 = − tan2 𝑥.cos2 𝑥
1 1
𝐿𝐻𝑆 = cos2 𝑥−1 𝑅𝐻𝑆 = − sin2 𝑥
.cos2 𝑥
cos2 𝑥
1 1
𝐿𝐻𝑆 = − sin2 𝑥 𝑅𝐻𝑆 = − sin2 𝑥

∴ 𝐿𝐻𝑆 = 𝑅𝐻𝑆

1.2. (1 − tan 𝛼) cos 𝛼 = sin(90° + 𝛼) + cos(90° + 𝛼)

𝐿𝐻𝑆 = (1 − tan 𝛼) cos 𝛼 𝑅𝐻𝑆 = sin(90° + 𝛼) + cos(90° + 𝛼)


sin 𝛼 𝑅𝐻𝑆 = cos 𝛼 − sin 𝛼
𝐿𝐻𝑆 = (1 − cos 𝛼) cos 𝛼
𝐿𝐻𝑆 = cos 𝛼 − sin 𝛼

∴ 𝐿𝐻𝑆 = 𝑅𝐻𝑆

1 1
2.1. tan 𝑦 + tan 𝑦 = cos2 𝑦 tan 𝑦

1 1
𝐿𝐻𝑆 = tan 𝑦 + tan 𝑦 𝑅𝐻𝑆 = cos2 𝑦 tan 𝑦
sin 𝑦 1 1
𝐿𝐻𝑆 = cos 𝑦 + sin 𝑦 𝑅𝐻𝑆 = sin 𝑦
cos2 𝑦×
cos 𝑦 cos 𝑦
sin 𝑦 cos 𝑦 1
𝐿𝐻𝑆 = + 𝑅𝐻𝑆 =
cos 𝑦 sin 𝑦 cos 𝑦.sin 𝑦
sin2 𝑦+cos2 𝑦
𝐿𝐻𝑆 = cos 𝑦.sin 𝑦
1
𝐿𝐻𝑆 = cos 𝑦.sin 𝑦

∴ 𝐿𝐻𝑆 = 𝑅𝐻𝑆

2.2. For which values of 𝑦 ∈ [0°; 360°] is the identity above undefined?

Denominator may not equal to zero

∴ cos 𝑦 . sin 𝑦 ≠ 0

cos 𝑦 = 0 sin 𝑦 = 0

ref ∠ for 𝑦 = cos−1 0 ref ∠ for 𝑦 = sin−1 0


ref ∠ for 𝑦 = 90° ref ∠ for 𝑦 = 0°
1st Quadrant 1st Quadrant

𝑦 = 90° + 𝑛. 360° 𝑛∈ℤ 𝑦 = 0° + 𝑛. 360°

4th Quadrant 2nd Quadrant

𝑦 = 360° − 90° + 𝑛. 360° 𝑦 = 180° − 0° + 𝑛. 360°


𝑦 = 270° + 𝑛. 360° 𝑦 = 180° + 𝑛. 360°

𝑦 = 0°; 90°; 180°; 270°; 360°

3.1. sin(180°+𝜃) tan(360°−𝜃)


sin(−𝜃) tan(180°+𝜃)
(− sin 𝜃)(− tan 𝜃)
= (− sin 𝜃)(tan 𝜃)
= −1

3.2. sin(180°+𝜃) tan(360°−𝜃) for 𝜃 ∈ [0°; 360°]


= tan 𝜃
sin(−𝜃) tan(180°+𝜃)
tan 𝜃 = −1

ref ∠ for 𝜃 = tan−1 1


ref ∠ for 𝜃 = 45°

2nd Quadrant

𝜃 = 180° − 45° + 𝑛. 180°


𝜃 = 135° + 𝑛. 180°

4th Quadrant

𝜃 = 360° − 45° + 𝑛. 180°


𝜃 = 315° + 𝑛. 180°

∴ 𝜃 = 135° + 𝑛. 180° 𝑜𝑟 315° + 𝑛. 180°

∴ 𝜃 = 135° 𝑜𝑟 315°

4. Given 12 tan 𝜃 = 5 and 𝜃 > 90°.

4.1. Draw a sketch.


𝑟2 = 𝑥2 + 𝑦2
𝑟 = ±√(−5)2 + (−12)2
𝑟 = ±√25 + 144
𝑟 = ±√169
𝑟 = ±13

∴ 𝑟 = 13
4.2. 5
sin 𝜃 = − 13
12
cos(180° + 𝜃) = −
13

4.3. 12 tan 𝜃 = 5
5
tan 𝜃 = 12
5
ref ∠ for 𝜃 = tan−1 12
ref ∠ for 𝜃 = 22,61986495°

3rd Quadrant

𝜃 = 180° + 22,61986495°
𝜃 = 202,62°

∴ 𝜃 = 202,62°

Exam Questions P.39

If cos 23° = 𝑝, express, without the use of a calculator, the following in


1.
terms of 𝑝:
1.1. cos 203° (2)
1.2. sin 293° (3)

2. Simplify the following expression to a single trigonometric term:


sin(360°−𝑥).tan(−𝑥)
cos(180°+𝑥).(sin2 𝐴+cos2 𝐴) (6)

3.1. cos 𝑥 1+sin 𝑥 2


Prove the identity: + = (5)
1+sin 𝑥 cos 𝑥 cos 𝑥
3.2. For which values of 𝑥 in the interval 0° ≤ 𝑥 ≤ 360° will the
identity in QUESTION 3.1. be undefined? (2)

4. In the diagram below 𝑃(𝑥; √3) is a point on the Cartesian plane


such that 𝑂𝑃 = 2. 𝑄 (𝑎; 𝑏) is a point such that 𝑇𝑂̂𝑄 = 𝛼 and 𝑂𝑄 =
20. 𝑃𝑂̂𝑄 = 90°.
4.1. Calculate the value of 𝑥. (2)
4.2. Hence, calculate the size of 𝛼. (3)
4.3. Determine the coordinates of 𝑄. (5)

5. In the diagram below, 𝑃(𝑥; 24) is a point such that 𝑂𝑃 = 25 and


𝑅𝑂̂𝑃 = 𝛽, where 𝛽 is an obtuse angle.

5.1. Calculate the value of 𝑥. (2)


5.2. Determine the value of each of the following WITHOUT using a
calculator:
5.2.1. sin 𝛽 (1)
5.2.2. cos(180° − 𝛽) (2)
5.2.3. tan(−𝛽) (2)
5.3. 𝑇 is a point on 𝑂𝑃 such that 𝑂𝑇 = 15. Determine the coordinates
of 𝑇 WITHOUT using a calculator. (4)

6. Determine the value of the following expression:


2 sin 𝑥.cos 𝑥(1+tan2 𝑥)
tan 𝑥 (4)
7. In the diagram below, 𝑃(−8; 𝑡 ) is a point in the Cartesian plane
such that 𝑂𝑃 = 17 units and reflex X𝑂̂𝑃 = 𝜃.

7.1. Calculate the value of 𝑡. (2)


7.2. Determine the value of each of the following WITHOUT using a
calculator:
7.2.1. cos(−𝜃) (2)
7.2.2. 1 − sin 𝜃 (2)

8. If sin 17° = 𝑎. WITHOUT using a calculator, express the following


in terms of 𝑎.
8.1. tan 17° (3)
8.2. sin 107° (2)
8.3. cos2 253° + sin2 557° (4)

9. Simplify fully. WITHOUT the use of a calculator:


cos(−225°).sin 135°+sin 330°
tan 225° (6)

1 −1
10. Prove the identity: =
(cos 𝑥+1)(𝑐𝑜𝑠𝑥−1) tan2 𝑥.cos2 𝑥 (4)

11. Determine the general solution for 2 sin 𝑥 . cos 𝑥 = cos 𝑥 (6)

12. Determine the general solution of: sin 2𝑥 = 4 cos 2𝑥 (5)

13. 1−cos2 𝐴
Consider:
4 cos(90°+𝐴)
13.1. Simplify the expression to a single trigonometric term. (3)
13.2. 1−cos2 2𝑥
Hence, determine the general solution of = 0,21 (6)
4 cos(90°+2𝑥)

Answers:

1. cos 23° = 𝑝

1.1. cos 203°


= cos(180° + 23°)
= − cos 23°
= −𝑝

1.2. sin 293°


= sin(360° − 67°)
= − sin 67°
= − sin (90° − 23°)
= − cos 23°
= −𝑝

2. sin(360°−𝑥).tan(−𝑥)
cos(180°+𝑥).(sin2 𝐴+cos2 𝐴)
− sin 𝑥.− tan 𝑥
=
− cos 𝑥.1
= − tan 𝑥 . tan 𝑥
= − tan2 𝑥
3.1. cos 𝑥 1+sin 𝑥 2
+ =
1+sin 𝑥 cos 𝑥 cos 𝑥
cos 𝑥 1+sin 𝑥
𝐿𝐻𝑆 = +
1+sin 𝑥 cos 𝑥
cos 𝑥(cos 𝑥)+(1+sin 𝑥)(1+sin 𝑥)
𝐿𝐻𝑆 =
(1+sin 𝑥)(cos 𝑥)
cos2 𝑥+1+2 sin 𝑥+sin2 𝑥
𝐿𝐻𝑆 =
(1+sin 𝑥)(cos 𝑥)
sin2 𝑥+cos2 𝑥+1+2 sin 𝑥
𝐿𝐻𝑆 =
(1+sin 𝑥)(cos 𝑥)
1+1+2 sin 𝑥
𝐿𝐻𝑆 =
(1+sin 𝑥)(cos 𝑥)
2+2 sin 𝑥
𝐿𝐻𝑆 =
(1+sin 𝑥)(cos 𝑥)
2(1+sin 𝑥)
𝐿𝐻𝑆 =
(1+sin 𝑥)(cos 𝑥)
2
𝐿𝐻𝑆 =
(cos 𝑥)
𝐿𝐻𝑆 = 𝑅𝐻𝑆

3.2. cos 𝑥 = 0
∴ 90°; 270°
4.

4.1. 𝑥2 = 𝑟2 − 𝑦2
2
𝑥 = ±√22 − (√3)
𝑥 = ±√4 − 3
𝑥 = ±√1
𝑥 = ±1
∴𝑥=1 𝑥 lies in Quadrant 1

4.2. sin 𝑃𝑂̂𝑇 =


√3
2
√3
𝑃𝑂̂𝑇 = sin−1
2
̂
𝑃𝑂𝑇 = 60°

𝑃𝑂̂𝑄 = 90°
𝛼 = 90° − 60°
𝛼 = 30°

4.3 𝑏
sin 𝛼 =
𝑟
𝑏
sin 30° =
20
𝑏 = 20. sin 30°
𝑏 = 10

𝑎
cos 𝛼 =
𝑟
𝑎
cos 30° =
20
𝑎 = 20. cos 30°
𝑎 = 10√3
5.

5.1. 𝑥2 = 𝑟2 − 𝑦2
𝑥 = ±√252 − 242
𝑥 = ±√625 − 576
𝑥 = ±√49
𝑥 = ±7
∴ 𝑥 = −7 Point P lies in the 2nd quadrant

5.2.1. sin 𝛽
24
=
25

5.2.2. cos(180° − 𝛽)
= − cos 𝛽
7
= − (− )
25
7
=
25

5.2.3. tan(−𝛽)
= − tan 𝛽
24
=−
−7
24
=
7

24 𝑦
5.3. =
25 15
24×15
𝑦=
25
42
𝑦=
5

−7 𝑥
=
25 15
−7×15
𝑥=
25
−21
𝑦=
5
6. 2 sin 𝑥.cos 𝑥(1+tan2 𝑥)
tan 𝑥
sin2 𝑥
2 sin 𝑥.cos 𝑥(1+ )
cos2 𝑥
= sin 𝑥
cos 𝑥
cos2 𝑥+sin2 𝑥 cos 𝑥
= 2 sin 𝑥. cos 𝑥 ( )×
cos2 𝑥 sin 𝑥
2 sin 𝑥.cos2 𝑥 1
= ( )
sin 𝑥 cos2 𝑥
=2

7.

7.1. 𝑡 2 = 𝑟2 − 𝑥2
𝑡 = ±√172 − (−82 )
𝑡 = ±√289 − 64
𝑡 = ±√225
𝑡 = ±15
∴ 𝑡 = −15 Point P lies in the 3rd quadrant

7.2.1. cos(−𝜃)
= cos 𝜃
−8
=
17

7.2.2. 1 − sin 𝜃
−15
=1−( )
17
15
=1+
17
32
=
17
8.

𝑥2 = 𝑟2 − 𝑦2
𝑥 = √12 − 𝑎2
𝑥 = √1 − 𝑎2

8.1. tan 17°


𝑎
= √1−𝑎2

8.2. sin 107°


= sin(90° + 17°)
= cos 17°
√1−𝑎2
=
1
= √1 − 𝑎2

or

= sin 107°
= sin(180° − 73°)
= sin 73°
√1−𝑎2
=
1
= √1 − 𝑎2

8.3. cos2 253° + sin2 557°


= cos2 (180° + 73°) + sin2 (360° + 180° + 17°)
= −cos2 73° +sin2 (180° + 17°)
= −cos2 73° − sin2 17°
= − (𝑎 )2 − (𝑎 )2
= −𝑎2 − 𝑎2
= −2𝑎2

9. cos(−225°).sin 135°+sin 330°


tan 225°
cos(−(180+45)).sin(180°−45°)+sin(360°−30°)
=
tan(180°+45°)
− cos 45°.sin 45°+(− sin 30°)
=
tan 45°
−1 1 1
( )( )−( )
√2 √2 2
=
1
1 1
− −
2 2
=
1
= −1

1 −1
10. =
(cos 𝑥+1)(𝑐𝑜𝑠𝑥−1) tan2 𝑥.cos2 𝑥

1
𝐿𝐻𝑆 =
(cos 𝑥+1)(𝑐𝑜𝑠𝑥−1)
1
𝐿𝐻𝑆 =
cos2 𝑥−1
1
𝐿𝐻𝑆 =
− sin2 𝑥

−1
𝑅𝐻𝑆 =
tan2 𝑥.cos2 𝑥
−1
𝑅𝐻𝑆 = sin2 𝑥
.cos2 𝑥
cos2 𝑥
−1
𝑅𝐻𝑆 =
sin2 𝑥

𝐿𝐻𝑆 = 𝑅𝐻𝑆

11. 2 sin 𝑥 . cos 𝑥 = cos 𝑥


2 sin 𝑥. cos 𝑥 − cos 𝑥 = 0
cos 𝑥 (2 sin 𝑥 − 1) = 0

1
cos 𝑥 = 0 sin 𝑥 =
2

1
ref ∠ for 𝑥 = cos −1 0 ref ∠ for 𝑥 = sin−1
2
ref ∠ for 𝑥 = 90° ref ∠ for 𝑥 = 30°
1st Quadrant 1st Quadrant

𝑥 = 90° + 𝑛. 360° 𝑛∈ℤ 𝑥 = 30° + 𝑛. 360°

4th Quadrant 2nd Quadrant

𝑥 = 360° − 90° + 𝑛. 360° 𝑥 = 180° − 30° + 𝑛. 360°


𝑥 = 270° + 𝑛. 360° 𝑥 = 150° + 𝑛. 360°

12. sin 2𝑥 = 4 cos 2𝑥


sin 2𝑥
=4
cos 2𝑥
tan 2𝑥 = 4

ref ∠ for 2𝑥 = tan−1 4


ref ∠ for 2𝑥 = 75,96375653°

1st Quadrant

2𝑥 = 75,96375653° + 𝑛. 180° 𝑛∈ℤ


𝑥 = 37,98° + 𝑛. 90°

3rd Quadrant

2𝑥 = 180° + 75,96375653° +
𝑛. 180°
2𝑥 = 255,9637565° + 𝑛. 180°
𝑥 = 127,98° + 𝑛. 90°
13. 1−cos2 𝐴
Consider:
4 cos(90°+𝐴)
13.1. 1−cos2 𝐴
4 cos(90°+𝐴)
sin2 𝐴
=
4(− sin 𝐴)
1
= − sin 𝐴
4

13.2. 1−cos2 2𝑥
= 0,21
4 cos(90°+2𝑥)
1−cos2 2𝑥 1
= − sin 2𝑥
4 cos(90°+2𝑥) 4

1
− sin 2𝑥 = 0,21
4
sin 2𝑥 = −0,84

ref ∠ for 2𝑥 = sin−1 0,84


ref ∠ for 2𝑥 = 57,14011962°

3rd Quadrant

2𝑥 = 180 + 57,14011962° + 𝑛. 360° 𝑛∈ℤ


2𝑥 = 237,14011962° + 𝑛. 360°
𝑥 = 118,57° + 𝑛. 180°
4th Quadrant

2𝑥 = 360° − 57,14011962° + 𝑛. 360°


2𝑥 = 302,8598804° + 𝑛. 360°
𝑥 = 151,43° + 𝑛. 180°

You might also like