Unit 7A Whatsapp
Unit 7A Whatsapp
Classwork/Homework
Activity 7A.1. P.10
1. If 𝑝 = 49° and 𝑞 = 32°, use a calculator to determine whether the
following statements are true or false.
1.1. sin 𝑝 + 3 sin 𝑝 = 4 sin 𝑝
1.2. cos(𝑝 − 𝑞) = cos 𝑝 − cos 𝑞
1.3. sin(2𝑝) = 2 sin 𝑝 cos 𝑝
Determine:
3.1. the length 𝑇𝐶 (Leave your answer in simplest surd form)
3.2. the length 𝐴𝑇
3.3. the angle 𝐵𝐴̂𝑇 (Round your answer off to 2 decimal places)
B(2; 2√3)
6.1. 𝛽
6.2. cos 𝛽
6.3. cos2 𝛽 + sin2 𝛽
7. The 10 m ladder of a fire truck leans against the wall of a burning building
at an angle of 60°. The height of an open window is 9 m from the ground.
Will the ladder reach the window?
Answers:
1
2.1. cos 𝛼 = 0,64 2.2. cos 2𝛽 = 0,3
2
𝛼 = cos −1 0,64 cos 2𝛽 = 0,6
𝛼 = 50,2081805° 2𝛽 = cos −1 0,6
𝛼 = 50,2° 2𝛽 = 53,13010235°
𝛽 = 26,56505118°
𝛽 = 26,6°
𝑎𝑑𝑗 𝑜𝑝𝑝
3.1 cos 𝜃 = 3.2 sin 𝜃 =
ℎ𝑦𝑝 ℎ𝑦𝑝
𝐶𝑇 𝐴𝑇
cos 30° = sin 30° =
20 20
𝐶𝑇 = 20 cos 30° 𝐴𝑇 = 20 sin 30°
√3 1
𝐶𝑇 = 20 ( ) 𝐴𝑇 = 20 ( )
2 2
𝐶𝑇 = 10√3 𝐴𝑇 = 10 cm
𝐶𝑇 = 17,32050808
𝐶𝑇 = 17,32 cm
𝑜𝑝𝑝
tan 𝛼 =
𝑎𝑑𝑗
4,68
tan 𝐵𝐴̂𝑇 =
10
tan 𝐵𝐴̂𝑇 = 0,468
𝐵𝐴̂𝑇 = tan−1 0,468
𝐵𝐴̂𝑇 = 25,07959402°
𝐵𝐴̂𝑇 = 25,08°
In ∆𝐸𝐷𝐶:
𝐷𝐸
⇝ 𝐷𝐸: sin 15° =
𝐷𝐶
𝐷𝐸
𝐷𝐸: sin 15° =
10
𝐷𝐸: 𝐷𝐸 = 10 sin 15°
𝐷𝐸: 𝐷𝐸 = 10(0,258819045)
𝐷𝐸: 𝐷𝐸 = 2,588190451
𝐷𝐸: 𝐷𝐸 = 2,59 cm
∴ 𝐷𝐵 = 2𝐷𝐸
∴ 𝐷𝐵 = 2(2,59)
∴ 𝐷𝐵 = 5,18 cm
𝐸𝐶
⇝ 𝐷𝐸: cos 15° =
𝐷𝐶
𝐸𝐶
𝐷𝐸: cos 15° =
10
𝐷𝐸: 𝐸𝐶 = 10 cos 15°
𝐷𝐸: 𝐸𝐶 = 10(0,965925826)
𝐷𝐸: 𝐸𝐶 = 9,659258263
𝐷𝐸: 𝐸𝐶 = 9,66 cm
∴ 𝐴𝐶 = 2𝐸𝐶
∴ 𝐴𝐶 = 2(9,66)
∴ 𝐴𝐶 = 19,32 cm
OR
⏊ℎ
⏊ℎ𝑒𝑖𝑔ℎ𝑡: sin 30° =
10
⏊ℎ𝑒𝑖𝑔ℎ𝑡: ⏊ℎ = 10 sin 30°
1
⏊ℎ𝑒𝑖𝑔ℎ𝑡: ⏊ℎ = 10 ( )
2
⏊ℎ𝑒𝑖𝑔ℎ𝑡: ⏊ℎ = 5 cm
5.1. 2 sin 45° × 2 cos 45° 5.2. cos2 30° − sin2 60°
1 1 2 2
√3 √3
= 2( ) × 2( ) =( ) −( )
√2 √2 2 2
2 2 3 3
= × = −
√2 √2 4 4
4
= =0
2
=2
5.3. 4 sin 60° cos 30° − 2 tan 45° + tan 60° − 2 sin 60°
√3 √3 √3
= 4 ( ) ( ) − 2(1) + (√3) − 2 ( )
2 2 2
3
= 4 ( ) − 2 + √3 − √3
4
=3−2
=1
tan 𝛽 = √3 𝑟 = √4 + 4.3
𝛽 = tan−1 √3 𝑟 = √4 + 12
𝛽 = 60° 𝑟 = √16
𝑟 =4
𝑥
cos 𝛽 =
𝑟
2
cos 𝛽 =
4
1
cos 𝛽 =
2
Classwork/Homework
Activity 7A.2. P.16
1. Reduce the following to one trigonometric ratio:
1.1. sin 𝛼
tan 𝛼
1.2. cos 𝜃 tan2 𝜃 + tan2 𝜃 sin2 𝜃
2
Answers:
1.1. sin 𝛼
tan 𝛼
sin 𝛼 sin 𝛼
= sin 𝛼 = tan 𝛼
cos 𝛼 cos 𝛼
cos 𝛼
= sin 𝛼 ×
sin 𝛼
= cos 𝛼
1.2. cos2 𝜃 tan2 𝜃 + tan2 𝜃 sin2 𝜃
= tan2 𝜃 (cos2 𝜃 + sin2 𝜃)
= tan2 𝜃 (1) sin2 𝜃 + cos 2 𝜃 = 1
= tan2 𝜃
1+sin 𝜃
𝐿𝐻𝑆 =
cos 𝜃
(1+sin 𝜃) (1−sin 𝜃)
𝐿𝐻𝑆 = ×
cos 𝜃 (1−sin 𝜃)
1−sin2 𝜃
𝐿𝐻𝑆 =
cos 𝜃(1−sin 𝜃)
cos2 𝜃 = 1 − sin2 𝜃
cos2 𝜃
𝐿𝐻𝑆 =
cos 𝜃(1−sin 𝜃)
cos 𝜃 cos 𝜃
𝐿𝐻𝑆 =
cos 𝜃(1−sin 𝜃)
cos 𝜃
𝐿𝐻𝑆 =
1−sin 𝜃
cos 𝜃
𝑅𝐻𝑆 =
1−sin 𝜃
∴ 𝐿𝐻𝑆 = 𝑅𝐻𝑆
𝑅𝐻𝑆 = 1 − tan2 𝛼
∴ 𝐿𝐻𝑆 = 𝑅𝐻𝑆
1 cos 𝜃 tan2 𝜃
𝐿𝐻𝑆 = −
cos 𝜃 1
sin2 𝜃
cos 𝜃 sin2 𝜃
𝐿𝐻𝑆 =
1
− cos2 𝜃 = tan2 𝜃
cos 𝜃 1 cos2 𝜃
sin2 𝜃
1 cos 𝜃
cos 𝜃 cos 𝜃
𝐿𝐻𝑆 = −
cos 𝜃 1
1 sin2 𝜃
𝐿𝐻𝑆 = −
cos 𝜃 cos 𝜃
1−sin2 𝜃
𝐿𝐻𝑆 = cos2 𝜃 = 1 − sin2 𝜃
cos 𝜃
cos2 𝜃
𝐿𝐻𝑆 =
cos 𝜃
cos 𝜃 cos 𝜃
𝐿𝐻𝑆 =
cos 𝜃
𝐿𝐻𝑆 = cos 𝜃
𝑅𝐻𝑆 = cos 𝜃
∴ 𝐿𝐻𝑆 = 𝑅𝐻𝑆
1
𝑅𝐻𝑆 = sin 𝜃 + cos 𝜃 −
sin 𝜃+cos 𝜃
sin 𝜃(sin 𝜃+cos 𝜃) cos 𝜃(sin 𝜃+cos 𝜃) 1
𝑅𝐻𝑆 = + −
sin 𝜃+cos 𝜃 sin 𝜃+cos 𝜃 sin 𝜃+cos 𝜃
sin2 𝜃+sin 𝜃 cos 𝜃+sin 𝜃 cos 𝜃+cos2 𝜃−1
𝑅𝐻𝑆 =
sin 𝜃+cos 𝜃
sin2 𝜃+cos2 𝜃+2sin 𝜃 cos 𝜃−1
𝑅𝐻𝑆 = sin2 𝜃 + cos 2 𝜃 = 1
sin 𝜃+cos 𝜃
1+2sin 𝜃 cos 𝜃−1
𝑅𝐻𝑆 =
sin 𝜃+cos 𝜃
2sin 𝜃 cos 𝜃
𝑅𝐻𝑆 =
sin 𝜃+cos 𝜃
2 sin 𝜃 cos 𝜃
𝐿𝐻𝑆 =
sin 𝜃+cos 𝜃
∴ 𝐿𝐻𝑆 = 𝑅𝐻𝑆
2.5. (cos 𝛽 + tan 𝛽) 𝑐𝑜𝑠𝛽 = 1
sin 𝛽 sin 𝛽
cos 𝛽
𝐿𝐻𝑆 = ( + tan 𝛽) 𝑐𝑜𝑠𝛽
sin 𝛽
cos 𝛽 sin 𝛽 sin 𝛽
𝐿𝐻𝑆 = ( + ) 𝑐𝑜𝑠𝛽 = tan 𝛽
sin 𝛽 cos 𝛽 cos 𝛽
cos2 𝛽 sin 𝛽𝑐𝑜𝑠𝛽
𝐿𝐻𝑆 = +
sin 𝛽 cos 𝛽
cos2 𝛽
𝐿𝐻𝑆 = + sin 𝛽
sin 𝛽
cos2 𝛽+sin2 𝛽
𝐿𝐻𝑆 =
sin 𝛽
sin2 𝛽 + cos2 𝛽 = 1
1
𝐿𝐻𝑆 =
sin 𝛽
1
𝑅𝐻𝑆 =
sin 𝛽
∴ 𝐿𝐻𝑆 = 𝑅𝐻𝑆
2.6. 1 1 2 tan 𝜃
+ =
1+sin 𝜃 1−sin 𝜃 sin 𝜃 cos 𝜃
1 1
𝐿𝐻𝑆 = +
1+sin 𝜃 1−sin 𝜃
1(1−sin 𝜃)
𝐿𝐻𝑆 = +
(1+sin 𝜃)(1−sin 𝜃)
1(1+sin 𝜃)
(1−sin 𝜃)(1+sin 𝜃)
1−sin 𝜃+1+sin 𝜃
𝐿𝐻𝑆 =
1−sin2 𝜃
2
𝐿𝐻𝑆 =
cos2 𝜃
cos2 𝜃 = 1 − sin2 𝜃
2 tan 𝜃
𝑅𝐻𝑆 =
sin 𝜃 cos 𝜃
sin 𝜃
2 sin 𝜃
𝑅𝐻𝑆 = cos 𝜃 = tan 𝜃
sin 𝜃 cos 𝜃 cos 𝜃
2 sin 𝜃 1
𝑅𝐻𝑆 = ×
cos 𝜃 sin 𝜃 cos 𝜃
2
𝑅𝐻𝑆 =
cos2 𝜃
∴ 𝐿𝐻𝑆 = 𝑅𝐻𝑆
2.7. (1+tan2 𝛼) cos 𝛼 1
=
(1−tan 𝛼) cos 𝛼−sin 𝛼
(1+tan2 𝛼) cos 𝛼
𝐿𝐻𝑆 =
(1−tan 𝛼)
sin2 𝛼
(1+ ) cos 𝛼 sin2 𝛼
cos2 𝛼
𝐿𝐻𝑆 = sin 𝛼 = tan 𝛼
(1− ) cos2 𝛼
cos 𝛼
2
cos 𝛼+sin 𝛼 2
( ) cos 𝛼 sin 𝛼
cos2 𝛼
𝐿𝐻𝑆 = cos 𝛼−sin 𝛼
= tan 𝛼
( ) cos 𝛼
cos 𝛼
2
cos 𝛼+sin 𝛼 2
( ) cos 𝛼
𝐿𝐻𝑆 =
cos 𝛼 cos 𝛼
cos 𝛼−sin 𝛼
sin2 𝛼 + cos 2 𝛼 = 1
( )
cos 𝛼
1
( )
cos 𝛼
𝐿𝐻𝑆 = cos 𝛼−sin 𝛼
( )
cos 𝛼
1 cos 𝛼
𝐿𝐻𝑆 = ×
cos 𝛼 cos 𝛼−sin 𝛼
1
𝐿𝐻𝑆 =
cos 𝛼−sin 𝛼
1
𝑅𝐻𝑆 =
cos 𝛼−sin 𝛼
∴ 𝐿𝐻𝑆 = 𝑅𝐻𝑆
Classwork/Homework
Activity 7A.3. P.23
1. Rewrite each ratio as a ratio of an acute angle:
1.1. cos 156°
1.2. sin 166°
1.3. cos 99°
1.4. cos 225°
1.5. tan 209°
1.6. sin 216°
1.7. cos 300°
1.8. sin 302°
1.9. tan 322°
14. Prove that the following identity is true and state any restrictions:
sin(180°+𝛼) tan(360°+𝛼) cos 𝛼
= sin 𝛼
cos (90°−𝛼)
Answers:
2.1. cos(−125°)
= cos(125°) cos(−𝜃) = cos 𝜃
= cos(180° − 55°)
= cos 55°
2.2. sin(−106°)
= −sin(106°) sin(−𝜃) = − sin 𝜃
= −sin(180° − 74°)
= − sin 74°
2.3. sin(−204°)
= −sin(204°) sin(−𝜃) = − sin 𝜃
= −sin(180° + 24°)
= −(− sin 24°)
= sin 24°
2.6. cos(−292°)
= cos(292°) cos(−𝜃) = cos 𝜃
= cos(360° − 68°)
= cos 68°
2.7. tan(−286°)
= −tan(286°) tan(−𝜃) = − tan 𝜃
= −tan(360° − 74°)
= −(− tan 74°)
= tan 74°
5. 𝑡 = tan 40°
5.1. tan 140° + 3 tan 220°
= tan(180° − 40°) + 3 tan(180° + 40°)
= (− tan 40°) + 3 tan 40°
= 2 tan 40°
= 2𝑡
7. cos(360°−𝛽) cos(−𝛽)−1
sin(360°+𝛽) tan(360°−𝛽)
(cos 𝛽)(cos 𝛽)−1
=
(sin 𝛽)(− tan 𝛽)
cos2 𝛽−(sin2 𝛽+cos2 𝛽)
= sin 𝛽
sin 𝛽(− )
cos 𝛽
cos2 𝛽−sin2 𝛽−cos2 𝛽
= sin2 𝛽
(− )
cos 𝛽
− sin2 𝛽
= sin2 𝛽
(− )
cos 𝛽
− sin2 𝛽 cos 𝛽
= ×
1 − sin2 𝛽
= cos 𝛽
8.1. cos 300° tan 150°
sin 225°cos (−45°)
cos(360°−60°) tan(180°−30°)
=
sin(180°−45°) cos 45°
(cos 60°)(− tan 30°)
=
(sin 45°)(cos 45°)
1 1
( )(− )
2 √3
= 1 1
( )( )
√2 √2
1 1
( )(− )
2 √3
= 1
( )
2
1
=−
√3
11.3.1. 𝐴 + 𝐵 =. ….
= sin2 𝜃 + cos 2 𝜃
=1
𝐴
11.3.2. =. ….
𝐵
sin2 𝜃
=
cos2 𝜃
2
= tan 𝜃
∴ 𝐿𝐻𝑆 = 𝑅𝐻𝑆
Classwork/Homework
Activity 7A.4. P.26
1. Given tan 𝑥 = √5 where 𝑥 ∈ [90°; 270°] and √2 cos 𝑦 + 1 = 0 where
sin 𝑦 > 0. Determine the following using relevant diagrams.
1.1. sin2 𝑥
cos2 𝑦
1.2. cos(180° + 𝑥)
𝑝
3. If tan 𝐴 = and 𝐴 < 90°, find the following in terms of 𝑝 and 𝑘.
𝑘
3.1. sin 𝐴
1
3.2. cos 𝐴
𝑘
−3
4. If cos 𝑃 = and sin 𝑃 > 0, use a sketch (no calculator) to find the value
4
of:
√7 cos(90° + 𝑃)
Answers:
√2
𝑥 𝑦
−1
−1
−√5
𝑟2 = 𝑥2 + 𝑦2 𝑦2 = 𝑟2 − 𝑥2
2 2
𝑟 = √(−1)2 + (−√5) 𝑦 = √(√2) − (−1)2
𝑟 = √1 + 5 𝑦 = √4 − 1
𝑟 = √6 𝑦 = √3
1.1. sin2 𝑥
cos2 𝑦
2
−√5
( )
√6
= −1 2
( )
√2
5
6
= 1
2
5 2
= ×
6 1
10 5 2
= = =1
6 3 3
1.2. cos(180° + 𝑥)
= − cos 𝑥
−1
=
√6
𝑥2 = 𝑟2 − 𝑦2
2
𝑥 = √(2)2 − (√3)
𝑥 = √4 − 3
𝑥 = ±√1
𝑥 = ±1
But 2nd quadrant 𝑥 is negative
∴ 𝑥 = −1
2.1. cos2 𝑥
−1 2
=( )
2
1
=
4
2.2. sin(180°+𝑥)
tan(360°−𝑥)
√3
−
2
= √3
−
1
−√3 −1
= ×
2 √3
1
=
2
𝑝
3. tan 𝐴 = and 𝐴 < 90°
𝑘
𝑝 𝑦
tan 𝐴 = =
𝑘 𝑥
𝑝
𝐴
𝑘
𝑟2 = 𝑥2 + 𝑦2
𝑟 = √(𝑘 )2 + (𝑝)2
𝑟 = √𝑘 2 + 𝑝2
3.1. sin 𝐴
𝑝
= 2
√𝑘 +𝑝2
1
3.2. cos 𝐴
𝑘
1 𝑘
= ×
𝑘 √𝑘 2 +𝑝2
1
=
√𝑘 2 +𝑝2
−3
4. cos 𝑃 = and sin 𝑃 > 0
4
−3 𝑥
cos 𝑃 = =
4 𝑟
𝑃
−3
𝑟2 = 𝑥2 + 𝑦2
𝑦 = √(4)2 − (−3)2
𝑟 = √16 − 9
𝑟 = ±√7
But 𝑟 is always positive
∴ 𝑟 = √7
√7 cos(90° + 𝑃)
= √7(− sin 𝑃)
√7
= −√7 ( )
4
7 3
= − = −1 = −1,75
4 4
Classwork/Homework
Activity 7A.5. P.30
1. Determine the value of 𝛼 for 𝛼 ∈ [0°; 360°] if:
1.1. 4 cos 𝛼 = 2
1.2. sin 𝛼 + 3,65 = 3
1
1.3. tan 𝛼 = 5 4
1.4. cos 𝛼 + 0,939 = 0
1.5. 5 sin 𝛼 = 3
1
1.6. tan 𝛼 = −1,4
2
Answers:
1.1. 4 cos 𝛼 = 2
2
cos 𝛼 = 4
1
cos 𝛼 = 2
1st Quadrant
𝛼 = 60°
4th Quadrant
𝛼 = 360° − 60°
𝛼 = 300°
∴ 𝛼 = 60° 𝑜𝑟 300°
1st Quadrant
𝛼 = 40,54°
2nd Quadrant
𝛼 = 180° − 40,54160187°
𝛼 = 139,46°
∴ 𝛼 = 40,54° 𝑜𝑟 139,46°
1
1.3. tan 𝛼 = 5 4
1st Quadrant
m
𝛼 = 79,22°
3rd Quadrant
𝛼 = 180° + 79,21570213°
𝛼 = 259,22°
∴ 𝛼 = 79,22° 𝑜𝑟 259,22° °
2nd Quadrant
𝛼 = 180° − 20,11570805°
𝛼 = 159,88°
3rd Quadrant
𝛼 = 180° + 20,11570805°
𝛼 = 200,12°
∴ 𝛼 = 159,88° 𝑜𝑟 200,12°
1.5. 5 sin 𝛼 = 3
3
sin 𝛼 = 5 m
1st Quadrant
𝛼 = 36,87°
2nd Quadrant
𝛼 = 180° − 36,86989765°
𝛼 = 143,13°
∴ 𝛼 = 36,87° 𝑜𝑟 143,13°
1
1.6. tan 𝛼 = −1,4
2
tan 𝛼 = −2,8
2nd Quadrant m
𝛼 = 180° − 70,34617594°
𝛼 = 109,65°
4th Quadrant
𝛼 = 360° − 70,34617594°
𝛼 = 289,65°
∴ 𝛼 = 109,65° 𝑜𝑟 289,65°
1st Quadrant
𝜃 = 36,87°
2nd Quadrant
𝜃 = 180° − 36,86989765°
𝜃 = 143,13°
∴ 𝜃 = 36,87° 𝑜𝑟 143,13°
3
2.2. cos 𝜃 + 4 = 0
3
cos 𝜃 = − 4
3
ref ∠ for 𝜃 = cos −1 4
ref ∠ for 𝜃 = 41,40962211°
2nd Quadrant
𝜃 = 180° − 41,40962211°
𝜃 = 138,59°
3rd Quadrant
𝜃 = 180° + 41,40962211°
𝜃 = 221,41°
∴ 𝜃 = −138,59° 𝑜𝑟 138,59°
2.3. 3 tan 𝜃 = 20
20
tan 𝜃 = 3
20
ref ∠ for 𝜃 = tan−1 3
ref ∠ for 𝜃 = 81,46923439°
1st Quadrant
m
𝜃 = 81,47°
3rd Quadrant
𝜃 = 180° + 81,46923439°
𝜃 = 261,47°
∴ 𝜃 = −98,53° 𝑜𝑟 81,47°
3rd Quadrant m
𝜃 = 180° + 90°
𝜃 = 270°
4th Quadrant
𝛼 = 360° − 90°
𝛼 = 270°
∴ 𝜃 = −90°
4
2.5. 2 cos 𝜃 = 5
2
cos 𝜃 = 5
1st Quadrant
𝜃 = 66,42°
4th Quadrant
𝜃 = 360° − 66,42182152°
𝜃 = 293,58°
∴ 𝜃 = −66,42° 𝑜𝑟 66,42°
Classwork/Homework
Activity 7A.6. P.34
1. Find the general solution for each equation.
1.1. cos(𝜃 + 20°) = 0 1.4. cos(𝛼 − 25°) = 0,707
1.2. 3𝜃
sin 3𝛼 = −1 1.5. 2 sin = −1
2
1.3. 5
tan 4𝛽 = 0,866 1.6. 5 tan(𝛽 + 15°) = −
√3
Answers:
1st Quadrant
4th Quadrant
1.2. sin 3𝛼 = −1
3rd Quadrant
∴ 𝛼 = 90° + 𝑛. 120°
1st Quadrant
1st Quadrant
4th Quadrant
1.5. 3𝜃
2 sin = −1
2
3𝜃 −1
sin =
2 2
3𝜃
ref ∠ for = sin−1 0,5
2
3𝜃
ref ∠ for = 30°
2
3rd Quadrant
3𝜃
= 180° + 30° + 𝑛. 360° 𝑛∈ℤ
2
3𝜃
= 210° + 𝑛. 360°
2
3𝜃° = 420° + 𝑛. 720°
3𝜃 420° 𝑛.720°
= +
3 3 3
𝜃 = 140° + 𝑛. 240°
4th Quadrant
3𝜃
= 360° − 30° + 𝑛. 360°
2
3𝜃
= 330° + 𝑛. 360°
2
3𝜃° = 660° + 𝑛. 720°
3𝜃 660° 𝑛.720°
= +
3 3 3
𝜃 = 220° + 𝑛. 240°
1.6. 5
5 tan(𝛽 + 15°) = −
√3
1
tan(𝛽 + 15°) = −
√3
1
ref ∠ for 𝛽 + 15° = tan−1
√3
ref ∠ for 𝛽 + 15° = 30°
2nd Quadrant
4th Quadrant
1st Quadrant
4th Quadrant
3rd Quadrant
4th Quadrant
2nd Quadrant
4th Quadrant
1st Quadrant
𝛼 = 0° + 𝑛. 360° 𝑛∈ℤ
4th Quadrant
𝛼 = 360° − 0° + 𝑛. 360°
𝛼 = 360° + 𝑛. 360°
2nd Quadrant
2nd Quadrant
3rd Quadrant
𝜃 = 180° + 0° + 𝑛. 360°
𝜃 = 180° + 𝑛. 360°
1st Quadrant
𝜃 = 0° + 𝑛. 360° 𝑛∈ℤ
2nd Quadrant
𝜃 = 180° − 0° + 𝑛. 360°
𝜃 = 180° + 𝑛. 360°
2.8. 𝜃
tan 2 = 0,9 for −180° ≤ 𝑥 ≤ 180°
𝜃
ref ∠ for 2 = tan−2 0,9
𝜃
ref ∠ for 2 = 41,9872125°
1st Quadrant
𝜃
= 41,9872125° + 𝑛. 180° 𝑛∈ℤ
2
𝜃 = 83,97° + 𝑛. 360°
3rd Quadrant
𝜃
= 180° + 41,9872125° + 𝑛. 180°
2
𝜃
= 221,9872125° + 𝑛. 180°
2
𝜃 = 443,97° + 𝑛. 360°
∴ 𝜃 = 83,97°
2.9. 2 sin 2𝜃 = −
√3
for −180° ≤ 𝑥 ≤ 180°
2
√3
sin 2𝜃 = −4
√3
ref ∠ for 2𝜃 = sin−1 4
ref ∠ for 2𝜃 = 25,65890627°
3rd Quadrant
4th Quadrant
Classwork/Homework
Activity 7A.7. P.38
1
1. Find 𝜃 if sin2 𝜃 + 2 sin 𝜃 = 0 for 𝜃 ∈ [0°; 360°].
1
3. Find 𝛽 if 3 tan 𝛽 = cos 200° for 𝛽 ∈ [−180°; 180°].
Answers:
1. 1
Find 𝜃 if sin2 𝜃 + sin 𝜃 = 0 for 𝜃 ∈ [0°; 360°].
2
1
sin2 𝜃 + 2 sin 𝜃 = 0
1
sin 𝜃 (sin 𝜃 + 2) = 0
1
sin 𝜃 = 0 sin 𝜃 + 2 = 0
1
sin 𝜃 = − 2
1
ref ∠ for 𝜃 = sin−1 0 ref ∠ for 𝜃 = sin−1 2
ref ∠ for 𝜃 = 0° ref ∠ for 𝜃 = 30°
2 cos 𝜃 + 1 = 0 cos 𝜃 − 2 = 0
1
cos 𝜃 = − 2 cos 𝜃 = 2
1
ref ∠ for 𝜃 = cos −1 2 N.A.
ref ∠ for 𝜃 = 60°
2nd Quadrant
3rd Quadrant
tan 𝜃 = 0 3 tan 𝜃 + 2 = 0
2
tan 𝜃 = −
3
2
ref ∠ for 𝜃 = tan−1 0 ref ∠ for 𝜃 = tan−1 3
ref ∠ for 𝜃 = 0° ref ∠ for 𝜃 = 33,69006753°
𝛼 = 36,87° + 𝑛. 360°
𝛼 = 180° − 36,86989765° + 𝑛. 360°
𝑛∈ℤ
𝛼 = 143,13° + 𝑛. 360°
4th Quadrant 3rd Quadrant
𝛼 = 360° −
𝛼 = 180° + 36,86989765° + 𝑛. 360°
36,86989765° + 𝑛. 360°
𝛼 = 323,13° + 𝑛. 360° 𝛼 = 216,87° + 𝑛. 360°
1st Quadrant
2nd Quadrant
4𝛽 + 35° = 180° − (80° + 𝛽) +
𝑛. 360°
4𝛽 + 35° = 180° − 80° − 𝛽 + 𝑛. 360°
5𝛽 = 65° + 𝑛. 360°
𝛽 = 13° + 𝑛. 72°
1st Quadrant
tan 𝜃 = 2 tan 𝜃 = −2
2.7. cos(2𝜃+30°)
+ 0,38 = 0
2
cos(2𝜃+30°)
= −0,38
2
cos(2𝜃 + 30°) = −0,76
2nd Quadrant
3rd Quadrant
3. 1
Find 𝛽 if 3 tan 𝛽 = cos 200° for 𝛽 ∈ [−180°; 180°].
1
tan 𝛽 = cos 200°
3
1
tan 𝛽 = −0,93969262
3
tan 𝛽 = −2,819077862
2nd Quadrant
4th Quadrant
𝛽 = 360° − 70,46908474° + 𝑛. 180°
𝛽 = 289,53° + 𝑛. 180°
𝛽 = −70,47°; 109,53°
Classwork/Homework
Activity 7A.8. P.39
1. Prove the following identities:
1 −1
1.1. = tan2 𝑥 cos2 𝑥
(cos 𝑥−1)(cos 𝑥+1)
1.2. (1 − tan 𝛼) cos 𝛼 = sin(90° + 𝛼) + cos(90° + 𝛼)
1 1
2.1. Prove: tan 𝑦 + tan 𝑦 = cos2 𝑦 tan 𝑦
2.2. For which values of 𝑦 ∈ [0°; 360°] is the identity above undefined?
Answers:
1 −1
1.1. = tan2 𝑥 cos2 𝑥
(cos 𝑥−1)(cos 𝑥+1)
1 1
𝐿𝐻𝑆 = (cos 𝑥+1)(cos 𝑥−1) 𝑅𝐻𝑆 = − tan2 𝑥.cos2 𝑥
1 1
𝐿𝐻𝑆 = cos2 𝑥−1 𝑅𝐻𝑆 = − sin2 𝑥
.cos2 𝑥
cos2 𝑥
1 1
𝐿𝐻𝑆 = − sin2 𝑥 𝑅𝐻𝑆 = − sin2 𝑥
∴ 𝐿𝐻𝑆 = 𝑅𝐻𝑆
∴ 𝐿𝐻𝑆 = 𝑅𝐻𝑆
1 1
2.1. tan 𝑦 + tan 𝑦 = cos2 𝑦 tan 𝑦
1 1
𝐿𝐻𝑆 = tan 𝑦 + tan 𝑦 𝑅𝐻𝑆 = cos2 𝑦 tan 𝑦
sin 𝑦 1 1
𝐿𝐻𝑆 = cos 𝑦 + sin 𝑦 𝑅𝐻𝑆 = sin 𝑦
cos2 𝑦×
cos 𝑦 cos 𝑦
sin 𝑦 cos 𝑦 1
𝐿𝐻𝑆 = + 𝑅𝐻𝑆 =
cos 𝑦 sin 𝑦 cos 𝑦.sin 𝑦
sin2 𝑦+cos2 𝑦
𝐿𝐻𝑆 = cos 𝑦.sin 𝑦
1
𝐿𝐻𝑆 = cos 𝑦.sin 𝑦
∴ 𝐿𝐻𝑆 = 𝑅𝐻𝑆
2.2. For which values of 𝑦 ∈ [0°; 360°] is the identity above undefined?
∴ cos 𝑦 . sin 𝑦 ≠ 0
cos 𝑦 = 0 sin 𝑦 = 0
2nd Quadrant
4th Quadrant
∴ 𝜃 = 135° 𝑜𝑟 315°
∴ 𝑟 = 13
4.2. 5
sin 𝜃 = − 13
12
cos(180° + 𝜃) = −
13
4.3. 12 tan 𝜃 = 5
5
tan 𝜃 = 12
5
ref ∠ for 𝜃 = tan−1 12
ref ∠ for 𝜃 = 22,61986495°
3rd Quadrant
𝜃 = 180° + 22,61986495°
𝜃 = 202,62°
∴ 𝜃 = 202,62°
1 −1
10. Prove the identity: =
(cos 𝑥+1)(𝑐𝑜𝑠𝑥−1) tan2 𝑥.cos2 𝑥 (4)
11. Determine the general solution for 2 sin 𝑥 . cos 𝑥 = cos 𝑥 (6)
13. 1−cos2 𝐴
Consider:
4 cos(90°+𝐴)
13.1. Simplify the expression to a single trigonometric term. (3)
13.2. 1−cos2 2𝑥
Hence, determine the general solution of = 0,21 (6)
4 cos(90°+2𝑥)
Answers:
1. cos 23° = 𝑝
2. sin(360°−𝑥).tan(−𝑥)
cos(180°+𝑥).(sin2 𝐴+cos2 𝐴)
− sin 𝑥.− tan 𝑥
=
− cos 𝑥.1
= − tan 𝑥 . tan 𝑥
= − tan2 𝑥
3.1. cos 𝑥 1+sin 𝑥 2
+ =
1+sin 𝑥 cos 𝑥 cos 𝑥
cos 𝑥 1+sin 𝑥
𝐿𝐻𝑆 = +
1+sin 𝑥 cos 𝑥
cos 𝑥(cos 𝑥)+(1+sin 𝑥)(1+sin 𝑥)
𝐿𝐻𝑆 =
(1+sin 𝑥)(cos 𝑥)
cos2 𝑥+1+2 sin 𝑥+sin2 𝑥
𝐿𝐻𝑆 =
(1+sin 𝑥)(cos 𝑥)
sin2 𝑥+cos2 𝑥+1+2 sin 𝑥
𝐿𝐻𝑆 =
(1+sin 𝑥)(cos 𝑥)
1+1+2 sin 𝑥
𝐿𝐻𝑆 =
(1+sin 𝑥)(cos 𝑥)
2+2 sin 𝑥
𝐿𝐻𝑆 =
(1+sin 𝑥)(cos 𝑥)
2(1+sin 𝑥)
𝐿𝐻𝑆 =
(1+sin 𝑥)(cos 𝑥)
2
𝐿𝐻𝑆 =
(cos 𝑥)
𝐿𝐻𝑆 = 𝑅𝐻𝑆
3.2. cos 𝑥 = 0
∴ 90°; 270°
4.
4.1. 𝑥2 = 𝑟2 − 𝑦2
2
𝑥 = ±√22 − (√3)
𝑥 = ±√4 − 3
𝑥 = ±√1
𝑥 = ±1
∴𝑥=1 𝑥 lies in Quadrant 1
𝑃𝑂̂𝑄 = 90°
𝛼 = 90° − 60°
𝛼 = 30°
4.3 𝑏
sin 𝛼 =
𝑟
𝑏
sin 30° =
20
𝑏 = 20. sin 30°
𝑏 = 10
𝑎
cos 𝛼 =
𝑟
𝑎
cos 30° =
20
𝑎 = 20. cos 30°
𝑎 = 10√3
5.
5.1. 𝑥2 = 𝑟2 − 𝑦2
𝑥 = ±√252 − 242
𝑥 = ±√625 − 576
𝑥 = ±√49
𝑥 = ±7
∴ 𝑥 = −7 Point P lies in the 2nd quadrant
5.2.1. sin 𝛽
24
=
25
5.2.2. cos(180° − 𝛽)
= − cos 𝛽
7
= − (− )
25
7
=
25
5.2.3. tan(−𝛽)
= − tan 𝛽
24
=−
−7
24
=
7
24 𝑦
5.3. =
25 15
24×15
𝑦=
25
42
𝑦=
5
−7 𝑥
=
25 15
−7×15
𝑥=
25
−21
𝑦=
5
6. 2 sin 𝑥.cos 𝑥(1+tan2 𝑥)
tan 𝑥
sin2 𝑥
2 sin 𝑥.cos 𝑥(1+ )
cos2 𝑥
= sin 𝑥
cos 𝑥
cos2 𝑥+sin2 𝑥 cos 𝑥
= 2 sin 𝑥. cos 𝑥 ( )×
cos2 𝑥 sin 𝑥
2 sin 𝑥.cos2 𝑥 1
= ( )
sin 𝑥 cos2 𝑥
=2
7.
7.1. 𝑡 2 = 𝑟2 − 𝑥2
𝑡 = ±√172 − (−82 )
𝑡 = ±√289 − 64
𝑡 = ±√225
𝑡 = ±15
∴ 𝑡 = −15 Point P lies in the 3rd quadrant
7.2.1. cos(−𝜃)
= cos 𝜃
−8
=
17
7.2.2. 1 − sin 𝜃
−15
=1−( )
17
15
=1+
17
32
=
17
8.
𝑥2 = 𝑟2 − 𝑦2
𝑥 = √12 − 𝑎2
𝑥 = √1 − 𝑎2
or
= sin 107°
= sin(180° − 73°)
= sin 73°
√1−𝑎2
=
1
= √1 − 𝑎2
1 −1
10. =
(cos 𝑥+1)(𝑐𝑜𝑠𝑥−1) tan2 𝑥.cos2 𝑥
1
𝐿𝐻𝑆 =
(cos 𝑥+1)(𝑐𝑜𝑠𝑥−1)
1
𝐿𝐻𝑆 =
cos2 𝑥−1
1
𝐿𝐻𝑆 =
− sin2 𝑥
−1
𝑅𝐻𝑆 =
tan2 𝑥.cos2 𝑥
−1
𝑅𝐻𝑆 = sin2 𝑥
.cos2 𝑥
cos2 𝑥
−1
𝑅𝐻𝑆 =
sin2 𝑥
𝐿𝐻𝑆 = 𝑅𝐻𝑆
1
cos 𝑥 = 0 sin 𝑥 =
2
1
ref ∠ for 𝑥 = cos −1 0 ref ∠ for 𝑥 = sin−1
2
ref ∠ for 𝑥 = 90° ref ∠ for 𝑥 = 30°
1st Quadrant 1st Quadrant
1st Quadrant
3rd Quadrant
2𝑥 = 180° + 75,96375653° +
𝑛. 180°
2𝑥 = 255,9637565° + 𝑛. 180°
𝑥 = 127,98° + 𝑛. 90°
13. 1−cos2 𝐴
Consider:
4 cos(90°+𝐴)
13.1. 1−cos2 𝐴
4 cos(90°+𝐴)
sin2 𝐴
=
4(− sin 𝐴)
1
= − sin 𝐴
4
13.2. 1−cos2 2𝑥
= 0,21
4 cos(90°+2𝑥)
1−cos2 2𝑥 1
= − sin 2𝑥
4 cos(90°+2𝑥) 4
1
− sin 2𝑥 = 0,21
4
sin 2𝑥 = −0,84
3rd Quadrant