0% found this document useful (0 votes)
12 views15 pages

$RFUL0AO

The document contains the answer key for a physics, chemistry, and mathematics examination conducted on November 6, 2023, with a maximum score of 300 marks. It includes detailed answers and explanations for various physics problems, along with their corresponding calculations. The document is structured into sections for each subject, providing a comprehensive overview of the exam content.

Uploaded by

N Avrojit
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
12 views15 pages

$RFUL0AO

The document contains the answer key for a physics, chemistry, and mathematics examination conducted on November 6, 2023, with a maximum score of 300 marks. It includes detailed answers and explanations for various physics problems, along with their corresponding calculations. The document is structured into sections for each subject, providing a comprehensive overview of the exam content.

Uploaded by

N Avrojit
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 15

JR IIT *CO SC (MODEL-A &B) WTM-16 DATE: 06-11-2023

TIME: 3Hrs Max Marks:300

KEY
PHYSICS

1 B 2 B 3 A 4 A 5 A
6 D 7 B 8 C 9 A 10 D
11 B 12 C 13 C 14 B 15 D
16 B 17 A 18 A 19 B 20 B
21 3 22 20 23 3 24 5 25 9
26 4 27 48 28 27 29 75 30 45

CHEMISTRY
31 B 32 A 33 A 34 B 35 C
36 B 37 C 38 B 39 B 40 C
41 C 42 C 43 B 44 A 45 D
46 A 47 D 48 D 49 D 50 C
51 15 52 0 53 5 54 3 55 2
56 4 57 5 58 5 59 4 60 5

MATHMATICS
61 B 62 A 63 A 64 C 65 C
66 D 67 B 68 A 69 A 70 B
71 D 72 C 73 B 74 A 75 B
76 B 77 B 78 C 79 C 80 C
81 5 82 25 83 0 84 2 85 7
86 1 87 4 88 720 89 1 90 24
PHYSICS

I
1. T  2
mgL

ml 2 ml 2 2mgl 2
Here I   
3 3 3
L
From figure : sin 45o 
l/2

l
L
2 2

2ml 2 2 2l
 T  2  2
l 3g
3 mg
2 2
2. Energy  ( Amplitude)2
E  KA2 , K ( Constant)
dE dA 2  5
2   10%
E A 100

l
3. T  2
mgd

5 2 mR 2 
3 mR   mR 2 
4
 2  
 R 
2
 2m  g   R 2  
 16 

 35R 
  2 
 6 17 g 
 
4. Time period of 1st pendulum be T1

Time period of 2nd pendulum T2

Now T1  |1

T2  |2

|1  length of 1st pendulum

2|Page
| 2  length of 2nd pendulum

Again T= 9 T1  7T2

T  7
 1 
 T2  9
|1 7
 
|2 9
|1 49
 
|2 81
2c k
5. 2

mR m

2c
R
k
3mR 2 d 2  3R 
6. 2
 kR 2  3kR  
2 dt  2 
3mR 2 d 2 11kR 2

2 dt 2 2
d 2  11K 
2
  
dt  3m 

3m
 Time period, T  2
11k

4x
7. When block is further pushed by x in liquid buoyant force increases due to height of liquid
3
displaced as  R 2 X   4 R 2   R 2  y

x
 y
3

Hence extra buoyant force = + .2

8.

3|Page
L
x 
2
L
Restoring torque    2kx  .
2
kL  L / 2   kL2 / 2   6k 
    2      
I  ML /12  M 

1  1 6k
f  
2  2 M

9. Let plank is slight displacement a distance x.


32
F1  kx
3
32k
a x
3m
32k

3m
10. Let, T1 and T2 time period of 1st and 2nd pendulum.
We know, T  L

T1 1.44 144 12
  
T2 1 100 10

 5T1  6T2
r 1.5
11. We know b    30
2m 2  25  10 3
k 25
&    1000
m 25 10 3
time period
2 2
T   0.628sec
2 2
 b 1000  900

12. F  Kv
F
K
V
kgms 2
Unit of K  K  1
 kgs 1
ms

13. Tmin  mg  cos  0 …….(i)

4|Page
mv 2
Tmax  mg  …….(ii)
R
1 2
mv  mg  R  R cos  )  …….(iii)
2
Tmax
4
Tmin
1
 0  cos1  
 2

1 mgl
14. f0
2 I
Where l is the distance between point of suspension and centre of mass of the body.
Thus, for the stick of length L and mass m,
g  L
m
1 4  1 12 g  2 f
f0 2 0
2 L 2 L
m  2 
2 12

15. x  A sin t
 2   2    A
x  t  1S   A sin  t   A sin    A sin   
 T   8   4 2
 2   2   
x  t  25   A sin  t   A sin   2   A sin    A
 T   8  2
And the required ratio is:
A
x  t  1S  2  1  2 1

x  t  2 S   x  t  1S  A  A 2 1
2
I
16. T  2 Support
mglcm
2 3 2
I Support  m  l sin 60o   ml
2
3l
lcm  l sin 60o 
2
3 2
 4 ml  3L
 T  2    2
 3l  2g
mg  
 2 
17. x  A cos wt

5|Page
1 1
K .E .  k  A2  x 2   kA2 sin 2 wt
2 2
2
1  1  cos 2 wt  kA
 kA2    1  cos 2wt 
2  2  4
Frequency of K. E. is double of acceleration

18. For small angular displacement  


Net torque on body = I 
 ML2 
=  k1a sin   a   k2b sin   b   mL2  
 3 
k1a 2  k 2b 2 1 k1a 2  k 2b 2
For small   a    frequency 
ML 2
2 L2  m  M / 3
mL2 
3

19. The point x  a and b are stable equilibrium point.

20. Friction force is F, having mass m and acceleration of its SHM f is given by:

k1a 2  k 2b 2
 a 
2 ML2
mL 
3
F  ma
F  mf
F  m 2 A
k k
  
mm 2m
k
F m A
2m
k
F  A
2

21.

fv  3 fh

22.

6|Page
I
T  2
mg 
TA 3 9 B
  
TB 4 4 A
3 3 B

4 2 A
B 1

A 4
4
 A   25  20 cm
5

23.
a: acceleration ring w.r.t. ground
b: acceleration of particles w.r.t. ring

Hence w.r.t ‘C’, for the particle


N cos   mg .......  i 
N sin   ma  mb ........  ii 
And for the ring
 N sin   f  Ma .....  iii 
f .R  MR 2 .a / R
 f  Ma ......  iv 
 N sin   2 Ma
N  mg
mg.  2 ma
mg
 a 
2M

From (ii)
N sin    ma  mb
 2Ma  ma  mb  a  2M  m   mb
mg
  2 M  m   m.b
2M
x
Put   [x: displacement of particle w.r.t. ring]
R
g x g m 
  2M  m   b  b  1   .x
2M R R  2M 

= 1+

7|Page
3a
24. OP  a sin 60o 
2
2 a
OC  1   OP  
2 3
 ma 2  2 ma 2
I  I0  2   m  OP  
 3  12
2 3 1
 ma 2  ma 2 
3 4 12ma 2
3
 ma 2
3
I
T  2
 3m  gl

 2
 3 / 2ma  2

 a 
 3m  g  
 3
3a
 2
2 g
1
Pitting a  m and g  10m / s 2
3

We get, T  sec
5
25. This is a case damped vibration as the amplitude of vibration is decreasing with time. Amplitude of
vibrations at any instant t is given by a  a0 e bt , where a0 is the initial amplitude of vibrations and
b is the damping constant.
Now, when t  100T , a  a0 / 3 T is time period  Let the amplitude be a ' at t  200 T . i.e. after
completing 200 oscillations.

 a  a0 / 3  a0e 100Tb .....  i 


and a '  a0e 200Tb . .....  ii 
1
From  i  ,  e 100Tb .  e 200Tb  1/ 9.
3
1 a
From  ii  , a '  a0   0 .
9 9
 The amplitude will be reduced to 1/9 of initial value.

26. When the block A moves with velocity V and collides with the block B, it transfers all
energy to the block B (because it is an elastic collision). The block A will move a distance x against
the spring, again the block b will return to the original point and completes half of the oscillation. So,

The time period of = =


The block B collides with the block A and comes to rest at that point. The block A again moves a
further distance L to return to its original position.
L L 2L
The time taken   
V V V

8|Page
So that periods of the periodic motion = +
27. For first case : T1  mg  0.3  
For second case: T2  mg  0.5  
Let the time period of the pendulum be T, by using the parallel axis theorem, Moment of inertia is
I1  I  2  0.32
 I 2  2  0.52
Because time period of blue points is equal,
I 1  I  2  0.32
 I 2  I  2  0.52
I1 I
 2  2 2
T1 T2
I1 I1
 
T1 T2
Putting out of the value of the moment of inertia,
I  2  0.32 0.3mg

I  2  0.52 0.5mg
I  2  0.32 3
 
I  2  0.52 5
 I  0.30kgm 2
So, the value of moment of inertia comes out to be 0.30kgm2
Moment of inertia about an axis passing through first point can be find a:
I1  0.3  2  0.32
 0.48kgm2
28.  p  k  2R  2R
lp  4kR 2
7
mR 2  4kR 2
5
 20 k 
   
 7 m
7m
T  2
20k

b
 b 
29.  2  02   
 2m 
2
k  b 
  
m  2m 

9|Page
100 100
 
1 4
-1
= 75 s

30. Half of the oscillation is completed with length l and rest half with l / 4 .
T T
 Time period  1  2
2 2
1 l l/4
  2  2 
2 g g 
3 l  3
   2   T = 45s
4 g 4

CHEMISTRY

31 . To 60 Conceptual

MATHS
 5x  3 y  5 f  x   3 f  y 
61. Given  f   , which satisfies section formula for abscissa on LHS and for
 53  53
ordinate of RHS. Hence f  x  must be the linear function (as only straight line satisfies such section
formula) hence, f  x   ax  b . But f  0   3  b  3, f '  0   2  a  2
62. Put x  1  t
1  t3 t5 
f  x   t   ......
4 3 5 
1
f '  x   1  t 2  t 4 ......
4
1 1 
 
4 1  t 2 
1 1 
=   
4 1   x  1 2 
 x, x2

63. g  x   x  2  2   4  x, 2  x  4
 x  4, 4 x

g '  1  g ' 1  g '  3  g '  5   1  1  1  1  0
64. Let P  t , t 4  be a point on the curve equation of tangent at P, y  t 4  4t 3  x  t  it is drawn from  2, 0 
8
, then t  0,
3
4096 2048  8
So, equation of required tangent is y   x 
81 27  3
65. Tangent to y  x 2  bx  b at 1,1 is
b 1
x - intercept = and y – intercept =   b  1
b2

10 | P a g e
1  b 1 
ATQ Ar     2       b  1   2  b  3
2 b 2 
66. For y 2  4ax , y – axis is tangent at  0, 0  , while for x 2  4ay , x – axis is tangent at  0, 0  . Thus the
two curves cut each other at right angles.
3x cos 
67. Equations of tangent to the ellipse  y.sin   1
9
 Sum of intercepts =
dS
For min. value of S , 0
d
1  
 tan    tan   
3 6 6
dy  x12
68.  2
dx y1
x12
Tangent y  y1    x  x1  _______ 1
y12
x23  y23  a3 _________  2
x13  y13  a3 _________  3

Putting y  y2 and x  x2 and solving with (2) and (3) we get result.

2
69. xy   a  x  y  xy '  2  a  x 

Now y '  1 or y  x  2  a  x 

2 2
a  x  x  2  a  x  or  x  2  a  x  
a  x
x x

or  x 2   a  x  x  a  or  x 2  x 2  a 2

a
2 x 2  a 2 or x  
2

dx a2  y2  dy  y1
70.    
dy y  dx  x1 , y1  a 2  y12

y1 y12
LT = 1  m2 ,  a 2  y12 . 1  a
m a 2  y12

1
71. Equation of normal is y  y1   x  x1 
m

y1 y
72. L.S.T = , L.T  1 1  m 2
m m

73. S  t n  s  k  t n  , differentiate

11 | P a g e
a y dy dy ab
74.   ax  ay  hy   h  a   ab  
h x y dt dt  h  a 

75. Given x and y are the sides of two squares such that y  x  x 2

2
 Areas of the first square, A1  x 2 and area of the second square, A2  y 2   x  x 2 

dA2 dx
dA2  2 x  2 x 2  1  2 x 
 dt  dt
dA1 dA1 2x
dx
dt dt

1  2 x  2 x 1  x  
1  2 x 1  x   2 x2  3 x  1
2x

76. OM  r cos 

dv
77.  2c.c / sec; V  288
dt

4 3
r  288,  r  6
3

d 4 3 4 2 dr dr 1
  r   .3r  
dt  3  3 dt dt 72

dv
78.  50cm3 / min ,
dt

d 4 3 dr 50
 r   50  
dt  3  dt 4r 2

dr 50 1
   cm / min
dt 4  225  18

H h 10 h h
79.    r
R r 5 r 2

1 2 h3
Use V  r h 
3 12

dv
Then at h  4 mts ?
dt

1 2
80. r  h;V  r 2 h  r 3 ;V  r 3  h3
3 3

dv dh
 3h 2
dt dt

12 | P a g e
1 1
81. g ' y    1 x 
 dy   
  2e  2   x 2  x  1
 dx 

7  7 1
 y    x  1; g '     , k  5
6  6 5

1
82. f  x  x 
x  f  x

 f 2  x   x2  1

 2 f  x . f ' x   2x  0  f  x  . f '  x   x

 f  50 . f '  50   50

f  50  . f '  50 
  25
2

83. Since f  x  is an even function f '  0   0

84. y  xn

dy
 nx n 1  na n 1
dx

1
Slope of normal =  equation of normal
na n 1

1
 y  an   x  1
na n 1

Put x  0 to get y – intercept

1 1
y  an  b  an 
na n  2 na n 2

 0 if n  2
1

lim b   if n  2
a 0
 2
 if n  2

85. x  t2; y  t3

dy dy dy 3t
 2t ;  3t 2  
dt dt dx 2

3t
y  t3 
2
 x t2 

13 | P a g e
2k  2t 3  3th  3t 3  t 3  3th  2 k  0

Product of roots, t1t2t3  2k

Take t1t2  1, t3  2k

Now, t3 must satisfy equation 1 , Therefore,

3
 2k   3  2k  h  2k  0

i.e., 4 y 2  3x  1  0 or 4 y 2  3 x  1

or a  b  7

86. At x  0, y  1

dy
Evaluate
dx at x 0& y 1

Find equation of tangent at x  0 and y  1 .

87. We have f  0   2

Now, y  f  a   f '  a   x  a 

For x intercept, y  0 , so

f a f a
xa  a  2 or 2
f 'a  f 'a

f 'a 1
or 
f a 2

 on integrating both sides with respect to a, we get

a
ln f  a   C
2

f  a   Cea /2  f  x   Ce x /2

f  0   C or C  2  f  x   2e x /2

1 k
Hence, k  2, p  or  4
2 p
88. Let the body is at a height h1 at a time ‘t’ and is at a height “h” at a time  t  4  from above.
h1  h  400
1 1 2
 gt 2  g  t  4   400
2 2
2 2
 t   t  4   80  t  12sec

14 | P a g e
1 2
h  g  t  4   320m
2

Hence, total distance

= 320 + 400 = 720 m

89.   t 2    kt 2 (k constant)

2 
k k
64 32

d   
 k .2t   2  8  R / sec K
dt 32 2 2

ds 3 3
90. V  12t  t 2 , a  12  3t  0, t  4 v  12.4  16   24
dt 2 2

15 | P a g e

You might also like