JR IIT *CO SC (MODEL-A &B)                  WTM-16             DATE: 06-11-2023
TIME: 3Hrs                                                     Max Marks:300
                                         KEY
                                       PHYSICS
         1      B       2        B     3       A     4    A       5       A
         6      D       7        B     8      C      9    A       10      D
        11      B      12        C     13      C     14   B       15      D
        16      B      17        A     18      A     19   B       20       B
        21      3      22        20    23      3     24    5      25       9
        26      4      27        48    28     27     29   75      30      45
                                      CHEMISTRY
       31      B      32         A     33   A        34   B       35       C
       36      B      37         C     38      B     39   B       40       C
       41      C      42         C     43      B     44   A       45       D
       46      A      47         D     48      D     49   D       50       C
       51      15     52         0     53      5     54    3      55       2
       56      4      57         5     58      5     59    4      60       5
                                       MATHMATICS
       61      B      62         A     63   A        64   C       65       C
       66      D      67         B     68      A     69   A       70       B
       71      D      72         C     73      B     74   A       75       B
       76      B      77         B     78      C     79   C       80       C
       81      5      82         25    83      0     84    2      85       7
       86      1      87     4         88     720    89    1      90      24
PHYSICS
                 I
1.   T  2
                mgL
                   ml 2 ml 2 2mgl 2
     Here I               
                    3    3     3
                                   L
     From figure : sin 45o 
                                  l/2
               l
     L
              2 2
                       2ml 2         2 2l
      T  2                    2
                        l             3g
                    3       mg
                       2 2
2.   Energy  ( Amplitude)2
     E  KA2 ,            K ( Constant)
     dE    dA 2  5
        2          10%
      E     A 100
                 l
3.   T  2
                mgd
          5      2     mR 2        
          3  mR             mR 2 
                          4
      2                          
                               R 
                                 2
            2m  g   R 2  
                              16 
            35R          
       2               
           6 17 g        
                         
4.   Time period of 1st pendulum be T1
     Time period of 2nd pendulum T2
     Now T1         |1
          T2  |2
     |1  length of 1st pendulum
                                            2|Page
     | 2  length of 2nd pendulum
     Again T= 9 T1  7T2
              T  7
              1 
               T2  9
                      |1       7
                          
                      |2       9
                 |1        49
                      
                 |2        81
      2c     k
5.       2
           
     mR      m
            2c
     R
            k
     3mR 2 d 2                  3R 
6.            2
                 kR 2  3kR     
       2 dt                      2 
     3mR 2 d 2    11kR 2
                
       2 dt 2         2
     d 2     11K 
        2
                
     dt       3m 
                                   3m
      Time period, T  2
                                   11k
                                                                                  4x
7.   When block is further pushed by x in liquid buoyant force increases due to      height of liquid
                                                                                  3
     displaced as  R 2 X   4 R 2   R 2  y
             x
      y
             3
     Hence extra buoyant force =               +   .2
8.
                                                                                                 3|Page
             L
      x       
             2
                                        L
      Restoring torque    2kx  .
                                        2
              kL  L / 2        kL2 / 2         6k 
                             2            
                    I             ML /12         M 
                1           1     6k
      f                 
               2          2     M
9.    Let plank is slight displacement a distance x.
          32
      F1    kx
           3
         32k
      a      x
         3m
           32k
      
            3m
10.   Let, T1 and T2 time period of 1st and 2nd pendulum.
      We know, T  L
      T1   1.44   144 12
                   
      T2     1    100 10
       5T1  6T2
                    r         1.5
11.   We know b                     30
                   2m 2  25  10 3
              k        25
      &                     1000
             m      25 10 3
      time period
            2            2
      T                          0.628sec
            2    2
            b        1000  900
12.   F  Kv
          F
      K
          V
                      kgms 2
      Unit of K  K      1
                               kgs 1
                       ms
13.   Tmin  mg  cos  0                   …….(i)
                                                            4|Page
                     mv 2
      Tmax  mg                               …….(ii)
                      R
      1 2
        mv  mg  R  R cos  )                …….(iii)
      2
      Tmax
           4
      Tmin
                  1
       0  cos1  
                   2
           1 mgl
14.   f0
          2    I
      Where l is the distance between point of suspension and centre of mass of the body.
      Thus, for the stick of length L and mass m,
                  g  L
              m
           1        4  1 12 g  2 f
       f0               2                  0
          2      L      2     L
              m  2 
               2 12
15.   x  A sin t
                            2                  2              A
      x  t  1S   A sin          t   A sin         A sin   
                            T                   8              4  2
                              2             2               
      x  t  25   A sin       t   A sin      2   A sin    A
                              T              8               2
      And the required ratio is:
                                        A
              x  t  1S                2  1  2 1
                                  
      x  t  2 S   x  t  1S  A  A           2 1
                                            2
                   I
16.   T  2 Support
                   mglcm
                                 2     3 2
      I Support  m  l sin 60o        ml
                                       2
                            3l
      lcm  l sin 60o 
                            2
               3 2
                4 ml                         3L
       T  2         2
                   3l                       2g
               mg     
                   2 
17.   x  A cos wt
                                                                                            5|Page
             1                   1
      K .E .  k  A2  x 2   kA2 sin 2 wt
             2                   2
                                     2
        1     1  cos 2 wt  kA
       kA2                         1  cos 2wt 
        2           2            4
      Frequency of K. E. is double of acceleration
18.   For small angular displacement  
      Net torque on body = I 
                                                   ML2 
      =  k1a sin   a   k2b sin   b   mL2      
                                                    3 
                            k1a 2  k 2b 2                  1    k1a 2  k 2b 2
      For small   a                       frequency 
                                    ML   2
                                                           2   L2  m  M / 3
                            mL2 
                                      3
19.   The point x  a and b are stable equilibrium point.
20.   Friction force is F, having mass m and acceleration of its SHM f is given by:
                  k1a 2  k 2b 2
       a                      
                     2    ML2
                  mL 
                            3
      F  ma
      F  mf
      F  m 2 A
              k     k
              
            mm    2m
              k
      F m     A
             2m
          k
      F  A
          2
21.
      fv  3 fh
22.
                                                                                      6|Page
                  I
      T  2
                 mg 
       TA 3  9 B
            
       TB 4  4 A
       3 3 B
        
       4 2 A
       B 1
         
       A 4
            4
        A   25  20 cm
            5
23.
                                                         a: acceleration ring w.r.t. ground
                                                         b: acceleration of particles w.r.t. ring
      Hence w.r.t ‘C’, for the particle
      N cos   mg               .......  i 
      N sin   ma  mb              ........  ii 
      And for the ring
       N sin   f  Ma                 .....  iii 
             f .R  MR 2 .a / R
            f  Ma                      ......  iv 
        N sin   2 Ma
         N  mg
         mg.  2 ma
             mg
        a      
             2M
      From (ii)
         N sin    ma  mb
       2Ma  ma  mb  a  2M  m   mb
          mg
              2 M  m   m.b
         2M
                x
      Put              [x: displacement of particle w.r.t. ring]
               R
             g              x                   g      m 
                  2M  m   b       b  1               .x
            2M              R                   R  2M 
             =          1+
                                                                                                    7|Page
                        3a
24.   OP  a sin 60o 
                        2
              2           a
      OC  1   OP  
              2            3
                 ma 2             2   ma 2
      I  I0  2        m  OP    
                 3                    12
        2        3           1
       ma 2  ma 2 
        3        4         12ma 2
        3
       ma 2
        3
                     I
      T  2
                  3m  gl
       2
                 3 / 2ma   2
                        a 
                3m  g   
                        3
                3a
       2
               2 g
                   1
      Pitting a      m and g  10m / s 2
                    3
                    
      We get, T        sec
                      5
25.   This is a case damped vibration as the amplitude of vibration is decreasing with time. Amplitude of
      vibrations at any instant t is given by a  a0 e bt , where a0 is the initial amplitude of vibrations and
      b is the damping constant.
      Now, when t  100T , a  a0 / 3 T is time period  Let the amplitude be a ' at t  200 T . i.e. after
      completing 200 oscillations.
       a  a0 / 3  a0e 100Tb       .....  i 
      and a '  a0e 200Tb .          .....  ii 
                  1
      From  i  ,  e 100Tb .  e 200Tb  1/ 9.
                   3
                              1 a
      From  ii  , a '  a0   0 .
                              9 9
       The amplitude will be reduced to 1/9 of initial value.
26.   When the block A moves with velocity V and collides with the block B, it transfers all
      energy to the block B (because it is an elastic collision). The block A will move a distance x against
      the spring, again the block b will return to the original point and completes half of the oscillation. So,
      The time period of          =      =
      The block B collides with the block A and comes to rest at that point. The block A again moves a
      further distance L to return to its original position.
                         L L 2L
      The time taken   
                        V V V
                                                                                                       8|Page
      So that periods of the periodic motion =    +
27.   For first case : T1  mg  0.3  
      For second case: T2  mg  0.5  
      Let the time period of the pendulum be T, by using the parallel axis theorem, Moment of inertia is
      I1  I  2  0.32
       I 2  2  0.52
      Because time period of blue points is equal,
      I 1  I  2  0.32
            I 2  I  2  0.52
                   I1      I
            2        2 2
                   T1      T2
              I1 I1
                
              T1 T2
      Putting out of the value of the moment of inertia,
      I  2  0.32 0.3mg
                   
      I  2  0.52 0.5mg
          I  2  0.32 3
                      
          I  2  0.52 5
       I  0.30kgm 2
      So, the value of moment of inertia comes out to be 0.30kgm2
      Moment of inertia about an axis passing through first point can be find a:
      I1  0.3  2  0.32
       0.48kgm2
28.    p  k  2R  2R
      lp  4kR 2
      7
        mR 2  4kR 2
      5
             20 k 
               
             7 m
                  7m
      T  2
                  20k
                            b
                   b 
29.    2  02       
                   2m 
                      2
         k  b 
                 
        m  2m 
                                                                                                 9|Page
        100 100
            
         1     4
            -1
      = 75 s
30.   Half of the oscillation is completed with length l and rest half with l / 4 .
                         T T
       Time period  1  2
                          2 2
        1       l         l/4
        2        2        
        2       g          g 
          3       l  3
         2         T = 45s
          4       g 4
                                                         CHEMISTRY
31 . To 60 Conceptual
                                                          MATHS
                   5x  3 y  5 f  x   3 f  y 
61.   Given  f                                   , which satisfies section formula for abscissa on LHS and for
                   53              53
      ordinate of RHS. Hence f  x  must be the linear function (as only straight line satisfies such section
      formula) hence, f  x   ax  b . But f  0   3  b  3, f '  0   2  a  2
62.   Put x  1  t
                  1  t3 t5               
       f  x   t   ......
                  4 3 5                  
                   1
       f '  x   1  t 2  t 4 ......
                   4
         1 1 
       
         4 1  t 2 
             1        1         
      =                        
             4 1   x  1 2 
                                    x,     x2
                                   
63.   g  x   x  2  2   4  x, 2  x  4
                                    x  4, 4 x
                                   
       g '  1  g ' 1  g '  3  g '  5   1  1  1  1  0
64.   Let P  t , t 4  be a point on the curve equation of tangent at P, y  t 4  4t 3  x  t  it is drawn from  2, 0 
                      8
      , then t  0,
                      3
                                                          4096 2048   8
      So, equation of required tangent is y                       x 
                                                           81   27    3
65.   Tangent to y  x 2  bx  b at 1,1 is
                          b 1
       x - intercept =         and y – intercept =   b  1
                          b2
                                                                                                               10 | P a g e
                           1  b 1 
      ATQ Ar     2                 b  1   2  b  3
                           2 b 2 
66.   For y 2  4ax , y – axis is tangent at  0, 0  , while for x 2  4ay , x – axis is tangent at  0, 0  . Thus the
      two curves cut each other at right angles.
                                                 3x cos 
67.   Equations of tangent to the ellipse                   y.sin   1
                                                     9
       Sum of intercepts =
                            dS
      For min. value of S ,     0
                            d
                  1                  
       tan         tan   
                   3       6          6
       dy  x12
68.        2
       dx    y1
                                x12
      Tangent y  y1               x  x1  _______ 1
                                y12
      x23  y23  a3 _________  2
      x13  y13  a3 _________  3
      Putting y  y2 and x  x2 and solving with (2) and (3) we get result.
                       2
69.   xy   a  x                   y  xy '  2  a  x 
      Now y '  1                  or y  x  2  a  x 
                2                                                          2
      a  x        x  2  a  x  or  x  2  a  x      
                                                                 a  x
          x                                                         x
      or  x 2   a  x  x  a  or  x 2  x 2  a 2
                               a
      2 x 2  a 2 or x  
                                2
      dx   a2  y2   dy                  y1
70.                               
      dy     y       dx  x1 , y1    a 2  y12
              y1                                           y12
      LT =       1  m2 ,           a 2  y12 . 1              a
              m                                        a 2  y12
                                               1
71.   Equation of normal is y  y1                x  x1 
                                               m
                    y1         y
72.   L.S.T =          , L.T  1 1  m 2
                    m          m
73.   S  t n  s  k  t n  , differentiate
                                                                                                           11 | P a g e
      a   y                            dy      dy    ab
74.          ax  ay  hy   h  a   ab     
      h x y                           dt      dt  h  a 
75.   Given x and y are the sides of two squares such that y  x  x 2
                                                                                                    2
       Areas of the first square, A1  x 2 and area of the second square, A2  y 2   x  x 2 
            dA2                             dx
      dA2         2 x  2 x 2  1  2 x 
           dt                             dt
      dA1 dA1               2x
                                 dx
             dt                   dt
      1  2 x  2 x 1  x  
                                  1  2 x 1  x   2 x2  3 x  1
               2x
76.   OM  r cos 
      dv
77.       2c.c / sec; V  288
      dt
      4 3
        r  288,  r  6
      3
          d 4 3 4        2 dr   dr 1
             r   .3r         
          dt  3   3        dt   dt 72
      dv
78.       50cm3 / min ,
      dt
      d 4 3          dr   50
          r   50     
      dt  3          dt 4r 2
          dr    50       1
                         cm / min
          dt 4  225  18
      H h 10 h    h
79.        r
      R r  5 r    2
             1 2     h3
      Use V  r h 
             3       12
                              dv
      Then at h  4 mts          ?
                              dt
               1        2
80.   r  h;V  r 2 h  r 3 ;V  r 3  h3
               3        3
      dv         dh
          3h 2
      dt         dt
                                                                                                        12 | P a g e
                    1               1
81.   g ' y             1 x 
                   dy          
                    2e  2   x 2  x  1
                   dx 
             7              7 1
       y    x  1; g '     , k  5
             6              6 5
                          1
82.   f  x  x 
                      x  f  x
       f 2  x   x2  1
       2 f  x . f ' x   2x  0  f  x  . f '  x   x
       f  50 . f '  50   50
          f  50  . f '  50 
                                25
                  2
83.   Since f  x  is an even function f '  0   0
84.   y  xn
      dy
          nx n 1  na n 1
      dx
                                    1
      Slope of normal =                   equation of normal
                                   na n 1
                      1
       y  an               x  1
                     na n 1
      Put x  0 to get y – intercept
                    1                                      1
      y  an                               b  an 
                  na n  2                               na n 2
               0 if n  2
              1
              
      lim b     if n  2
      a 0
               2
               if n  2
85.   x  t2; y  t3
      dy       dy        dy 3t
          2t ;  3t 2    
      dt       dt        dx 2
                  3t
      y  t3 
                  2
                      x t2 
                                                                   13 | P a g e
      2k  2t 3  3th  3t 3  t 3  3th  2 k  0
      Product of roots,                             t1t2t3  2k
      Take t1t2  1, t3  2k
      Now, t3 must satisfy equation 1 , Therefore,
               3
       2k         3  2k  h  2k  0
      i.e., 4 y 2  3x  1  0 or 4 y 2  3 x  1
      or a  b  7
86.   At x  0, y  1
                       dy
      Evaluate
                       dx at x 0& y 1
      Find equation of tangent at x  0 and y  1 .
87.   We have f  0   2
      Now, y  f  a   f '  a   x  a 
      For x intercept,                    y  0 , so
                     f a                    f a
      xa                      a  2 or             2
                     f 'a                  f 'a
           f 'a          1
      or               
           f a           2
       on integrating both sides with respect to a, we get
                        a
      ln f  a          C
                        2
       f  a   Cea /2  f  x   Ce x /2
       f  0   C or C  2                f  x   2e x /2
                         1 k
      Hence, k  2, p  or  4
                         2 p
88.   Let the body is at a height h1 at a time ‘t’ and is at a height “h” at a time  t  4  from above.
      h1  h  400
          1      1         2
       gt 2  g  t  4   400
          2      2
           2         2
       t   t  4   80  t  12sec
                                                                                                        14 | P a g e
             1            2
      h      g  t  4   320m
             2
      Hence, total distance
      = 320 + 400 = 720 m
89.     t 2    kt 2 (k constant)
           2      
      k      k
           64     32
      d                                           
          k .2t   2  8  R / sec           K
      dt          32        2                        2
           ds        3                                                3
90.   V       12t  t 2 , a  12  3t  0, t  4       v  12.4      16   24
           dt        2                                                2
                                                                                     15 | P a g e