Math 4
Math 4
Mathematics
ISBN 977-5272-93-9
Contents
i
Contents
iii
1. Fourier Analysis
From now on we shall use the following identities. For every positive
integer 𝑛 and real numbers 𝑎 and 𝑏, we have
𝟏. sin 𝑛𝜋 = 0
𝟐. cos 𝑛𝜋 = (−1)𝑛
1
𝟑. sin 𝑎 cos 𝑏 = (sin(𝑎 − 𝑏) + sin(𝑎 + 𝑏))
2
2 Chapter 1 Fourier Analysis
1
𝟒. cos 𝑎 cos 𝑏 = (cos(𝑎 − 𝑏) + cos(𝑎 + 𝑏))
2
1
𝟓. sin 𝑎 sin 𝑏 = (cos(𝑎 − 𝑏) − cos(𝑎 + 𝑏))
2
𝑎𝑥
𝑒 𝑎𝑥
𝟔. ∫ 𝑒 sin 𝑏𝑥 𝑑𝑥 = 2 (𝑎 sin 𝑏𝑥 − 𝑏 cos 𝑏𝑥) + 𝑐
𝑎 + 𝑏2
𝑎𝑥
𝑒 𝑎𝑥
𝟕. ∫ 𝑒 cos 𝑏𝑥 𝑑𝑥 = 2 (𝑎 cos 𝑏𝑥 + 𝑏 sin 𝑏𝑥) + 𝑐
𝑎 + 𝑏2
𝜋⁄2 𝜋⁄2
𝟖. ∫ cos 𝑛 𝑥 𝑑𝑥 = ∫ sin𝑛 𝑥 𝑑𝑥
0 0
(𝑛 − 1)(𝑛 − 3)(𝑛 − 5) ⋯ 1 𝑓𝑜𝑟 𝑛 𝑜𝑑𝑑
= {𝜋
𝑛(𝑛 − 2)(𝑛 − 4) ⋯ 𝑓𝑜𝑟 𝑛 𝑒𝑣𝑒𝑛
2
2𝜋 2𝜋
𝟗. ∫ cos 𝑥 𝑑𝑥 = ∫ sin𝑛 𝑥 𝑑𝑥
𝑛
0 0
0 𝑓𝑜𝑟 𝑛 𝑜𝑑𝑑
𝜋⁄2
={
4∫ cos 𝑛 𝑥 𝑑𝑥 𝑓𝑜𝑟 𝑛 𝑒𝑣𝑒𝑛
0
Theorem 1.1 Let 𝑓(𝑥) be a periodic function with period 2𝐿. Then
𝑎+2𝐿 2𝐿 𝐿
∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥
𝑎 0 −𝐿
Chapter 1 Fourier Analysis 3
g( x )
0 2 3 x
Fig. 1.2
3𝜋 2 −15𝜋 2
=( ) + (( ) − (−2𝜋 2 ))
8 8
3𝜋 2 15𝜋 2 3𝜋 2 𝜋 2 𝜋 2
= + (− + 2𝜋 2 ) = + =
8 8 8 8 2
4 Chapter 1 Fourier Analysis
Fig. 1.3
Definition 1.4 (Norm of functions). The norm of the function 𝑓(𝑥) over
the interval [𝑎, 𝑏], denoted by ‖𝑓(𝑥)‖, is defined by
𝑏 1⁄2
‖𝑓(𝑥)‖ = (∫ |𝑓(𝑥)|2 𝑑𝑥) (3)
𝑎
Chapter 1 Fourier Analysis 5
Definition 1.5 (Orthogonal functions). Two functions 𝑓(𝑥) and 𝑔(𝑥) are
called orthogonal on an interval [𝑎, 𝑏] if
(𝑓, 𝑔) = 0 (4)
Example 3 Prove that the functions sin 𝑚𝑥 and sin 𝑛𝑥 are orthogonal
on [0, 2𝜋] for all integers 𝑚, 𝑛 such that 𝑚 ≠ 𝑛.
1 2𝜋
= ∫ [cos(𝑚 − 𝑛)𝑥 − cos(𝑚 + 𝑛)𝑥]𝑑𝑥
2 0
2𝜋
1 sin(𝑚 − 𝑛)𝑥 sin(𝑚 + 𝑛)𝑥
= [ − ] = 0,
2 (𝑚 − 𝑛) (𝑚 + 𝑛)
0
which implies that for 𝑚 ≠ 𝑛, the functions sin 𝑚𝑥 and sin 𝑛𝑥 are
orthogonal on [0, 2𝜋].
Example 4 Are the functions 𝑒 𝑖𝑚𝑥 and 𝑒 𝑖𝑛𝑥 orthogonal over [0, 2𝜋]
for all integers 𝑚, 𝑛 such that 𝑚 ≠ 𝑛?
2𝜋 2𝜋
𝑖(𝑚−𝑛)𝑥
𝑒 𝑖(𝑚−𝑛)𝑥 𝑒 𝑖2(𝑚−𝑛)𝜋 − 1
=∫ 𝑒 𝑑𝑥 = [ ] =
0 𝑖(𝑚 − 𝑛) 0 𝑖(𝑚 − 𝑛)
6 Chapter 1 Fourier Analysis
𝑒 𝑖2(𝑚−𝑛)𝜋 − 1
= =
𝑖(𝑚 − 𝑛)
1
= (cos 2(𝑚 − 𝑛)𝜋 + 𝑖 sin 2(𝑚 − 𝑛)𝜋 − 1)
𝑖(𝑚 − 𝑛)
1
= ((−1)2(𝑚−𝑛) − 1) = 0
𝑖(𝑚 − 𝑛)
Therefore, the functions 𝑒 𝑖𝑚𝑥 and 𝑒 𝑖𝑛𝑥 are orthogonal over [0, 2𝜋]
for all integers 𝑚, 𝑛 such that 𝑚 ≠ 𝑛.
That is to say, the system {φ𝑛 }𝑘𝑛=1 is called an orthonormal system if:
The system is orthogonal (its functions satisfy (5)),
Each function of this system is normalized (satisfies (6)).
However, if a function 𝑓(𝑥) is not normalized over [𝑎, 𝑏], it is easy to
show that 𝑓(𝑥)⁄‖𝑓(𝑥)‖ is a normalized function over [𝑎, 𝑏].
Theorem 2.2 The set of functions {1, cos 𝑛𝜔𝑥 , sin 𝑚𝜔𝑥} forms an
𝜋
orthogonal set over the interval [−𝐿, 𝐿]; where 𝜔 = 𝐿 , that is we have,
Example 5 Normalize the functions {1, cos 𝑛𝑥 , sin 𝑛𝑥} over the
interval [−𝜋, 𝜋].
Solution
𝜋
‖1‖2 = ∫ 12 𝑑𝑥 = 2𝜋
−𝜋
𝜋
1 𝜋
‖cos 𝑛𝑥‖2 = ∫ cos 2 𝑛𝑥 𝑑𝑥 = ∫ (1 + cos 2𝑛𝑥)𝑑𝑥
−𝜋 2 −𝜋
1 sin 2𝑛𝑥 𝜋
= [𝑥 + ] =𝜋
2 2𝑛 −𝜋
𝜋
1 𝜋
‖sin 𝑛𝑥‖2 = ∫ sin2 𝑛𝑥 𝑑𝑥 = ∫ (1 − cos 2𝑛𝑥)𝑑𝑥
−𝜋 2 −𝜋
1 sin 2𝑛𝑥 𝜋
= [𝑥 − ] =𝜋
2 2𝑛 −𝜋
Therefore, the functions {1, cos 𝑛𝑥 , sin 𝑛𝑥} are normalized by
multiplying them by
1 1 1
, ,
√2𝜋 √𝜋 √𝜋
respectively. Therefore, the system
1 cos 𝑛𝑥 sin 𝑛𝑥
{ , , }, 𝑛 = 1,2,3, ⋯,
√2𝜋 √𝜋 √𝜋
is an orthonormal system.
𝑬𝒙𝒆𝒓𝒄𝒊𝒔𝒆𝒔 𝟏. 𝟏
In problems 1-5, show that the given functions are orthogonal on the
indicated interval.
𝟏. 𝑓1 (𝑥) = 𝑥, 𝑓2 (𝑥) = 𝑥 2 , [−2,2]
𝟐. 𝑓1 (𝑥) = 𝑥 2 , 𝑓2 (𝑥) = 𝑥 3 + 𝑥 , [−1,1]
Chapter 1 Fourier Analysis 9
Theorem 1.3 Let 𝑓(𝑥) be a periodic function with period 2𝐿. Then the
Fourier series of 𝑓(𝑥) is given by
∞
𝑎0 𝜋
𝑓(𝑥) = + ∑(𝑎𝑛 cos 𝑛𝜔𝑥 + 𝑏𝑛 sin 𝑛𝜔𝑥) , 𝜔 = (1)
2 𝐿
𝑛=1
1 𝐿
𝑎0 = ∫ 𝑓(𝑥)𝑑𝑥,
𝐿 −𝐿
1 𝐿
𝑎𝑛 = ∫ 𝑓(𝑥) cos 𝑛𝜔𝑥 𝑑𝑥 ,
𝐿 −𝐿
1 𝐿
𝑏𝑛 = ∫ 𝑓(𝑥) sin 𝑛𝜔𝑥 𝑑𝑥,
𝐿 −𝐿
all exist.
(𝒊𝒊) To find 𝑎0 we multiply (1) by 1 (cos 0𝑥) and integrate both sides
from −𝐿 to 𝐿.
∞
𝑎0
(𝑓(𝑥), 1) = ⏟ (1, 1) + ∑ (𝑎𝑛 ⏟
(cos 𝑛𝜔𝑥 , 1) + 𝑏𝑛 ⏟
(sin 𝑛𝜔𝑥 , 1))
2 =2𝐿
𝑛=1 = 0 =0
𝑎0
(𝑓(𝑥), 1) = ∙ 2𝐿 + 𝑎𝑚 ∙ 0 + 𝑏𝑛 ∙ 0 = 𝑎0 ∙ 𝐿
2
Solving (3) we find
1 1 𝐿
𝑎0 = (𝑓(𝑥), 1) = ∫ 𝑓(𝑥)𝑑𝑥
𝐿 𝐿 −𝐿
(𝑖𝑖𝑖) Finally, to compute 𝑏𝑛 for 𝑛 = 1,2, ⋯, multiply both sides of (1)
by sin 𝑚𝜔𝑥 and then integrate −𝐿 to 𝐿. Using theorem 2.2 we have
𝑎0
(𝑓(𝑥), sin 𝑚𝜔𝑥) = (1, ⏟ sin 𝑚𝜔𝑥)
2 =0
+ ∑ (𝑎𝑛 (cos
⏟ 𝑛𝜔𝑥 , sin 𝑚𝜔𝑥) + 𝑏𝑛 (sin
⏟ 𝑛𝜔𝑥 , sin 𝑚𝜔𝑥))
𝑛=1 = 0 0 𝑚≠𝑛
= {𝜋 𝑚=𝑛
Solution Since,
2𝐿 = 2𝜋 𝐿=𝜋 ω=1
Then from (1), we can write
∞
𝑎0
𝑓(𝑥) = + ∑(𝑎𝑛 cos 𝑛𝑥 + 𝑏𝑛 sin 𝑛𝑥),
2
𝑛=1
where
2𝜋
1 2𝜋 1 2𝜋 1 𝑥2
𝑎0 = ∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑥𝑑𝑥 = [ ] = 2𝜋,
𝜋 0 𝜋 0 𝜋 2 0
𝑓(𝑥)
−4𝜋 −2𝜋 0 2𝜋 4𝜋 x
Fig. 2.4
and
1 2𝜋
𝑎𝑛 = ∫ 𝑓(𝑥) cos 𝑛𝑥 𝑑𝑥
𝜋 0
𝒙 + 𝐜𝐨𝐬 𝒏𝒙
2𝜋
1
= ∫ 𝑥 cos 𝑛𝑥 𝑑𝑥 𝐬𝐢𝐧 𝒏𝒙
𝜋 0 1
− 𝒏
1 sin 𝑛𝑥 cos 𝑛𝑥 2𝜋 𝐜𝐨𝐬 𝒏𝒙
= [(𝑥) ( ) − (1) (− )] 0 −
𝜋 𝑛 𝑛2 0 𝒏𝟐
1 cos 𝑛𝑥 sin 𝑛𝑥 2𝜋
= [(𝑥) (− ) − (1) (− )]
𝜋 𝑛 𝑛2 0
1 cos 2𝑛𝜋
= [(2𝜋) (− )]
𝜋 𝑛
2 2
= − [(−1)2𝑛 ] = −
𝑛 𝑛
The trigonometric Fourier series is given by
∞
𝑎0
𝑓(𝑥) = + ∑(𝑎𝑛 cos 𝑛𝑥 + 𝑏𝑛 sin 𝑛𝑥)
2
𝑛=1
∞
2𝜋 2
= + ∑ (0 ∙ cos 𝑛𝑥 − sin 𝑛𝑥)
2 𝑛
𝑛=1
∞
sin 𝑛𝑥 sin 𝑥 sin 2𝑥 sin 3𝑥
= 𝜋−2∑ = 𝜋 − 2( + + +⋯)
𝑛 1 2 3
𝑛=1
Solution Since,
2𝐿 = 2𝜋 𝐿=𝜋 ω = 1,
we can write
∞
𝑎0
𝑓(𝑥) = + ∑(𝑎𝑛 cos 𝑛𝑥 + 𝑏𝑛 sin 𝑛𝑥),
2
𝑛=1
where
1 𝜋 1 𝜋 𝑥 1
𝑎0 = ∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑒 𝑑𝑥 = [𝑒 𝑥 ]𝜋−𝜋
𝜋 −𝜋 𝜋 −𝜋 𝜋
𝑒 𝜋 − 𝑒 −𝜋 2
= = sinh 𝜋,
𝜋 𝜋
14 Chapter 1 Fourier Analysis
1 𝜋 1 𝜋 𝑥
𝑎𝑛 = ∫ 𝑓(𝑥) cos 𝑛𝑥 𝑑𝑥 = ∫ 𝑒 cos 𝑛𝑥 𝑑𝑥
𝜋 −𝜋 𝜋 −𝜋
Using the integral relation
𝑒 𝑎𝑥
∫ 𝑒 𝑎𝑥 cos 𝑏𝑥 𝑑𝑥 = (𝑎 cos 𝑏𝑥 + 𝑏 sin 𝑏𝑥) + 𝑐,
𝑎2 + 𝑏 2
we get
𝜋
1 𝑒𝑥
𝑎𝑛 = [ (cos 𝑛𝑥 + 𝑛 sin 𝑛𝑥)]
𝜋 1 + 𝑛2 −𝜋
1
= [𝑒 𝜋 (cos 𝑛𝜋) − 𝑒 −𝜋 (cos(−𝑛𝜋))]
𝜋(1 + 𝑛2 )
(−1)𝑛 𝜋 −𝜋 ] 𝑛
2
= [𝑒 − 𝑒 = (−1) sinh 𝜋
𝜋(1 + 𝑛2 ) 𝜋(1 + 𝑛2 )
Similarly we compute the coefficients 𝑏𝑛 :
1 𝜋 1 𝜋
𝑏𝑛 = ∫ 𝑓(𝑥) sin 𝑛𝑥 𝑑𝑥 = ∫ 𝑒 𝑥 sin 𝑛𝑥 𝑑𝑥
𝜋 −𝜋 𝜋 −𝜋
𝜋
1 𝑒𝑥
= [ (sin 𝑛𝑥 − 𝑛 cos 𝑛𝑥)]
𝜋 1+𝑛 −𝜋
−𝑛 𝜋 −𝜋
= [𝑒 cos 𝑛𝜋 − 𝑒 (cos(−𝑛𝜋))]
𝜋(1 + 𝑛2 )
−𝑛(−1)𝑛 𝜋 −2𝑛
= 2
[𝑒 − 𝑒 −𝜋 ] = (−1)𝑛 sinh 𝜋
𝜋(1 + 𝑛 ) 𝜋(1 + 𝑛2 )
𝑒 𝑎𝑥
[𝐻𝑖𝑛𝑡: ∫ 𝑒 𝑎𝑥 sin 𝑏𝑥 𝑑𝑥 = (𝑎 sin 𝑏𝑥 − 𝑏 cos 𝑏𝑥) + 𝑐]
𝑎2 + 𝑏2
Hence in − 𝜋 < 𝑥 < 𝜋
2 ∞
sinh 𝜋 2
𝑓(𝑥) = 𝜋 + ∑ [(−1)𝑛 sinh 𝜋 cos 𝑛𝑥
2 𝜋(1 + 𝑛2 )
𝑛=1
−2𝑛
+(−1)𝑛 sinh 𝜋 sin 𝑛𝑥],
𝜋(1 + 𝑛2 )
or
∞
sinh 𝜋 2 sinh 𝜋 cos 𝑛𝑥 𝑛 sin 𝑛𝑥
𝑓(𝑥) = + ∑(−1)𝑛 [ − ]
𝜋 𝜋 (1 + 𝑛 ) (1 + 𝑛2 )
2
𝑛=1
Chapter 1 Fourier Analysis 15
Theorem 2.4 Let 𝑓(𝑥) be a periodic function with period 2𝐿, and let
𝑓(𝑥) and 𝑓 ′ (𝑥) be piecewise continuous in [−𝐿, 𝐿]. Then the Fourier
series of 𝑓(𝑥)
∞
𝑎0 𝜋
𝑓(𝑥) = + ∑(𝑎𝑛 cos 𝑛𝜔𝑥 + 𝑏𝑛 sin 𝑛𝜔𝑥) , 𝜔 =
2 𝐿
𝑛=1
converges to
1
[𝑓(𝑥 + ) + 𝑓(𝑥 − )]
2
for all 𝑥.
𝑓(𝑥) 𝑖𝑓 𝑥 𝑖𝑠 𝑎 𝑝𝑡 𝑜𝑓 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦
= {𝑓(𝑥 + ) + 𝑓(𝑥 − )
𝑖𝑓 𝑥 𝑖𝑠 𝑎 𝑝𝑡 𝑜𝑓 𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦
2
16 Chapter 1 Fourier Analysis
2
4 2 0 2 4 x
Fig. 1.5
𝑬𝒙𝒆𝒓𝒄𝒊𝒔𝒆𝒔 𝟏. 𝟐
− 𝜋 ≤ 𝑥 ≤ 𝜋.
𝟐. The Fourier series of the function 𝑓(𝑥) = |𝑥|, −𝜋 ≤ 𝑥 ≤ 𝜋,
𝑓(𝑥 + 2𝜋) = 𝑓(𝑥) converges to 𝑓(𝑥).
𝟑. The Fourier series of the function 𝑓(𝑥) = 𝑥 2 , − 𝜋 ≤ 𝑥 ≤ 𝜋,
𝑓(𝑥 + 2𝜋) = 𝑓(𝑥) does not involve any sine terms.
In problems (𝟒) − (𝟐𝟎), find the Fourier series representation of the
functions
𝟒. 𝑓(𝑥) = 𝑥 2 , 0 < 𝑥 < 1, 𝑓(𝑥 + 1) = 𝑓(𝑥)
𝟓. 𝑓(𝑥) = 𝑒 𝑥 , 0 < 𝑥 < 1, 𝑓(𝑥 + 1) = 𝑓(𝑥)
Chapter 1 Fourier Analysis 17
𝑥2
𝟔. 𝑓(𝑥) = , 0 < 𝑥 < 2, 𝑓(𝑥 + 2) = 𝑓(𝑥)
4
1 − 𝜋⁄2 < 𝑥 < 𝜋⁄2
𝟕. 𝑓(𝑥) = { , 𝑓(𝑥 + 2𝜋) = 𝑓(𝑥)
−1 𝜋⁄2 < 𝑥 < 3𝜋⁄2
0 −2<𝑥 <0
𝟖. 𝑓(𝑥) = { , 𝑓(𝑥 + 4) = 𝑓(𝑥)
2 0<𝑥<2
𝑥 0<𝑥<1
𝟗. 𝑓(𝑥) = { , 𝑓(𝑥 + 2) = 𝑓(𝑥)
1−𝑥 1<𝑥 <2
−1 𝑖𝑓 −𝜋 < 𝑥 < − 𝜋⁄2
𝟏𝟎. 𝑓(𝑥) = { 0 𝑖𝑓 − 𝜋⁄2 < 𝑥 < 𝜋⁄2, 𝑓(𝑥 + 2𝜋) = 𝑓(𝑥)
1 𝑖𝑓 𝜋⁄2 < 𝑥 < 𝜋
1 1
+𝑥 − <𝑥<0
𝟏𝟏. 𝑓(𝑥) = { 2 2 , 𝑓(𝑥 + 1) = 𝑓(𝑥)
1 1
+𝑥 0<𝑥<
2 2
𝑥2 − 𝜋⁄2 < 𝑥 < 𝜋⁄2
𝟏𝟐. 𝑓(𝑥) = { 𝜋 2 , 𝑓(𝑥 + 2𝜋) = 𝑓(𝑥)
𝜋⁄2 < 𝑥 < 3𝜋⁄2
4
1 0<𝑥<1
𝟏𝟑. 𝑓(𝑥) = { , 𝑓(𝑥 + 4) = 𝑓(𝑥)
0 1 < |𝑥| < 2
𝟏𝟒. 𝑓(𝑥) = 𝑥 + |𝑥| , − 𝜋 < 𝑥 < 𝜋, 𝑓(𝑥 + 2𝜋) = 𝑓(𝑥)
𝟏𝟓. 𝑓(𝑥) = 3𝑥 2 , − 1 < 𝑥 < 1, 𝑓(𝑥 + 2) = 𝑓(𝑥)
𝟏𝟔. 𝑓(𝑥) = 𝜋 sin 𝜋𝑥 , 0 < 𝑥 < 1, 𝑓(𝑥 + 1) = 𝑓(𝑥)
𝟏𝟕. 𝑓(𝑥) = 𝑥 4 , − 𝜋 < 𝑥 < 𝜋, 𝑓(𝑥 + 2𝜋) = 𝑓(𝑥)
𝟏𝟖. 𝑓(𝑥) = 𝑥 2 , − 𝜋⁄2 < 𝑥 < 𝜋⁄2 , 𝑓(𝑥 + 𝜋) = 𝑓(𝑥)
𝟏𝟗. 𝑓(𝑥) = sin 𝑥 , 0 < 𝑥 < 2𝜋, 𝑓(𝑥 + 2𝜋) = 𝑓(𝑥)
𝟐𝟎. 𝑓(𝑥) = cosh 𝑥 , − 𝜋 < 𝑥 < 𝜋, 𝑓(𝑥 + 2𝜋) = 𝑓(𝑥)
1.1.4. Fourier series for even and odd functions (Halfinterval expansion)
First, we begin this section by the following definitions of even and odd
functions.
18 Chapter 1 Fourier Analysis
Definition 1.7 (Even and Odd functions). A function 𝑓(𝑥) on the interval
(−𝑎, 𝑎) is said to be even if
𝑓(−𝑥) = 𝑓(𝑥) (1)
This means that this function is symmetric about the 𝑦𝑎𝑥𝑖𝑠 in the 𝑥𝑦 −
𝑝𝑙𝑎𝑛𝑒.
A function 𝑓(𝑥) is said to be odd on the interval (−𝑎, 𝑎) if
𝑓(−𝑥) = − 𝑓(𝑥) (2)
This function is symmetric with respect to the origin in the 𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒.
All of the above properties are obtained if we denote for the even
function by the 𝑝𝑙𝑢𝑠 𝑠𝑖𝑔𝑛 (+), and denote by 𝑚𝑖𝑛𝑢𝑠 𝑠𝑖𝑔𝑛 (−) for the
odd functions. For instance,
𝒐𝒅𝒅 × 𝒐𝒅𝒅 ≡ (−) × (−) = (+) ≡ 𝒆𝒗𝒆𝒏
On computing the Fourier coefficients, we noticed that the limits of the
integrals extend from − 𝐿 to 𝐿. But we know from the properties of
definite integrals that
𝐿 𝐿
∫ (𝑒𝑣𝑒𝑛)𝑑𝑥 = 2 ∫ (𝑒𝑣𝑒𝑛)𝑑𝑥 (3)
−𝐿 0
𝐿
∫ (𝑜𝑑𝑑)𝑑𝑥 = 0 (4)
−𝐿
Chapter 1 Fourier Analysis 19
L o L x L o L x L o L x
Fig. 1.6
∞
𝑎0 𝜋
𝑓(𝑥) = + ∑ 𝑎𝑛 cos 𝑛𝜔𝑥 , 𝜔 = (1)
2 𝐿
𝑛=1
𝑏𝑛 = 0 (2)
2 𝐿
𝑎0 = ∫ 𝑓(𝑥)𝑑𝑥 (3)
𝐿 −𝐿
2 𝐿
𝑎𝑛 = ∫ 𝑓(𝑥) cos 𝑛𝜔𝑥 𝑑𝑥 (4)
𝐿 −𝐿
∞
𝜋
𝑓(𝑥) = ∑ 𝑏𝑛 sin 𝑛𝜔𝑥 , 𝜔 = (5)
𝐿
𝑛=1
𝑎0 = 𝑎𝑛 = 0 (6)
2 𝐿
𝑏𝑛 = ∫ 𝑓(𝑥) sin 𝑛𝜔𝑥 𝑑𝑥 (7)
𝐿 −𝐿
or
𝑆ℎ𝑜𝑤 𝑡ℎ𝑎𝑡 𝑓(𝑥) ≡ 𝐶𝑜𝑠𝑖𝑛𝑒 𝑡𝑒𝑟𝑚𝑠 𝑜𝑛𝑙𝑦 𝑜𝑛 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡 ℎ𝑎𝑛𝑑 𝑠𝑖𝑑𝑒.
This means that we will deal with the function 𝑓(𝑥) as an even function
and we shall use (1) − (4). In this case the given interval of definition
of 𝑓(𝑥) will be considered as half-period of 𝑓(𝑥).
Similarly, if the required assertion is given in the form:
or
𝑆ℎ𝑜𝑤 𝑡ℎ𝑎𝑡 𝑓(𝑥) ≡ 𝑠𝑖𝑛𝑒 𝑡𝑒𝑟𝑚𝑠 𝑜𝑛𝑙𝑦 𝑜𝑛 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡 ℎ𝑎𝑛𝑑 𝑠𝑖𝑑𝑒.
This means that we will deal with the function 𝑓(𝑥) as an odd function
and we shall use (5) − (7). In this case the given interval of definition
of 𝑓(𝑥) will be considered as half-period of 𝑓(𝑥).
The above remark will be illustrated by the following examples.
Solution From Fig. 1.7(a), the function 𝑓(𝑥) is neither odd nor even
and we use the general laws of Fourier series with ω = 1:
22 Chapter 1 Fourier Analysis
∞
𝑎0
𝑓(𝑥) = + ∑(𝑎𝑛 cos 𝑛𝑥 + 𝑏𝑛 sin 𝑛𝑥),
2
𝑛=1
where
y
4 2 0 2 4 6 x
𝑦 = 𝑥 2, 0 < 𝑥 < 2𝜋
𝑵𝒐𝒕 𝒆𝒗𝒆𝒏 𝒏𝒐𝒕 𝒐𝒅𝒅 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏
Fig. 1.7(a)
1 2𝜋 𝒙𝟐 + 𝐜𝐨𝐬 𝒏𝒙
𝑎0 = ∫ 𝑓(𝑥)𝑑𝑥
𝜋 0
𝐬𝐢𝐧 𝒏𝒙
2x −
2𝜋 3 2𝜋 2 𝒏
1 1 𝑥 8𝜋
= ∫ 𝑥 2 𝑑𝑥 = [ ] = ,
𝜋 0 𝜋 3 0 3 𝐜𝐨𝐬 𝒏𝒙
2 + −
𝒏𝟐
1 2𝜋
𝑎𝑛 = ∫ 𝑓(𝑥) cos 𝑛𝑥 𝑑𝑥 𝐬𝐢𝐧 𝒏𝒙
𝜋 0 0 −
𝑛3
1 2𝜋 2
= ∫ 𝑥 cos 𝑛𝑥 𝑑𝑥 =
𝜋 0
1 2)
sin 𝑛𝑥 cos 𝑛𝑥 sin 𝑛𝑥 2𝜋
= [(𝑥 ( ) − (2𝑥) (− ) + (2) (− )]
𝜋 𝑛 𝑛2 𝑛3 0
1 cos 2𝑛𝜋 4
= (0 + (4𝜋) ( 2
) + 0) = 2 ,
𝜋 𝑛 𝑛
Chapter 1 Fourier Analysis 23
𝒙𝟐 + 𝐬𝐢𝐧 𝒏𝒙
1 2𝜋
𝑏𝑛 = ∫ 𝑓(𝑥) sin 𝑛𝑥 𝑑𝑥 𝐜𝐨𝐬 𝒏𝒙
𝜋 0 2x − −
𝒏
1 2𝜋 2 2 + −
𝐬𝐢𝐧 𝒏𝒙
= ∫ 𝑥 sin 𝑛𝑥 𝑑𝑥 𝒏𝟐
𝜋 0
𝐜𝐨𝐬 𝒏𝒙
0
1 cos 𝑛𝑥 𝑛3
= [(𝑥 2 ) (− )
𝜋 𝑛
sin 𝑛𝑥 cosn 𝑛𝑥 2𝜋
−(2𝑥) (− ) + (2) (− )]
𝑛2 𝑛3 0
4𝜋
=−
𝑛
Hence,
∞
2
4𝜋 2 4 4𝜋
𝑥 = + ∑ ( 2 cos 𝑛𝑥 − sin 𝑛𝑥)
3 𝑛 𝑛
𝑛=1
or
2𝜋 2 1 1 1
= 4 ( 2 + 2 + 2 + ⋯ ),
3 1 2 3
from which we obtain
𝜋2 1 1 1
= ( 2 + 2 + 2 +⋯)
6 1 2 3
where
𝜋
2 𝜋 2 𝜋 2 𝑥3 2𝜋 2
𝑎0 = ∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑥 2 𝑑𝑥 = [ ] = ,
𝜋 0 𝜋 0 𝜋 3 0 3
2 𝜋 2 𝜋 2
𝑎𝑛 = ∫ 𝑓(𝑥) cos 𝑛𝑥 𝑑𝑥 = ∫ 𝑥 cos 𝑛𝑥 𝑑𝑥
𝜋 0 𝜋 0
Integrating by parts we get
2 cos 𝑛𝜋 (−1)𝑛
= [0 + (2𝜋) ( 2 ) + 0] = 4
𝜋 𝑛 𝑛2
Substituting with 𝑎0 and 𝑎𝑛 we get
Chapter 1 Fourier Analysis 25
∞
2
𝜋2 (−1)𝑛
𝑥 = + ∑ (4 ) cos 𝑛𝑥
3 𝑛2
𝑛=1
∞
𝜋2 cos 𝑛𝑥
= + 4 ∑(−1)𝑛
3 𝑛2
𝑛=1
x
𝑦 = 𝑥 2 , −𝜋 < 𝑥 < 𝜋
𝒆𝒗𝒆𝒏 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏
Solution In this case, we extend 𝑓(𝑥) so that the new function defined
over [−𝜋, 𝜋] is 𝑜𝑑𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 as shown in Fig. 1.7(c). So that we have
𝑎0 = 𝑎𝑛 = 0,
and from (5)
∞
𝑓(𝑥) = ∑ 𝑏𝑛 sin 𝑛𝑥 ,
𝑛=1
x
𝑦 = 𝑥 2 , −𝜋 < 𝑥 < 𝜋
𝑶𝒅𝒅 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏
2 𝜋 2 𝜋 2
𝑏𝑛 = ∫ 𝑓(𝑥) sin 𝑛𝑥 𝑑𝑥 = ∫ 𝑥 sin 𝑛𝑥 𝑑𝑥
𝜋 0 𝜋 0
2 cos 𝑛𝑥 sin 𝑛𝑥 cosn 𝑛𝑥 𝜋
= [(𝑥 2 ) (− ) −(2𝑥) (− ) + (2) ( )]
𝜋 𝑛 𝑛2 𝑛3 0
2 (−1)𝑛 (−1)𝑛 − 1
= ((𝜋 2 ) (− ) − 0 + (2) ( ))
𝜋 𝑛 𝑛3
(−1)𝑛+1 4 (−1)𝑛 − 1
= 2𝜋 ( )+ ( )
𝑛 𝜋 𝑛3
Therefore,
∞ ∞
2
(−1)𝑛+1 sin 𝑛𝑥 4 sin 𝑛𝑥
𝑥 = 2𝜋 ∑ ( ) + ∑[(−1)𝑛 − 1] ( 3 )
𝑛 𝜋 𝑛
𝑛=1 𝑛=1
∞ ∞
sin 𝑛𝑥 8 sin 𝑛𝑥
= 2𝜋 ∑(−1)𝑛+1 − ∑
𝑛 𝜋 𝑛3
𝑛=1 𝑛=𝑜𝑑𝑑
Chapter 1 Fourier Analysis 27
∞ ∞
sin 𝑛𝑥 8 sin(2𝑛 − 1)𝑥
= 2𝜋 ∑(−1)𝑛+1 − ∑
𝑛 𝜋 (2𝑛 − 1)3
𝑛=1 𝑛=1
sin 𝑥 sin 2𝑥 sin 3𝑥
= 2𝜋 ( + + +⋯)
1 2 3
8 sin 𝑥 sin 3𝑥 sin 5𝑥
− ( 3 + + +⋯)
𝜋 1 33 53
(𝑓(𝑥), 𝑒𝑖𝑚𝑥 ) = ∑ 𝑐𝑛 ⏟
(𝑒𝑖𝑛ω𝑥 , 𝑒𝑖𝑚ω𝑥 ),
𝑛=−∞ ={ 0 𝑚≠𝑛
2𝐿 𝑚=𝑛
where
1 𝑖𝑛ω𝑥 1 𝐿
𝑐𝑛 = (𝑓(𝑥), 𝑒 )= ∫ 𝑓(𝑥)𝑒−𝑖𝑛ω𝑥 𝑑𝑥 (2)
2𝐿 2𝐿 −𝐿
𝑓(𝑥) = ∑ 𝑐𝑛 𝑒 𝑖𝑛𝑥 ,
𝑛=−∞
𝜋
1 1
𝑐𝑛 = (𝑓(𝑥), 𝑒 −𝑖𝑛𝑥 ) = ∫ 𝑒 𝑥 𝑒 −𝑖𝑛𝑥 𝑑𝑥
2𝜋 2𝜋 −𝜋
𝜋
1 𝜋 (1−𝑖𝑛)𝑥 1 𝑒 (1−𝑖𝑛)𝑥
= ∫ 𝑒 𝑑𝑥 = [ ]
2𝜋 −𝜋 2𝜋 (1 − 𝑖𝑛) −𝜋
1 𝑒 (1−𝑖𝑛)𝜋 − 𝑒 − (1−𝑖𝑛)𝜋
=
2𝜋 (1 − 𝑖𝑛)
1
= (𝑒 𝜋 𝑒 −𝑖𝑛𝜋 − 𝑒 −𝜋 𝑒 𝑖𝑛𝜋 )
2𝜋(1 − 𝑖𝑛)
Chapter 1 Fourier Analysis 29
1
= (𝑒 𝜋 (cos 𝑛𝜋 − 𝑖 sin 𝑛𝜋) − 𝑒 −𝜋 (cos 𝑛𝜋 + 𝑖 sin 𝑛𝜋))
2𝜋(1 − 𝑖𝑛)
cos 𝑛𝜋 𝑒 𝜋 − 𝑒 −𝜋 cos 𝑛𝜋
= ( )= sinh 𝜋
𝜋(1 − 𝑖𝑛) 2 𝜋(1 − 𝑖𝑛)
cos 𝑛𝜋 1 (1 + 𝑖𝑛)
= ∙ sinh 𝜋
𝜋 (1 − 𝑖𝑛) (1 + 𝑖𝑛)
(1 + 𝑖𝑛) sinh 𝜋
= (−1)𝑛 ( )
(1 + 𝑛2 ) 𝜋
Thus, the exponential Fourier series of 𝑓(𝑥) = 𝑒 𝑥 is
∞
sinh 𝜋 (1 + 𝑖𝑛) 𝑖𝑛𝑥
𝑓(𝑥) = ∑ (−1)𝑛 𝑒
𝜋 (1 + 𝑛2 )
𝑛=−∞
Theorem 2.6 Let 𝑓(𝑥) be a periodic function with period 2𝐿 and whose
Fourier series is given by
∞
𝑎0 𝜋
𝑓(𝑥) = + ∑(𝑎𝑛 cos 𝑛𝜔𝑥 + 𝑏𝑛 sin 𝑛𝜔𝑥) , 𝜔 = (1)
2 𝐿
𝑛=1
Then
∞
1 𝑎2
‖𝑓‖2 = 0 + ∑(𝑎𝑛2 + 𝑏𝑛2 ) (2)
𝐿 2
𝑛=1
30 Chapter 1 Fourier Analysis
Therefore,
∞
1 𝑎2
‖𝑓‖2 = 0 + ∑(𝑎𝑛2 + 𝑏𝑛2 ) , (4)
𝐿 2
𝑛=1
2
2𝜋 2 ∞
(
2𝜋 4
3 ) 4 2
= + ∑ (((−1)𝑛 2 ) + 0),
5 2 𝑛
𝑛=1
or
∞
2𝜋 4 2𝜋 4 1
− = 16 ∑ 4
5 9 𝑛
𝑛=1
Thus
∞
𝜋4 1 1 1 1
= ∑ 4 = ( 4 + 4 + 4 +⋯)
90 𝑛 1 2 3
𝑛=1
𝑬𝒙𝒆𝒓𝒄𝒊𝒔𝒆𝒔 𝟏. 𝟑
∞
𝜋2 1 1 1
= 1+ 2+ 2+⋯= ∑
8 3 5 (2𝑛 − 1)2
𝑛=1
where 𝑛 is an odd positive integer, and determine the first three non-
zero terms.
𝟕. Prove that for 0 ≤ 𝑥 ≤ 𝜋
∞
𝜋2 cos 2𝑛𝑥
(𝒊) 𝑥(𝜋 − 𝑥) = −∑ ,
6 𝑛2
𝑛=1
∞
8 sin(2𝑛 − 1)𝑥
(𝒊𝒊) 𝑥(𝜋 − 𝑥) = ∑ ,
𝜋 (2𝑛 − 1)3
𝑛=1
1.2.1. Introduction
Let 𝑓𝐿 (𝑥) be a periodic function with period 2𝐿. Then the Fourier series
of this function will be in the form
∞
𝑎0 𝜋
𝑓𝐿 (𝑥) = + ∑(𝑎𝑛 cos 𝑛𝜔𝑥 + 𝑏𝑛 sin 𝑛𝜔𝑥) , ω = (1)
2 𝐿
𝑛=1
Put
ω𝑛 = 𝑛ω,
then
𝜋 𝜋
∆ω𝑛 = (𝑛 + 1)ω − 𝑛ω = ω = ω = 𝐿=
𝐿 ∆ω𝑛
Substitute in (2) we have
∞
1 𝐿 1 𝐿
𝑓𝐿 (𝑥) = ∫ 𝑓 (𝑧)𝑑𝑧 + ∑ [cos ω𝑛 𝑥 ∙ ∆ω𝑛 ∫ 𝑓𝐿 (𝑧) cos ω𝑛 𝑧 𝑑𝑧
2𝐿 −𝐿 𝐿 𝜋 −𝐿
𝑛=1
𝐿
+ sin ω𝑛 𝑥 ∙ ∆ω𝑛 ∫ 𝑓𝐿 (𝑧) sin ω𝑛 𝑧 𝑑𝑧] (3)
−𝐿
Thus we have
1 ∞ ∞
𝑓(𝑥) = ∫ [cos ω𝑛 𝑥 ∫ 𝑓(𝑧) cos ω𝑛 𝑧 𝑑𝑧
𝜋 0 −∞
∞
+ sin ω𝑛 𝑥 ∫ 𝑓(𝑧) sin ω𝑛 𝑧 𝑑𝑧] 𝑑ω𝑛 (5)
−∞
1 ∞ ∞
𝑓(𝑥) = ∫ [cos ω𝑥 ∫ 𝑓(𝑥) cos ω𝑥 𝑑𝑥
𝜋 0 −∞
∞
+ sin ω𝑥 ∫ 𝑓(𝑥) sin ω𝑥 𝑑𝑥] 𝑑ω (6)
−∞
On using the notation
∞
𝐴(ω) = ∫ 𝑓(𝑥) cos ω𝑥 𝑑𝑥 (7)
−∞
∞
𝐵(ω) = ∫ 𝑓(𝑥) sin ω𝑥 𝑑𝑥 (8)
−∞
Fig. 1.8
Solution
1 ∞
𝑓(𝑥) = ∫ (𝐴(ω) cos ω𝑥 + 𝐵(ω) sin ω𝑥) 𝑑ω,
𝜋 0
where
∞ δ
𝐴(ω) = ∫ 𝑓(𝑥) cos ω𝑥 𝑑𝑥 = ∫ cos ω𝑥 𝑑𝑥
−∞ −δ
δ
sin ω𝑥 2 sin ωδ
=[ ] =
ω −δ ω
and
∞ δ
𝐵(ω) = ∫ 𝑓(𝑥) sin ω𝑥 𝑑𝑥 = ∫ sin ω𝑥 𝑑𝑥
−∞ −δ
cos ω𝑥 δ
= [− ] =0
ω −δ
Then
2 ∞ sin ωδ cos ω𝑥
𝑓(𝑥) = ∫ 𝑑ω (11)
𝜋 0 ω
At 𝑥 = δ, we have
1 1
𝑓(δ) = [𝑓(δ+ ) + 𝑓(δ− )] =
2 2
Therefore, we can write from (11)
𝜋
𝑖𝑓 |𝑥| < δ
∞
sin ωδ cos ω𝑥 𝜋 2
∫ 𝑑ω = 𝑓(𝑥) = 𝜋 𝑖𝑓 |𝑥| = δ
0 ω 2 4
{ 0 𝑖𝑓 |𝑥| > δ
Chapter 1 Fourier Analysis 37
Solution. From the left hand side of the required assertion, we note that
this is an expansion of some function in terms of Fourier sine integral.
Therefore, we use (15) with 𝑓(𝑥) = 𝑒 −𝑥 cos 𝑥, 𝑥 > 0 to obtain
∞ ∞
𝐵(ω) = 2 ∫ 𝑓(𝑥) sin ω𝑥 𝑑𝑥 = 2 ∫ 𝑒 −𝑥 cos 𝑥 sin ω𝑥 𝑑𝑥
0 0
∞
1
= 2 × ∫ 𝑒 −𝑥 [sin(ω − 1)𝑥 + sin(ω + 1)𝑥]𝑑𝑥
2 0
∞ ∞
= ∫ 𝑒 −𝑥 sin(ω − 1)𝑥 𝑑𝑥 + ∫ 𝑒 −𝑥 sin(ω + 1)𝑥 𝑑𝑥
0 0
Since,
𝑎𝑥
𝑒 𝑎𝑥
∫𝑒 sin 𝑏𝑥 𝑑𝑥 = 2 (𝑎 sin 𝑏𝑥 − 𝑏 cos 𝑏𝑥) + 𝑐,
𝑎 + 𝑏2
then
∞ ∞
𝐵(ω) = ∫ 𝑒 −𝑥 sin(ω − 1)𝑥 𝑑𝑥 + ∫ 𝑒 −𝑥 sin(ω + 1)𝑥 𝑑𝑥
0 0
∞
𝑒 −𝑥
=[ (− sin(ω − 1)𝑥 − (ω − 1) cos(ω − 1)𝑥)]
1 + (ω − 1)2 0
Chapter 1 Fourier Analysis 39
∞
𝑒 −𝑥
+[ (− sin(ω + 1)𝑥 − (ω + 1) cos(ω + 1)𝑥)]
1 + (ω + 1)2 0
(ω − 1) (ω + 1)
= +
1 + (ω − 1)2 1 + (ω + 1)2
(ω − 1) (ω + 1)
= + 2
ω2 + 2 − 2ω ω + 2 + 2ω
(ω − 1)(ω2 + 2 + 2ω) + (ω + 1)(ω2 + 2 − 2ω)
=
(ω2 + 2 − 2ω)(ω2 + 2 + 2ω)
2ω3 2ω3 2ω3
= = =
(ω2 + 2)2 − 4ω2 ω4 + 4ω2 + 4 − 4ω2 ω4 + 4
Then the Fourier sine integral can be written as
1 ∞ 2ω3
𝑓(𝑥) = 𝑒 −𝑥 cos 𝑥 = ∫ sin ω𝑥 𝑑ω,
𝜋 0 ω4 + 4
which implies that
2 ∞ ω3
𝑒 −𝑥 cos 𝑥 = ∫ sin ω𝑥 𝑑ω,
𝜋 0 ω4 + 4
or
∞
ω3 sin ω𝑥 𝜋 −𝑥
∫ 𝑑ω = 𝑒 cos 𝑥 , 𝑥 > 0
0 ω4 + 4 2
Hint: On evaluating the integrals we can use the Laplace transform
concept as following
∞ ∞
−𝑥
𝐵(ω) = ∫ 𝑒 sin(ω − 1)𝑥 𝑑𝑥 + ∫ 𝑒 −𝑥 sin(ω + 1)𝑥 𝑑𝑥
0 0
(ω − 1) (ω + 1)
= +
ω2 + 2 − 2ω ω2 + 2 + 2ω
(ω − 1)(ω2 + 2 + 2ω) + (ω + 1)(ω2 + 2 − 2ω)
=
(ω2 + 2 − 2ω)(ω2 + 2 + 2ω)
2ω3 2ω3 2ω3
= = =
(ω2 + 2)2 − 4ω2 ω4 + 4ω2 + 4 − 4ω2 ω4 + 4
𝑬𝒙𝒆𝒓𝒄𝒊𝒔𝒆𝒔 𝟏. 𝟒
∞
ω3 sin ω𝑥 𝜋
𝟗. ∫ 4
𝑑ω = 𝑒 −𝑥 cos 𝑥 , 𝑥 > 0
0 ω +4 2
𝜋
0≤𝑥<1
∞
cos ω𝑥 + ω sin ω𝑥 2
𝟏𝟎. ∫ 𝑑ω = 𝜋
0 ω 2+1 𝑥=1
4
{0 𝑥>1
𝜋 𝜋
∞
cos(πω⁄2) cos ω𝑥 cos 𝑥 𝑥<
𝟏𝟏. ∫ 2
𝑑ω = {2 2
𝜋
0 1 − ω 0 𝑥>
2
In problems 12 − 15, find the Fourier cosine integral of the functions
The set 𝐷 is called the 𝑑𝑜𝑚𝑎𝑖𝑛 of the function and the set 𝑅 is called
the 𝑟𝑎𝑛𝑔𝑒 of 𝑓 . For any complex function, both the independent
variable and the dependent variable may be separated into real and
imaginary parts. So that the image 𝑤 of a complex number 𝑧 = 𝑥 + 𝑖𝑦
will be some complex number 𝑤 = 𝑢 + 𝑖𝑣, that is,
44 Chapter 2 Functions of a Complex Variable
𝒛 − 𝒑𝒍𝒂𝒏𝒆 𝒘 − 𝒑𝒍𝒂𝒏𝒆
𝑦 𝑣
𝑥 𝑢
Solution
𝑓(𝑧) = 𝑧 2 − 4𝑧 = (𝑥 + 𝑖𝑦 )2 − 4(𝑥 + 𝑖𝑦 )
= (𝑥 2 − 𝑦 2 + 2𝑖𝑥𝑦 ) − 4(𝑥 + 𝑖𝑦 )
= (𝑥 2 − 𝑦 2 − 4𝑥 ) + 𝑖(2𝑥𝑦 − 4𝑦 )
= 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦)
Hence,
𝑢(𝑥, 𝑦) = (𝑥 2 − 𝑦 2 − 4𝑥 ), 𝑣(𝑥, 𝑦) = (2𝑥𝑦 − 4𝑦 )
Solution
𝑓(𝑧) = 𝑧 Re 𝑧 + 𝑧 2 + Im 𝑧 = (𝑥 − 𝑖𝑦) (𝑥) + (𝑥 + 𝑖𝑦)2 + (𝑦)
= (𝑥 2 − 𝑖𝑥𝑦) + (𝑥 2 − 𝑦 2 + 2𝑖𝑥𝑦) + 𝑦
= (2𝑥 2 − 𝑦 2 + 𝑦) + 𝑖𝑥𝑦
Thus,
𝑢(𝑥, 𝑦) = (2𝑥 2 − 𝑦 2 + 𝑦), 𝑣(𝑥, 𝑦) = 𝑥𝑦
Solution Since
Chapter 2 Functions of a Complex Variable 47
1
𝑥 = Re 𝑧 = (𝑧 + 𝑧),
2
1
𝑦 = Im 𝑧 = (𝑧 − 𝑧),
2𝑖
𝑤 = (𝑥 2 − 𝑦 2 + 𝑥) + 𝑖(2𝑥𝑦 − 𝑦),
2 2
𝑧+𝑧 𝑧−𝑧 𝑧+𝑧
𝑤 = (( ) −( ) +( ))
2 2𝑖 2
2 2
𝑧 2 + 2𝑧𝑧 + 𝑧 𝑧 2 − 2𝑧𝑧 + 𝑧 𝑧+𝑧
𝑤 = (( )−( )+( ))
4 −4 2
2
𝑧2 − 𝑧 𝑧−𝑧
+ (( )−( )),
2 2
2 2
2𝑧 2 + 2𝑧 𝑧+𝑧 𝑧2 − 𝑧 𝑧−𝑧
=( + )+( − )
4 2 2 2
2 2
𝑧2 + 𝑧 𝑧+𝑧 𝑧2 − 𝑧 𝑧−𝑧
=( + )+( − )
2 2 2 2
= (𝑧 2 + 𝑧)
48 Chapter 2 Functions of a Complex Variable
2.2 Limits
𝒛 − 𝒑𝒍𝒂𝒏𝒆 𝒘 − 𝒑𝒍𝒂𝒏𝒆
𝑦 𝑣
𝑤2 ε
δ 𝑧2
𝑤0
𝑧0
𝑧1 𝑤1
|z − 𝑧0 | < δ |w − 𝑤0 | < ε
𝑥 𝑢
𝑧1
That is, the values of 𝑓 are “close” to 𝐿 for all 𝑧 “close” to 𝑧0 . Let
𝑤 = 𝑓(𝑧) = 𝑓(𝑥 + 𝑖𝑦) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦),
𝑧0 = 𝑥0 + 𝑖𝑦0 ,
𝑤0 = 𝑢0 + 𝑖𝑣0 = 𝑢(𝑥0 , 𝑦0 ) + 𝑖𝑣(𝑥0 , 𝑦0 )
Then
lim 𝑓(𝑧) = 𝑤0 ,
𝑧 → 𝑧0
if and only if
lim 𝑢(𝑥, 𝑦) = 𝑢0 ,
𝑥 → 𝑥0
lim 𝑣(𝑥, 𝑦) = 𝑣0
𝑥 → 𝑥0
𝑦 → 𝑦0 𝑦 → 𝑦0
Chapter 2 Functions of a Complex Variable 49
𝒚 𝒚
𝒛 𝒛
𝑧0 𝑧0
𝒙 𝒙
Fig. 2.3. Fig. 2.4.
Theorem 2.1 If 𝑓(𝑧) and 𝑔(𝑧) are single valued functions, and 𝑎 and
𝑏 are constants, then
lim [𝑎𝑓(𝑧) ± 𝑏𝑔(𝑧)] = 𝑎 lim 𝑓(𝑧) ± 𝑏 lim 𝑔(𝑧)
𝑧 → 𝑧0 𝑧 → 𝑧0 𝑧 → 𝑧0
Solution
(𝒊) lim (𝑧 2 − 𝑧 + 4) = (1 − 𝑖)2 − (1 − 𝑖) + 4
𝑧 → 1−𝑖
= 1 − 1 − 2𝑖 − 1 + 𝑖 + 4 = 3 − 𝑖
(−2𝑖 + 3)(−2𝑖 − 1) −7 − 4𝑖
= =
(−4 + 4𝑖 + 4) 4𝑖
−7 − 4𝑖 7
= −𝑖 = −1 + 𝑖
4 4
𝑧
𝐄𝐱𝐚𝐦𝐩𝐥𝐞 𝟐 Show that lim does not exist.
𝑧→0 𝑧
Solution
𝑧 𝑥 − 𝑖𝑦
lim = lim
𝑧→0 𝑧 𝑥 → 0 𝑥 + 𝑖𝑦
𝑦→0
To prove that the limit does not exist, we try to choose two different
paths and show that the result of the limit on these paths takes different
values. Let us take first the path 𝑥 = 0 (we move to the origin along
the 𝑦 −axis)
𝑧 𝑥 − 𝑖𝑦
lim = lim = −1,
𝑧→0 𝑧 𝑥= 0 𝑥 + 𝑖𝑦
𝑦→0
and on the path 𝑦 = 0 (we move to the origin along the 𝑥 −axis)
𝑧 𝑥 − 𝑖𝑦
lim = lim = 1,
𝑧→0 𝑧 𝑥 → 0 𝑥 + 𝑖𝑦
𝑦= 0
2.3. Continuity
|𝑧|2 𝑧
(𝒊) 𝑓(𝑧) = , (𝒊𝒊) 𝑓(𝑧) = { 𝑧 if 𝑧 ≠ 0
𝑧
0 if 𝑧 = 0
|𝑧|2
(𝒊𝒊𝒊) 𝑓(𝑧) = { 𝑧 if 𝑧 ≠ 0
0 if 𝑧 = 0
Solution
|𝑧|2
(𝒊) The function 𝑓(𝑧) = is not defined at 𝑧 = 0 so it is
𝑧
we have 𝑓(0) = 0, but the limit of this function does not exist so it is
discontinuous at 𝑧 = 0.
(𝒊𝒊𝒊) The third function is defined at 𝑧 = 0 and 𝑓(0) = 0. The limit of
this function at 𝑧 = 0 is given by
|𝑧|2 𝑧𝑧
lim 𝑓(𝑧) = lim = lim = lim 𝑧 = 0
𝑧→0 𝑧→0 𝑧 𝑧→0 𝑧 𝑧→0
Thus we have
lim 𝑓(𝑧) = 𝑓(0),
𝑧→0
Solution
′ (𝑧)
𝑓(𝑧 + ∆𝑧) − 𝑓(𝑧) (𝑧 + ∆𝑧)2 − 𝑧 2
𝑓 = lim = lim
∆𝑧 → 0 ∆𝑧 ∆𝑧 → 0 ∆𝑧
2
2𝑧∆𝑧 + (∆𝑧)
= lim = lim (2𝑧 + ∆𝑧) = 2𝑧
∆𝑧 → 0 ∆𝑧 ∆𝑧 → 0
𝑑
Example 2 Show that 𝑑𝑧
𝑧 does not exist anywhere.
Solution
𝑓(𝑧 + ∆𝑧) − 𝑓(𝑧) (𝑧 + ∆𝑧) − 𝑧
𝑓 ′ (𝑧) = lim = lim
∆𝑧 → 0 ∆𝑧 ∆𝑧 → 0 ∆𝑧
∆𝑧 ∆𝑥 − 𝑖∆𝑦
= lim = lim
∆𝑧 → 0 ∆𝑧 𝑥 → 0 ∆𝑥 + 𝑖∆𝑦
𝑦= 0
54 Chapter 2 Functions of a Complex Variable
Exercise 2.1
𝟏. Suppose 𝑓(𝑧) = 3𝑥𝑦 + 𝑖(𝑥 − 𝑦)2. Find lim 𝑓(𝑧).
𝑧 → 3+2𝑖
has a derivative.
(𝑧)2
𝟓. Is the function 𝑓(𝑧) = { if 𝑧 ≠ 0 differentiable at 𝑧 = 0?
𝑧
0 if 𝑧 = 0
Explain.
2.5 Cauchy-Riemann equations
In the preceding section we saw that a function 𝑓 of a complex variable
𝑧 is analytic in a domain 𝐷 if 𝑓(𝑧) is differentiable at all points in 𝐷.
We shall now derive a very important test for the analyticity of a
complex function 𝑓 based on the partial derivatives of its real and
imaginary parts.
[𝑢(𝑥 + ∆𝑥, 𝑦 + ∆𝑦) − 𝑢(𝑥, 𝑦)] + 𝑖[𝑣(𝑥 + ∆𝑥, 𝑦 + ∆𝑦) − 𝑣(𝑥, 𝑦)]
= lim
∆𝑥 → 0 ∆𝑥 + 𝑖∆𝑦
∆𝑦 →0
𝜕𝑢 𝜕𝑣
= +𝑖 (4)
𝜕𝑥 𝜕𝑥
Case 2 when ∆𝑥 = 0, and ∆𝑦 → 0, we get
[𝑢(𝑥, 𝑦 + ∆𝑦) − 𝑢(𝑥, 𝑦)] + 𝑖[𝑣(𝑥, 𝑦 + ∆𝑦) − 𝑣(𝑥, 𝑦)]
𝑓 ′ (𝑧) = lim
∆𝑥= 0 𝑖∆𝑦
∆𝑦→0
𝜕𝑣 𝜕𝑢
= −𝑖 (5)
𝜕𝑦 𝜕𝑦
The existence of the derivative 𝑓 ′ (𝑧) implies the existence of the four
partial derivatives in (4) and (5). By equating the real and imaginary
parts in (4) and (5) we get the Cauchy-Riemann equations (1).
Furthermore, from these equations we obtain the required assertion in
(2).
𝑑
Example 1 Show that (𝑅𝑒 𝑧) does not exist anywhere.
𝑑𝑧
Solution Since
𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) = 𝑅𝑒 𝑧 = 𝑥,
then
𝑢(𝑥, 𝑦) = 𝑥, 𝑣(𝑥, 𝑦) = 0,
and this implies that
𝑢𝑥 = 1, 𝑢𝑦 = 0, 𝑣𝑥 = 𝑣𝑦 = 0,
and the Cauchy-Riemann equations are not satisfied anywhere.
Therefore, the given function is not differentiable.
Example 2 Show that the function 𝑓(𝑧) = |𝑧|2 is differentiable but not
analytic at the point 𝑧 = 0.
Solution
𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) = 𝑥 2 + 𝑦 2 ,
so that
𝑢(𝑥, 𝑦) = 𝑥 2 + 𝑦 2 , 𝑣(𝑥, 𝑦) = 0
Therefore, we have
𝑢𝑥 = 2𝑥, 𝑢𝑦 = 2𝑦, 𝑣𝑥 = 𝑣𝑦 = 0,
For 𝑧 ≠ 0, these derivatives are continuous but the Cauchy-Riemann
Equations are not satisfied, therefore our function is not differentiable
for all 𝑧 ≠ 0.
58 Chapter 2 Functions of a Complex Variable
Solution.
𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) = (𝑥 + 𝑖𝑦) = 𝑥 2 − 𝑦 2 + 2𝑖𝑥𝑦,
Hence,
𝑢(𝑥, 𝑦) = 𝑥 2 − 𝑦 2 , 𝑣(𝑥, 𝑦) = 2𝑥𝑦
Therefore,
𝑢𝑥 = 2𝑥, 𝑢𝑦 = −2𝑦, 𝑣𝑥 = 2𝑦, 𝑣𝑦 = 2𝑥
The partial derivatives satisfy the Cauchy-Riemann equations for every
𝑧. Hence 𝑓(𝑧) = 𝑧 2 is analytic. Moreover,
𝑑𝑓(𝑧)
𝑓 ′ (𝑧) = = 𝑢𝑥 + 𝑖𝑣𝑥 = 2𝑥 + 𝑖2𝑦 = 2(𝑥 + 𝑖𝑦) = 2𝑧
𝑑𝑧
𝑢𝑥 = 3𝑥 2 , 𝑣𝑥 = 0, (7)
𝑢𝑦 = 0, 𝑣𝑦 = 3(1 − 𝑦)2 (8)
The Cauchy-Riemann equations yield
3𝑥 2 = 3(1 − 𝑦)2 ,
or
𝑥 = ±(1 − 𝑦) 𝑦
𝑥 = (1 − 𝑦), 𝑥 = −(1 − 𝑦)
That is to say the given function is
differentiable on the set of all points
𝑥
on the cross formed by the two
straight lines shown in Fig. 2.5. Fig. 2.5
𝑥 = 𝑟 cos θ , 𝑦 = 𝑟 sin θ,
𝑦
𝑟 = √𝑥 2 + 𝑦 2 , θ = tan−1 ( ),
𝑥
we get
𝜕𝑟 𝑥 𝜕θ −𝑦 sin θ
= = cos θ, = 2 2
=−
𝜕𝑥 𝑟 𝜕𝑥 𝑥 + 𝑦 𝑟
𝜕𝑟 𝑦 𝜕θ 𝑥 cos θ
= = sin θ, = 2 =
𝜕𝑦 𝑟 𝜕𝑦 𝑥 + 𝑦 2 𝑟
Using the Chain Rule to obtain the following partial derivatives of
𝑢(𝑟, θ) and 𝑣(𝑟, θ).
𝑥
𝜕𝑟 𝜕𝑟
𝑟 = cos θ, = sin θ
𝑦 𝜕𝑥 𝜕𝑦
𝑢, 𝑣
𝑥 𝜕θ sin θ 𝜕θ cos θ
θ =− , =
𝑦 𝜕𝑥 𝑟 𝜕𝑦 𝑟
𝜕𝑢 𝜕𝑟 𝜕θ sin θ
= 𝑢𝑟 + 𝑢θ = cos θ 𝑢𝑟 − 𝑢θ (3)
𝜕𝑥 𝜕𝑥 𝜕𝑥 𝑟
𝜕𝑣 𝜕𝑟 𝜕θ cos θ
= 𝑣𝑟 + 𝑣θ = sin θ 𝑣𝑟 + 𝑣θ (4)
𝜕𝑦 𝜕𝑦 𝜕𝑦 𝑟
But we have from the Cauchy-Riemann equations in the Cartesian:
𝑢𝑥 = 𝑣𝑦
Substitute from (3) and (4) we find
sin θ cos θ
cos θ 𝑢𝑟 − 𝑢θ = sin θ 𝑣𝑟 + 𝑣θ (5)
𝑟 𝑟
This equation is valid for all θ so that
1
θ=0 𝑢𝑟 = 𝑣θ ,
𝑟
π 1
θ= − 𝑢θ = 𝑣𝑟 ,
2 𝑟
Chapter 2 Functions of a Complex Variable 61
𝑑
Example 1 Prove that for all 𝑛, 𝑑𝑧 𝑧 𝑛 = 𝑛𝑧 𝑛−1.
One of the main reasons for the great practical importance of complex
analysis in engineering mathematics results from the fact that both the
real and imaginary parts of an analytic function satisfy the most
important differential equation of physics, Laplace equation, which
occurs in gravitation, electrostatics, heat conduction and fluid flow.
Proof. Since 𝑓(𝑧) is analytic, then the real and imaginary parts satisfy
the Cauchy-Riemann equations
𝑢𝑥 = 𝑣𝑦 , 𝑢𝑦 = −𝑣𝑥 (3)
Differentiating the first part of this equation with respect to 𝑥 and the
second part with respect to 𝑦 we obtain (provided the second derivatives
exist)
𝑢𝑥𝑥 = 𝑣𝑦𝑥 , 𝑢𝑦𝑦 = −𝑣𝑥𝑦 ,
Chapter 2 Functions of a Complex Variable 63
which implies that the real part 𝑢(𝑥, 𝑦) satisfies Laplace’s equation.
Similarly, equation (2) is obtained by differentiating the first part of
equation (3) with respect to 𝑦 and differentiating the second part with
respect to 𝑥 and subtracting the result equations.
First method:
𝑥 𝑦
𝑣 = ∫ 𝑣𝑥 (𝑥, 𝑦)𝑑𝑥 + ∫ 𝑣𝑦 (0, 𝑦)𝑑𝑦
0 0
𝑥 𝑦
= ∫ (2𝑦 + 1)𝑑𝑥 + ∫ (0)𝑑𝑦 = 2𝑥𝑦 + 𝑥 + 𝑐
0 0
Second method:
Integrate both sides of the two parts of equation (4) without limits and
take the repeated terms in the result once. Since from (4)
𝑣𝑥 = 2𝑦 + 1 𝑣 = 2𝑥𝑦 + 𝑥 + 𝑐1 (5)
Also
𝑣𝑦 = 2𝑥 𝑣 = 2𝑥𝑦 + 𝑐2 (6)
Adding (5) and (6) and taking the repeated terms once, we obtain
𝑣 = 2𝑥𝑦 + 𝑥 + 𝑐
Therefore, the analytic function is
= (𝑥 2 − 𝑦 2 − 𝑦) + 𝑖(2𝑥𝑦 + 𝑥 + 𝑐)
= (𝑥 2 − 𝑦 2 + 𝑖2𝑥𝑦) + 𝑖(𝑥 + 𝑖𝑦 + 𝑐)
= 𝑧 2 + 𝑖𝑧 + 𝑖𝑐
First method:
𝑤 = 𝑓(𝑧) = 𝑓(𝑥 + 𝑖𝑦) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦)
Put 𝑦 = 0,
𝑓(𝑥) = 𝑢(𝑥, 0) + 𝑖𝑣(𝑥, 0)
Replacing 𝑥 by 𝑧, we get the formula
𝑓(𝑧) = 𝑢(𝑧, 0) + 𝑖𝑣(𝑧, 0)
That is to say, in both of the real and imaginary parts we replace 𝑥 by 𝑧
and 𝑦 by 0. On doing this in Example 1, we get
𝑤 = (𝑥 2 − 𝑦 2 − 𝑦) + 𝑖(2𝑥𝑦 + 𝑥 + 𝑐)
= (𝑧 2 − 0 − 0) + 𝑖(0 + 𝑧 + 𝑐)
= 𝑧 2 + 𝑖𝑧 + 𝑖𝑐
Second method:
In the real and imaginary parts of 𝑤, we replace 𝑥 and 𝑦 by
𝑧+𝑧 𝑧−𝑧
𝑥= , 𝑦= ,
2 2𝑖
and then simplify the resulting expression of 𝑤. Thus, in Example 1
we find
2 2
𝑧+𝑧 𝑧−𝑧 𝑧−𝑧
𝑤 = [( ) −( ) −( )]
2 2𝑖 2𝑖
𝑧+𝑧 𝑧−𝑧 𝑧+𝑧
+𝑖 [2 ( )( )+( ) + 𝑐],
2 2𝑖 2
2 2
𝑧 2 + 𝑧 + 2𝑧𝑧 𝑧 2 + 𝑧 − 2𝑧𝑧 𝑧−𝑧
=( )−( )+𝑖( )
4 −4 2
2
𝑧2 − 𝑧 𝑧+𝑧
+( )+𝑖( ) + 𝑖𝑐
2 2
2 2
𝑧2 + 𝑧 2𝑧 𝑧2 − 𝑧
=( )+𝑖( )+( ) + 𝑖𝑐
2 2 2
= 𝑧 2 + 𝑖𝑧 + 𝑖𝑐
66 Chapter 2 Functions of a Complex Variable
Remark 2 Suppose that 𝑢 and 𝑣 are the real and imaginary parts of
an analytic function, then they are harmonic functions.
The level curves 𝑢(𝑥, 𝑦) = 𝑐1 and 𝑣(𝑥, 𝑦) = 𝑐2 defined
by these functions form two orthogonal families of
curves. For example, the level curves generated by the
simple analytic function 𝑓(𝑧) = 𝑧 = 𝑥 + 𝑖𝑦 are 𝑥 = 𝑐1
and 𝑦 = 𝑐2 . The family of vertical lines defined by 𝑥 =
𝑐1 is clearly orthogonal to the family of horizontal lines
defined by 𝑦 = 𝑐2 .
Exercise 2.2
(𝒈) 𝑒 0 = 1,
Chapter 3 Elementary Functions 69
(𝒉) 𝑒 𝑧 = 𝑒 𝑧 ,
(𝒊) 𝑒 𝑧 is a 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑝𝑒𝑟𝑖𝑜𝑑 2𝜋𝑖. The periodicity of
cos 𝑦 and sin 𝑦 yields
𝑒 𝑧 = 𝑒 𝑥 (cos 𝑦 + 𝑖 sin 𝑦) = 𝑒 𝑥 [cos(𝑦 + 2𝑘𝜋) + 𝑖 sin(𝑦 + 2𝑘𝜋)]
= 𝑒 𝑥 𝑒 𝑖(𝑦+2𝜋) = 𝑒 (𝑥+𝑖𝑦)+2𝜋𝑖 = 𝑒 𝑧+2𝜋𝑖
That is,
𝑒 𝑧 = 𝑒 𝑧+2𝜋𝑖 for all 𝑧
Because of this complex
𝑦
periodicity, all possible functional
𝑦=𝜋
values of 𝑓(𝑧) = 𝑒 𝑧 are assumed
in any infinite horizontal strip of 𝑥
width 2𝜋. The strip −𝜋 < 𝑦 < 𝜋
𝑦 = −𝜋
is called the fundamental region
Fig. 3.1 fundamental region of 𝑒 𝑧
for the exponential 𝑓(𝑧) = 𝑒 𝑧 .
𝑦
Solution with the aid of Fig. 3.2, we have
1 − √3𝑖 = 2𝑒 −𝑖𝜋⁄3 1
𝝅⁄ 𝟑 𝑥
Thus the given equation is written as
√3
𝑒 = 1 − √3𝑖 𝑒 𝑒
𝑧 𝑥 𝑖𝑦
= 2𝑒 −𝑖𝜋⁄3
,
1 − √3𝑖
from which we get Fig. 3.2 𝑧 = 1 − √3𝑖
𝑒 = 2 𝑥 = ln 2 , 𝑦 = − 𝜋⁄3
𝑥
𝜋
Example 2 Compute 𝑒 𝑧 and |𝑒 𝑧 | if 𝑧 = 2 − 𝑖 6 .
Solution
𝜋 𝜋 𝜋 𝜋
𝑒 𝑧 = 𝑒 (2−𝑖 6 ) = 𝑒 2 𝑒 −𝑖 6 = 𝑒 2 (cos (− ) + 𝑖 sin (− ))
6 6
√3 1 𝑒2
= 𝑒 2 ( − 𝑖 ) = (√3 − 𝑖),
2 2 2
and
|𝑒 𝑧 | = 𝑒 2
Ln(−1) = 𝜋𝑖
72 Chapter 3 Elementary Functions
Properties of 𝐥𝐧 𝒛
(𝒂) The single-values function
Ln 𝑧 = ln 𝑟 + 𝑖θ, (𝑟 > 0, − 𝜋 < θ < 𝜋)
is analytic except at 𝑧 = 0 and except on the negative real axis (where
the imaginary part of such a function is not continuous) and
𝑑 1
(ln 𝑧) = , (𝑟 > 0, − 𝜋 < θ < 𝜋) (6)
𝑑𝑧 𝑧
Proof.
𝑤 = 𝑢 + 𝑖𝑣 = ln(𝑟𝑒 𝑖θ ) = ln 𝑟 + 𝑖θ
Hence,
𝑢(𝑟, θ) = ln 𝑟 , 𝑣(𝑟, θ) = θ
Moreover, the derivatives
1
𝑢𝑟 = , 𝑢θ = 0, 𝑣𝑟 = 0, 𝑣θ = 1,
𝑟
are continuous functions in the domain (𝑟 > 0, −𝜋 < θ < 𝜋), and
1
satisfy the Cauchy-Riemann equations in polar form (𝑢𝑟 = 𝑟 𝑣θ , 𝑣𝑟 =
1
− 𝑟 𝑢θ ). Therefore,
𝑑𝑤 1 −1 1
= (𝑢𝑟 + 𝑖𝑣𝑟 )𝑒 −𝑖θ = ( + 0) 𝑒 −𝑖θ = (𝑟𝑒 𝑖θ ) =
𝑑𝑧 𝑟 𝑧
(𝒃) Since 𝑒 ln 𝑟 = 𝑟, then from (1) and for positive real 𝑟, we get
𝑒 ln 𝑟+𝑖θ = 𝑒 ln 𝑟 𝑒 𝑖θ = 𝑟𝑒 𝑖θ = 𝑧
That is,
𝑒 ln 𝑧 = 𝑧 (7)
But since
arg 𝑧 = 𝑦 + 2𝑘𝜋, (𝑘 = 0, ±1, ±2, ⋯ ),
is multivalued, then
ln(𝑒 𝑧 ) = ln(𝑒 𝑥+𝑖𝑦 ) = ln(𝑒 𝑥 𝑒 𝑖(𝑦+2𝑘𝜋) ) = ln(𝑒 𝑥+𝑖𝑦+𝑖2𝑘𝜋 )
= 𝑧 + 𝑖2𝑘𝜋, (𝑘 = 0, ±1, ±2, ⋯ ) (8)
Chapter 3 Elementary Functions 73
𝑦
Solution
(𝒊) From Fig. 3.4, 3
θ 𝑥
𝑖 tan−1 (−4⁄3) −0.9273𝑖
3 − 4𝑖 = 5𝑒 = 5𝑒 ,
4
therefore
3 − 4𝑖
ln(3 − 4𝑖) = ln 5 − 𝑖(0.9273 + 2𝑘𝜋)
Fig. 3.4 𝑧 = 3 − 4𝑖
The principal value is
Ln(3 − 4𝑖) = ln 5 − 0.9273 𝑖
Solution 4 + 3𝑖
First method 3
θ
From Fig. 3.6, 4 𝑥
Hence,
𝑧 = 𝑟𝑒 𝑖θ = 𝑒 4 𝑒 𝑖3 = 𝑒 4 (cos 3 + 𝑖 sin 3)
= −54.052 + 7.705𝑖
Second method
ln 𝑧 = (4 + 3𝑖) 𝑧 = 𝑒 (4+3𝑖)
Therefore,
𝑧 = 𝑒 4 𝑒 3𝑖 = 𝑒 4 (cos 3 + 𝑖 sin 3)
= −54.052 + 7.705𝑖
𝜋
𝑒 𝑥 = 8 𝑥 = ln 8 , 𝑦=−
2
Thus
𝜋
𝑧 = ln 8 − 𝑖
2
Second method The given problem
𝑒 𝑧 = − 8𝑖 𝑧 = ln(−8𝑖)
Therefore,
𝜋
𝑧 = ln(−8𝑖) = ln(8𝑒 −𝑖𝜋⁄2 ) = ln 8 − 𝑖
2
Exercise 3.1
If
𝑤 𝑛 = 𝑧, (3)
Chapter 3 Elementary Functions 77
1 + 𝑖√3 = 2𝑒 𝑖𝜋⁄3 , 2
√3
then, we have 𝝅⁄𝟑
1 𝑥
3 𝑖𝜋⁄3 3 𝑖𝜋 Fig. 3.8 𝑧 = 1 + 𝑖√3
𝑧 = (2𝑒 ) = 8𝑒
= 8(cos 𝜋 + 𝑖 sin 𝜋) = −8
Solution Since 𝑥
1
𝑖0 𝑖(0+2𝑘𝜋)
1=𝑒 =𝑒 ,
Fig. 3.9 𝑧 = 1
Thus
𝑛
√1 = 𝑒 𝑖(2𝑘𝜋⁄𝑛) , 𝑘 = 0,1,2, ⋯ , 𝑛 − 1,
or
𝑛
√1 = (cos(2𝑘𝜋⁄𝑛) + 𝑖 sin(2𝑘𝜋⁄𝑛)), 𝑘 = 0,1,2, ⋯ , 𝑛 − 1
78 Chapter 3 Elementary Functions
1 + ω + ω2 + ω3 = 0
𝑦 𝑦
𝒛𝟐
𝒛𝟐
𝒛 𝑥 𝒛𝟑 𝒛 𝑥
𝟏 𝟏
𝒛𝟑 𝒛
𝟒
1 1 𝑦
= +𝑖
√2 √2
𝒛𝟏
𝑧2 = cos(5 𝜋⁄4) + 𝑖 sin(5 𝜋⁄4)
𝑥
1 1 𝒛𝟐
= −𝑖
√2 √2 Fig. 3.13 roots of 𝑧 2 = 𝑖
Solution
−2√3
(𝒊) From Fig. 3.12, we have −5 𝜋⁄6 𝑥
4
−2√3 − 2𝑖 = 4𝑒 𝑖(−5𝜋⁄6+2𝑘𝜋) −2
−2√3 − 2𝑖
Therefore, for 𝑘 = 0,1,2,3 the four roots
are computed from the relations Fig. 3.14 𝑧 = −2√3 − 2𝑖
1⁄4
(−2√3 − 2𝑖) = 41⁄4 𝑒 𝑖(−5𝜋⁄6+2𝑘𝜋⁄4) ,
−5 𝜋⁄6 + 2𝑘𝜋 −5 𝜋⁄6 + 2𝑘𝜋
= √2 cos ( ) + 𝑖 sin ( )
4 4
Hence
80 Chapter 3 Elementary Functions
−1 + 𝑖 = √2𝑒 𝑖(3𝜋⁄4+2𝑘𝜋) , 𝑦
then −1 + 𝑖
1
3𝜋⁄4+2𝑘𝜋 √2 3 𝜋⁄4
𝑖( )
(−1 + 𝑖)1⁄3 = 21⁄6 𝑒 3 , 𝑘 = 0,1,2
−1 𝑥
Hence the three roots are Fig. 3.16 𝑧 = −1 + 𝑖
𝑦
𝑧1 = 21⁄6 cos(𝜋⁄4) + 𝑖 sin(𝜋⁄4)
𝑧2 = 21⁄6 cos(11 𝜋⁄12) + 𝑖 sin(11 𝜋⁄12) 𝒛𝟑 𝒛𝟐
𝑧3 = 21⁄6 cos(19 𝜋⁄12) + 𝑖 sin(19 𝜋⁄12) 𝑥
𝒛𝟏
𝒛𝟒
By the use of the following facts we can expand 𝐬𝐢𝐧𝒏 𝛉 and 𝐜𝐨𝐬𝒏 𝛉 in
a series of cosines and sines of a multiple of 𝛉: Namely, if
𝑧 = cos θ + 𝑖 sin θ,
then
1
= cos θ − 𝑖 sin θ,
𝑧
𝑧 𝑛 = cos 𝑛θ + 𝑖 sin 𝑛θ,
and
1 1
𝑧+ = 2 cos θ , 𝑧− = 2𝑖 sin θ
𝑧 𝑧
1 1
𝑧𝑛 + = 2 cos 𝑛θ, 𝑧 𝑛 − 𝑛 = 2𝑖 sin 𝑛θ
𝑧𝑛 𝑧
Chapter 3 Elementary Functions 81
Therefore, for any integer 𝑛 we can get the required expansion of sin𝑛 θ
and cos𝑛 θ as illustrated by the following example.
1
Example 1 Expand cos6 θ 1
1
1 2 1
1 3 3 1
Solution Using the above relations and the 1 4 6 4 1
1 5 10 10 5 1
binomial triangle we obtain 1 6 15 20 15 6 1
1 6 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
(2 cos θ)6 = (𝑧 + ) The binomial triangle
𝑧
1 1 1
= 𝑧 6 + 6(𝑧 5 ) ( ) + 15(𝑧 4 ) ( 2 ) + 20(𝑧 3 ) ( 3 )
𝑧 𝑧 𝑧
1 1 1
+15(𝑧 2 ) ( 4 ) + 6(𝑧) ( 5 ) + ( 6 )
𝑧 𝑧 𝑧
1 1 1
= (𝑧 6 + 6 ) + 6 (𝑧 4 + 4 ) + 15 (𝑧 2 + 2 ) + 20
𝑧 𝑧 𝑧
= (2 cos 6θ) + 6(2 cos 4θ) + 15(2 cos 2θ) + 20
Hence,
(2 cos θ)6 = (2 cos 6θ) + 6(2 cos 4θ) + 15(2 cos 2θ) + 20
or
1
cos 6 θ = (cos 6θ + 6 cos 4θ + 15 cos 2θ + 10)
32
Solution
5
1 5
(2𝑖 sin θ) = (𝑧 − )
𝑧
82 Chapter 3 Elementary Functions
1 1 1
= 𝑧 5 + 5(𝑧 4 ) (− ) + 10(𝑧 3 ) ( 2 ) + 10(𝑧 2 ) (− 3 )
𝑧 𝑧 𝑧
1 1
+5(𝑧) ( 4 ) + (− 5 )
𝑧 𝑧
1 1 1
= (𝑧 5 − 5 ) − 5 (𝑧 3 − 3 ) + 10 (𝑧 − )
𝑧 𝑧 𝑧
= (2𝑖 sin 5θ) − 5(2𝑖 sin 3θ) + 10(2𝑖 sin θ),
or
1
sin5 θ = (sin 5θ − 5 sin 3θ + 10 sin θ)
16
𝑎 𝑧 = 𝑒 𝑧 ln 𝑎 (α ≡ complex, z ≠ 0) (4)
Chapter 3 Elementary Functions 83
Solution
𝑦
(𝒊) (−𝑖)𝑖 ln(−𝑖)𝑖 𝑖 ln(−𝑖)
=𝑒 =𝑒
𝑥
From Fig. 3.18, 1
−𝑖(𝜋⁄2)
−𝑖 = 𝑒 , −𝑖
Fig. 3.18
thus
(𝜋⁄2)
𝑖 ln(𝑒 𝑖 ) (𝜋⁄2)
𝑖 ln(𝑒 −𝑖(𝜋⁄2) )
(−𝑖)𝑖 = 𝑒 =𝑒 = 𝑒𝑖 𝑖 = 𝑒 (𝜋⁄2)
3+𝜋𝑖
(𝒊𝒊) (5 − 2𝑖)3+𝜋𝑖 = 𝑒 ln(5−2𝑖) = 𝑒 (3+𝜋𝑖) ln(5−2𝑖) ,
with
𝑦
−2
𝑖 tan−1 ( )
(5 − 2𝑖) = √29𝑒 5 ,
5
then θ 𝑥
−𝑖 tan−1 (0.4) √29
ln(5 − 2𝑖) = ln(√29𝑒 ) −2−
5 − 2𝑖
= ln √29 − 𝑖 tan−1(0.4)
Fig. 3.19 𝑧 = 5 − 2𝑖
Therefore, we have
(3 + 𝜋𝑖) ln(5 − 2𝑖) = (3 + 𝜋𝑖)(ln √29 − 𝑖 tan−1 (0.4))
Exercise 3.2
𝟑𝟒. Is the collection of all values of ln(𝑖 2 ) the same as the collection
of all values of 2 ln 𝑖 ? Explain.
35. Using the fact that the 𝑛𝑡ℎ root of 1 are spaced equally round the
unit circle with one root of 𝑧 = 1, verify that the fourth roots of 1 are
1, 𝑖, −1, −𝑖. Find the fifth roots of 1. Label the first root anti-clockwise
from 𝑧 = 1 as γ. Do the other roots have a simple relationship to γ? Are
there any relationship akin to 1 + ω + ω2 = 0? Can you say anything
in general about the nature of the 𝑛𝑡ℎ root of 1? Consider the cases 𝑛
even and 𝑛 odd.
1 𝑖𝑦
cos 𝑦 = (𝑒 + 𝑒 −𝑖𝑦 ),
2
1
sin 𝑦 = (𝑒 𝑖𝑦 − 𝑒 −𝑖𝑦 )
2𝑖
This suggests the following definitions for complex values 𝑧:
𝑒 𝑖𝑧 + 𝑒 −𝑖𝑧
cos 𝑧 = (1)
2
𝑒 𝑖𝑧 − 𝑒 −𝑖𝑧
sin 𝑧 = (2)
2𝑖
With these definitions in place, it is now easy to create the other
complex trigonometric functions, provided the denominators in the
following expressions do not equal zero.
sin 𝑧 cos 𝑧
tan 𝑧 = , cot 𝑧 = ,
cos 𝑧 sin 𝑧
1 1
sec 𝑧 = , csc 𝑧 = ,
cos 𝑧 sin 𝑧
Properties of trigonometric functions
(𝒂) If we replace 𝑧 by 𝑖𝑧 everywhere in (1) and (2), we obtain
𝑒 −𝑧 + 𝑒 𝑧
cos 𝑖𝑧 = = cosh 𝑧 (3)
2
𝑒 −𝑧 − 𝑒 𝑧
sin 𝑖𝑧 = = 𝑖 sinh 𝑧 (4)
2𝑖
Here we use the definitions of the complex hyperbolic cosine and sine
functions:
𝑒 𝑧 + 𝑒 −𝑧 𝑒 𝑧 − 𝑒 −𝑧
cosh 𝑧 = , sinh 𝑧 =
2 2
These functions will be studied in detail later.
(𝒃) By the aid of equations (3) and (4), we deduce that
cos 𝑧 = cos(𝑥 + 𝑖𝑦) = cos 𝑥 cos 𝑖𝑦 − sin 𝑥 sin 𝑖𝑦
= cos 𝑥 cosh 𝑦 − 𝑖 sin 𝑥 sinh 𝑦 (5)
Chapter 3 Elementary Functions 87
Therefore,
|cos 𝑧|2 = cos2 𝑥 cosh2 𝑦 + sin2 𝑥 sinh2 𝑦
= cos2 𝑥 (1 + sinh2 𝑦) + sin2 𝑥 sinh2 𝑦
= cos2 𝑥 + (cos 2 𝑥 + sin2 𝑥) sinh2 𝑦
= cos2 𝑥 + sinh2 𝑦, (6)
and in a similar way, we have
sin 𝑧 = sin 𝑥 cosh 𝑦 + 𝑖 cos 𝑥 sinh 𝑦 , (7)
|sin 𝑧|2 = sin2 𝑥 + sinh2 𝑦 , (8)
(𝒄) Both cos 𝑧 and sin 𝑧 are entire functions because they are linear
combinations of the entire functions 𝑒 𝑖𝑧 and 𝑒 −𝑖𝑧 . Moreover,
𝑑
sin 𝑧 = cos 𝑧,
𝑑𝑧
𝑑
cos 𝑧 = − sin 𝑧
𝑑𝑧
𝑑
Example 1 Show that sin 𝑧 = cos 𝑧.
𝑑𝑧
Hence,
𝑑 𝑑 𝑒 𝑖𝑧 − 𝑒 −𝑖𝑧 𝑖𝑒 𝑖𝑧 + 𝑖𝑒 −𝑖𝑧 𝑒 𝑖𝑧 + 𝑒 −𝑖𝑧
sin 𝑧 = ( )= = = cos 𝑧
𝑑𝑧 𝑑𝑧 2𝑖 2𝑖 2
Second method
(𝒅) Zeros of 𝐜𝐨𝐬 𝒛 and 𝐬𝐢𝐧 𝒛. The zeros of cos 𝑧 and sin 𝑧 are
evaluated as illustrated by the following example.
Thus
cos 𝑥 cosh 𝑦 = 0, sin 𝑥 sinh 𝑦 = 0
The equation cos 𝑥 cosh 𝑦 = 0 implies cos 𝑥 = 0 (cosh 𝑦 ≠ 0), then
𝜋
𝑥 = (2𝑛 + 1) 2 , (𝑛 = 0, ±1, ±2, ⋯ ). Substitute in the second
Remark 2 Equations (9) and (10) imply that the only zeros of cos 𝑧
and sin 𝑧 are those of the real cosine and sine functions.
(𝒆) tan 𝑧 and sec 𝑧 are analytic in any domain where cos 𝑧 ≠ 0, i.e.
𝜋
they are analytic functions for all 𝑧 except at the 𝑧 = (2𝑛 + 1) 2 ,
(𝑛 = 0, ±1, ±2, ⋯ ) and
𝑑
tan 𝑧 = sec 2 𝑧 (11)
𝑑𝑧
𝑑
sec 𝑧 = sec 𝑧 tan 𝑧 (12)
𝑑𝑧
Also cot 𝑧 and csc 𝑧 are analytic in any domain where sin 𝑧 ≠ 0, i.e.
they are analytic functions for all 𝑧 except at the points 𝑧 = 𝑛𝜋,
(𝑛 = 0, ±1, ±2, ⋯ ), and
90 Chapter 3 Elementary Functions
𝑑
cot 𝑧 = −csc 2 𝑧, (13)
𝑑𝑧
𝑑
csc 𝑧 = − csc 𝑧 cot 𝑧 (14)
𝑑𝑧
5
Example 3 Solve the equation cos 𝑧 = 3.
1 1
𝑒 −𝑦 = 𝑦 = − ln = ln 3 , 𝑥 = 2𝑘𝜋
3 3
Therefore, the solution of the given equation is
𝑧 = 2𝑘𝜋 ± 𝑖 ln 3 (𝑘 = 0, ±1, ±2, ⋯ )
(f) The familiar trigonometric identities are also the same in the
complex case.
1. cos(−𝑧) = cos 𝑧 , sin(−𝑧) = − sin 𝑧
𝜋 𝜋
2. sin (2 − 𝑧) = sin ( 2 + 𝑧) cos 𝑧
3. sin2 𝑧 + cos 2 𝑧 = 1
4. sin(𝑧1 ± 𝑧2 ) = sin 𝑧1 cos 𝑧2 ± cos 𝑧1 sin 𝑧2
5. cos(𝑧1 ± 𝑧2 ) = cos 𝑧1 cos 𝑧2 ∓ sin 𝑧1 sin 𝑧2
6. sin 2𝑧 = 2 sin 𝑧 cos 𝑧
7. cos 2𝑧 = cos2 𝑧 − sin2 𝑧
8. sin(𝑧 + 2𝜋) = sin 𝑧, (𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦)
9. cos(𝑧 + 2𝜋) = cos 𝑧, (𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦)
10. tan(𝑧 + 𝜋) = tan 𝑧, (𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦)
The last three identities indicate that sin 𝑧 and cos 𝑧 are periodic
functions with period 2𝜋 and tan 𝑧 is periodic with period 𝜋.
The complex hyperbolic cosine and sine are defined by the formulas
𝑒 𝑧 + 𝑒 −𝑧
cosh 𝑧 = , (1)
2
𝑒 𝑧 − 𝑒 −𝑧
sinh 𝑧 = , (2)
2
It is now easy to create the other complex trigonometric functions,
provided the denominators in the following expressions do not equal
zero.
92 Chapter 3 Elementary Functions
sinh 𝑧 cosh 𝑧
tanh 𝑧 = , coth 𝑧 =
cosh 𝑧 sinh 𝑧
1 1
sech 𝑧 = , csch 𝑧 =
cosh 𝑧 sinh 𝑧
Solution
(𝒊) cosh 𝑧 = cosh(𝑥 + 𝑖𝑦)
= cosh 𝑥 cosh 𝑖𝑦 + sinh 𝑥 sinh 𝑖𝑦
= cosh 𝑥 cos 𝑦 + 𝑖 sinh 𝑥 sin 𝑦 = 0
Thus
cosh 𝑥 cos 𝑦 = 0, sinh 𝑥 sin 𝑦 = 0
Chapter 3 Elementary Functions 93
2. cosh2 𝑧 − sinh2 𝑧 = 1
3. sinh(𝑧1 ± 𝑧2 ) = sinh 𝑧1 cosh 𝑧2 ± cosh 𝑧1 sinh 𝑧2
4. cosh(𝑧1 ± 𝑧2 ) = cosh 𝑧1 cosh 𝑧2 ± sinh 𝑧1 sinh 𝑧2
5. sinh 2𝑧 = 2 sinh 𝑧 cosh 𝑧
6. cosh 2𝑧 = cosh2 𝑧 + sinh2 𝑧
7. sinh(𝑧 + 2𝜋𝑖) = sinh 𝑧, (𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦)
8. cosh(𝑧 + 2𝜋𝑖) = cosh 𝑧, (𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦)
9. tanh(𝑧 + 𝜋𝑖) = tanh 𝑧, (𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦)
Solution
sinh(4 − 3𝑖) = sinh 4 cosh 3𝑖 − cosh 4 sinh 3𝑖
= sinh 4 cos 3 − 𝑖 cosh 4 sin 3
1
Solution (𝒊) The equation cosh 𝑧 = 2 gives
𝑒 𝑧 + 𝑒 −𝑧 1
= 𝑒 𝑧 + 𝑒 −𝑧 = 1 (× 𝑒 𝑧 ) 𝑒 2𝑧 − 𝑒 𝑧 + 1 = 0
2 2
Thus
1 ± √1 − 4 1 √3
𝑒𝑧 = = ±𝑖 ,
2 2 2
from which we obtain
Chapter 3 Elementary Functions 95
1 √3
𝑒𝑧 = +𝑖 = 𝑒 𝑖(𝜋⁄3+2𝑘𝜋) , (𝑘 = 0, ±1, ±2, ⋯ ) (11)
2 2
or
1 √3
𝑒𝑧 = −𝑖 = 𝑒 𝑖(−𝜋⁄3+2𝑘𝜋) , (𝑘 = 0, ±1, ±2, ⋯ ) (12)
2 2
𝑦 𝑦
1 √3 1⁄2
+𝑖 − 𝜋⁄3 𝑥
2 2
√3⁄2 √3⁄2
𝜋⁄3 1 √3
1⁄2 −𝑖
𝑥 2 2
1
− 𝑖 23
√
1
+ 𝑖 23
√
Fig. 3.20 z = Fig. 3.21 z =
2 2
Solution
𝑢𝑥 (𝑥, 𝑦) = −𝑎 sin 𝑎𝑥 cosh 𝑦 , 𝑢𝑥𝑥 (𝑥, 𝑦) = −𝑎2 cos 𝑎𝑥 cosh 𝑦
𝑢𝑦 (𝑥, 𝑦) = cos 𝑎𝑥 sinh 𝑦 , 𝑢𝑦𝑦 (𝑥, 𝑦) = cos 𝑎𝑥 cosh 𝑦
Since 𝑢(𝑥, 𝑦) is harmonic by assumption, then
∇2 𝑢 = 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0
−𝑎2 cos 𝑎𝑥 cosh 𝑦 + cos 𝑎𝑥 cosh 𝑦 = 0 𝑎 = ±1
Using the Cauchy-Riemann equations
𝑣𝑦 = 𝑢𝑥 = − sin 𝑥 cosh 𝑦,
𝑣𝑥 = − 𝑢𝑦 = − cos 𝑥 sinh 𝑦
Hence
𝑥 𝑦
𝑣 = ∫ 𝑣𝑥 (𝑥, 𝑦)𝑑𝑥 + ∫ 𝑣𝑦 (0, 𝑦)𝑑𝑦
0 0
𝑥 𝑦
= ∫ − cos 𝑥 sinh 𝑦 𝑑𝑥 + ∫ 0𝑑𝑦
0 0
= − sin 𝑥 sinh 𝑦 + 𝑐
Finally, the analytic function is
𝑓(𝑧) = 𝑢(𝑧, 0) + 𝑖𝑣(𝑧, 0)
= cos 𝑧 cosh 0 + 𝑖(− sin 𝑧 sinh 0 + 𝑐)
= cos 𝑧 + 𝑖𝑐
3.6 Inverse trigonometric and hyperbolic functions
Inverses of the trigonometric and hyperbolic functions can be described
in terms of logarithms. We define the inverse cosine 𝑤 = cos −1 𝑧 such
that:
Chapter 3 Elementary Functions 97
𝑤 = cos−1 𝑧 𝑧 = cos 𝑤
In terms of the exponential function, we get
𝑒 𝑖𝑤 + 𝑒 −𝑖𝑤
𝑧 = cos 𝑤 = ,
2
or
𝑒 𝑖𝑤 + 𝑒 −𝑖𝑤 = 2𝑧
Multiply both sides of the last equation by 𝑒 𝑖𝑤 we get
𝑒 2𝑖𝑤 − 2𝑧𝑒 𝑖𝑤 + 1 = 0,
which is quadratic in 𝑒 𝑖𝑤 . We find that
2𝑧 + √4𝑧 2 − 4
𝑒 𝑖𝑤 = = 𝑧 + √𝑧 2 − 1
2
where √𝑧 2 − 1 is a double-valued function of 𝑧. So we have
𝑖𝑤 = ln (𝑧 + √𝑧 2 − 1),
which gives
cos−1 𝑧 = −𝑖 ln (𝑧 + √𝑧 2 − 1) (1)
Similarly, the inverse sine and inverse tangent functions are found to be
cosh−1 𝑧 = ln (𝑧 + √𝑧 2 − 1) (4)
sinh−1 𝑧 = ln (𝑧 + √𝑧 2 + 1) (5)
1 1+𝑧
tanh−1 𝑧 = ln (6)
2 1−𝑧
98 Chapter 3 Elementary Functions
𝑖 −1
= ln(√5𝑒 𝑖(𝜋+tan 2+2𝑘𝜋) ) Fig. 3.23 𝐳 = −𝟏 − 𝟐𝐢
2
𝑖
= (ln √5 + 𝑖(𝜋 + tan−1 2 + 2𝑘𝜋)), (𝑘 = 0, ±1, ±2, ⋯ )
2
= −𝑖 ln[(2 + √3)𝑖]
𝑥
= −𝑖 ln ((2 + √3)𝑒 𝑖(𝜋⁄2+2𝑘𝜋) )
Fig. 3.25 𝒛 = (𝟐 + √𝟑)𝒊
= −𝑖[ln(2 + √3) + 𝑖(𝜋⁄2 + 2𝑘𝜋)]
= (𝜋⁄2 + 2𝑘𝜋) − 𝑖 ln(2 + √3) , 𝑘 = 0, ±1, ±2, ⋯
Chapter 3 Elementary Functions 99
𝒅 −𝟏 𝒅 𝟏
𝐜𝐨𝐬 −𝟏 𝒛 = 𝐜𝐨𝐬𝐡−𝟏 𝒛 =
𝒅𝒛 √𝟏 − 𝒛𝟐 𝒅𝒛 √𝒛𝟐 − 𝟏
𝒅 𝟏 𝑑 1
𝐬𝐢𝐧−𝟏 𝒛 = sinh−1 𝑧 =
𝒅𝒛 √𝟏 − 𝒛𝟐 𝑑𝑧 √1 + 𝑧 2
𝒅 𝟏 𝑑 1
𝐭𝐚𝐧−𝟏 𝒛 = tanh−1 𝑧 =
𝒅𝒛 𝟏 + 𝒛𝟐 𝑑𝑧 1 − 𝑧2
𝒅 −𝟏 𝑑 −1
𝐜𝐨𝐭 −𝟏 𝒛 = coth−1 𝑧 =
𝒅𝒛 𝟏 + 𝒛𝟐 𝑑𝑧 1 − 𝑧2
𝒅 𝟏 𝑑 −1
𝐬𝐞𝐜 −𝟏 𝒛 = sech−1 𝑧 =
𝒅𝒛 𝒛√𝒛𝟐 − 𝟏 𝑑𝑧 𝑧√1 − 𝑧 2
𝒅 −𝟏 𝑑 −1
𝐜𝐬𝐜 −𝟏 𝒛 = csch−1 𝑧 =
𝒅𝒛 𝒛√𝒛𝟐 − 𝟏 𝑑𝑧 𝑧√𝑧 2 + 1
Exercise 3.3
In problems 1 − 8, express the given quantity in the form 𝑢 + 𝑖𝑣.
𝟏. sin(−2𝑖) 𝟐. cos(3𝑖)
𝟑. cos(2 − 4𝑖) 𝟒. sinh(2 + 𝑖)
𝟓. cos(−2 + 3𝑖) 𝟔. tan 5𝑖
𝜋
𝟕. csc(1 + 𝑖) 𝟖. cot ( + 5𝑖)
2
In problems 9 − 14, find all values of 𝑧 such that
𝟗. cosh 𝑧 = 0 𝟏𝟎. cos 𝑧 = −3𝑖
𝟏𝟏. cos 𝑧 = sin 𝑧 𝟏𝟐. cos 𝑧 = 𝑖 sin 𝑧
𝟏𝟑. sinh 𝑧 = 𝑖 𝟏𝟒. cosh 𝑧 = 0.5
In problems 15 − 21, prove that
𝟏𝟓. cos 𝑧 = cos 𝑧 𝟏𝟔. sin 𝑧 = sin 𝑧
𝟏𝟕. sin 𝑖𝑧 = sin(𝑖𝑧) 𝟏𝟖. cos 𝑖𝑧 = cos(𝑖𝑧)
𝟑𝟕. sinh−1 𝑧 = ln (𝑧 + √𝑧 2 + 1)
𝟑𝟖 sin−1 𝑧 = −𝑖 ln (𝑖𝑧 + √1 − 𝑧 2 )
𝑖 𝑖+𝑧
𝟑𝟗 tan−1 𝑧 = ln
2 𝑖−𝑧
1 1+𝑧
𝟒𝟎 tanh−1 𝑧 = ln
2 1−𝑧
4. Complex Integrations
Definition 4.2 (Smooth curve) A smooth curve is the curve which has a
continuous and nonzero derivative
𝑧̇ (𝑡) = 𝑥̇ (𝑡) + 𝑖𝑦̇ (𝑡)
𝑧0 (= 𝑎), 𝑧1 , 𝑧2 , ⋯ , 𝑧𝑛−1 , 𝑧𝑛 (= 𝑏)
On each portion of subdivision of γ we choose an arbitrary point, say,
a point 1 between 𝑧0 and 𝑧1 , a point 2 between 𝑧1 and 𝑧2 , etc. (See
Fig. 4.1). Then we form the sum
𝑛 𝑛
𝑦
𝒛 =𝒃
𝑧𝑛−1
𝑧𝑗
𝑧𝑗−1 𝑗
𝑧2
𝑧1
𝒛=𝒂
𝑥
Fig. 4.1. Contour of integration
𝑆𝑛 is called the 𝑙𝑖𝑛𝑒 or 𝑐𝑜𝑛𝑡𝑜𝑢𝑟 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 of 𝑓(𝑧) over the curve γ and
is denoted by
∫ 𝑓(𝑧) 𝑑𝑧 (1)
γ
∮ 𝑓(𝑧) 𝑑𝑧 (2)
γ
We turn now to the question of evaluating the complex line integral (1).
To compute this integral, we use the direct method which takes one of
the following two forms:
First form
Let the contour γ is given by: γ: 𝑧 = 𝑥 + 𝑖𝑦, then
𝑑𝑧 = 𝑑𝑥 + 𝑖𝑑𝑦
𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦)
So we have
Second form
Let the contour γ is given by the parametric form:
γ: 𝑧(𝑡) = 𝑥(𝑡) + 𝑖𝑦(𝑡), α ≤ 𝑡 ≤ β,
then we obtain the line integral in the form
Chapter 4 Complex Integration 105
β
∫ 𝑓(𝑧) 𝑑𝑧 = ∫ 𝑓(𝑧(𝑡)) 𝑧̇ (𝑡)𝑑𝑡 (4)
γ α
Solution 𝑦
∗ 𝑧 =1+𝑖
(𝒂) Along the path γ = γ
γ∗ can be represented in the parametric form as
𝑧 = 𝑡 + 𝑖𝑡, (0 ≤ 𝑡 ≤ 1) γ2
𝑧̇ (𝑡) = 1 + 𝑖 γ1 𝑥
𝑓(𝑧(𝑡))𝑧̇ (𝑡) = 𝑡 + 𝑖𝑡
Therefore, we have
β 1
∫ 𝑓(𝑧) 𝑑𝑧 = ∫ 𝑓(𝑧(𝑡)) 𝑧̇ (𝑡)𝑑𝑡 = ∫ (𝑡 + 𝑖𝑡)𝑑𝑡
γ∗ α 0
1
𝑡2 𝑡2 1 1
=[ +𝑖 ] = +𝑖
2 2 0 2 2
(𝒂) Along the path γ = γ1 ∪ γ2
γ1 can be represented by 𝑧 = 𝑡, (0 ≤ 𝑡 ≤ 1)
Therefore,
𝑧̇ (𝑡) = 1, 𝑓(𝑧(𝑡)) = 𝑡, 𝑓(𝑧(𝑡))𝑧̇ (𝑡) = 𝑡,
106 Chapter 4 Complex Integration
1
1
∫ 𝑓(𝑧) 𝑑𝑧 = ∫ 𝑡𝑑𝑡 =
γ1 0 2
Therefore
1
∫ 𝑓(𝑧) 𝑑𝑧 = ∫ 𝑓(𝑧) 𝑑𝑧 + ∫ 𝑓(𝑧) 𝑑𝑧 = +𝑖
γ γ1 γ2 2
Note that this result differs from the result in (𝒂).
𝑦 𝑦
𝑥 𝑥
simply connected domain multiply connected domain
Fig. 4.3
Chapter 4 Complex Integration 107
∮ 𝑓(𝑧) 𝑑𝑧 = 0 (1)
γ
𝜕𝑢 𝜕𝑣
∮ (𝑣𝑑𝑥 + 𝑢𝑑𝑦) = ∬ ( − ) 𝑑𝑥𝑑𝑦 , (3)
γ 𝑅 𝜕𝑥 𝜕𝑦
108 Chapter 4 Complex Integration
∮ 𝑓(𝑧) 𝑑𝑧 = 0 (4)
γ
∮ sin 𝑧 𝑑𝑧 = ∮ cos 𝑧 𝑑𝑧 = ∮ 𝑒 𝑧 𝑑𝑧 = ∮ 𝑧 3 𝑑𝑧 = 0
γ γ γ γ
𝑑𝑧
Example 2 Evaluate ∮γ . where is the unit circle |𝑧| = 1, counter
𝑧
clockwise.
Solution Using the parametric form of the unit circle in the form
𝑧 = 𝑒 𝑖𝑡 , 0 ≤ 𝑡 ≤ 2𝜋
Thus
𝑧̇ (𝑡) = 𝑖𝑒 𝑖𝑡 , 𝑓(𝑧(𝑡)) = 𝑒 −𝑖𝑡 , 𝑓(𝑧(𝑡))𝑧̇ (𝑡) = 𝑒 −𝑖𝑡 (𝑖𝑒 𝑖𝑡 ) = 𝑖
Chapter 4 Complex Integration 109
2𝜋
𝑑𝑧
∮ = ∫ 𝑖𝑑𝑡 = 2𝜋𝑖
γ 𝑧 0
1
(𝑧 is not analytic in the given domain, so Cauchy’s integral theorem
cannot be applied).
Example 3 Evaluate
2𝑧 − 8
∮ 𝑑𝑧,
γ 𝑧 2 − 2𝑧
where γ is the unit circle |𝑧| = 1, counter clockwise.
Solution
2𝑧 − 8 2𝑧 − 8 4 2
∮ 2
𝑑𝑧 = ∮ 𝑑𝑧 = ∮ ( − ) 𝑑𝑧
γ 𝑧 − 2𝑧 γ 𝑧(𝑧 − 2) γ 𝑧 (𝑧 − 2)
4 2
=∮ 𝑑𝑧 − ∮ 𝑑𝑧 (5)
γ 𝑧 γ (𝑧 − 2)
The first integral in the right hand side of (5) is computed in Example
2
2. The second integral equals zero since the function (𝑧−2)
is analytic
Theorem 4.2 Suppose that γ1 and γ2 are simply closed curves with a
positive orientation. If 𝑓(𝑧) is analytic function of 𝑧 on γ1 and γ2
and at each point interior to γ1 but exterior to γ2 , then
∮ 𝑓(𝑧) 𝑑𝑧 = ∮ 𝑓(𝑧) 𝑑𝑧
γ1 γ2
Proof. As show in Fig. 4.5, we cut 𝐷 by two cuts γ̃1 and γ̃2 into two
simply connected domains 𝐷1 and 𝐷2 in which 𝑓(𝑧) is analytic. By
Cauchy’s theorem the integral over the entire boundary of 𝐷1 is zero,
and so is that over the boundary of 𝐷2 , and thus their sum. In this sum
the integrals over the cuts γ̃1 and γ̃2 cancel because we integrate over
them in both directions. Thus we have
γ2 γ2 γ1
𝐷2
γ1 γ2 γ1
𝐷 𝐷1
Therefore
∫ 𝑓(𝑧) 𝑑𝑧 − ∫ 𝑓(𝑧) 𝑑𝑧 = 0,
γ1 γ2
For domains of higher connectivity, the idea remains the same. Thus,
for example we have for a triply connected domain (see Fig. 4.5)
Chapter 4 Complex Integration 111
γ2 γ2 γ1
γ2 𝐷2
γ3 𝐷
γ3 𝐷1 γ1
γ1
𝑓(𝑧) 𝑓(𝑧)
∮ 𝑑𝑧 = ∮ 𝑑𝑧,
γ 𝑧 − 𝑧0 γ0 𝑧 − 𝑧0
where both integrals are taken counter clockwise. Since the integrals
around γ and γ0 are equal, we can write
𝑓(𝑧) 𝑓(𝑧) − 𝑓(𝑧0 ) + 𝑓(𝑧0 )
∮ 𝑑𝑧 = ∮ 𝑑𝑧
γ 𝑧 − 𝑧0 γ 𝑧 − 𝑧0
𝑑𝑧 𝑓(𝑧) − 𝑓(𝑧0 )
= 𝑓(𝑧0 ) ∮ +∮ 𝑑𝑧 (2)
γ0 𝑧 − 𝑧0 γ0 𝑧 − 𝑧0
ρ
𝐷 z0
γ0
γ1
Since ε can be chosen arbitrary small, it follows that the last integral in
equation (2) has the value zero and we have from equations (2) and
(3)
𝑓(𝑧)
∮ 𝑑𝑧 = 2𝜋𝑖𝑓(𝑧0 ),
γ 𝑧 − 𝑧0
and the theorem is proved. ∎
6𝑒 𝑧
Example 1 Evaluate ∮γ 𝑑𝑧 where γ is the contour
2𝑧−1
Solution
6𝑒 𝑧 𝑒𝑧
∮ 𝑑𝑧 = 3 ∮ 𝑑𝑧
γ 2𝑧 − 1 γ 𝑧 − 1⁄2
6𝑒 𝑧 𝑒𝑧
∮ 𝑑𝑧 = 3 ∮ 𝑑𝑧
γ 2𝑧 − 1 γ 𝑧 − 1⁄2
tan 𝑧
Example 2 Evaluate ∮γ 𝑑𝑧, γ is
𝑧−𝑖
𝒊
the boundary of the triangle with
vertices −1,1,2𝑖.
Fig. 4.8 the triangle with vertices −1,1,2𝑖.
Solution Here we have the point 𝑧0 = 𝑖, lies interior to the triangle with
vertices −1,1,2𝑖 (See Fig. 4.8). Thus the direct application of Cauchy’s
integral theorem gives
tan 𝑧
∮ 𝑑𝑧 = 2𝜋𝑖tan 𝑧|𝑧=𝑖 = 2𝜋𝑖 tan 𝑖 = −2𝜋 tanh 1
γ 𝑧−𝑖
𝑧2
Example 3 Evaluate ∮γ 𝑑𝑧 , where γ is the boundary of the
𝑧 2 +2𝑧+2
circle |𝑧| = 2.
𝑧2 𝑧2 𝑧2
∮ 𝑑𝑧 = ∮ 𝑑𝑧 + ∮ 𝑑𝑧
γ 𝑧 2 + 2𝑧 + 2 2
γ1 𝑧 + 2𝑧 + 2
2
γ2 𝑧 + 2𝑧 + 2
𝑧 2 ⁄(𝑧 + 1 + 𝑖) 𝑧 2 ⁄(𝑧 + 1 − 𝑖)
=∮ 𝑑𝑧 + ∮ 𝑑𝑧
γ1 (𝑧 + 1 − 𝑖) γ2 (𝑧 + 1 + 𝑖)
Proof.
𝑧 + ∆𝑧
γ2
𝒛𝟏 𝒛
𝒛𝟎
γ1 𝒛𝟏
If γ1 and γ2 are two contours connecting the points 𝑧0 and 𝑧1 and lying
entirely within 𝐷, then γ1 and γ2 together form a closed curve. Thus
from Cauchy’s integral theorem we have
∫ 𝑓(𝑧)𝑑𝑧 + ∫ 𝑓(𝑧)𝑑𝑧 = 0
γ1 γ2
1 f ( z ) d z f ( z ) d z 0 ,
2
has the same value for all such paths (see Fig. 4.10).
Chapter 4 Complex Integration 117
We shall now see that this 𝐹(𝑧) is analytic in 𝐷 and 𝐹 ′ (𝑧) = 𝑓(𝑧). The
idea of doing this is as follows (see Fig. 4.11).
𝑧+∆𝑧 𝑧 𝑧+∆𝑧
𝐹(𝑧 + ∆𝑧) − 𝐹(𝑧) = ∫ 𝑓()𝑑 − ∫ 𝑓()𝑑 = ∫ 𝑓()𝑑
𝑧0 𝑧0 𝑧
Since
𝑓(𝑧) 𝑧+∆𝑧 1 𝑧+∆𝑧
𝑓(𝑧) = ∫ 𝑑 = ∫ 𝑓(z)𝑑,
∆𝑧 𝑧 ∆𝑧 𝑧
Then
𝐹(𝑧 + ∆𝑧) − 𝐹(𝑧) 1 𝑧+∆𝑧 1 𝑧+∆𝑧
− 𝑓(𝑧) = ∫ 𝑓()𝑑 − ∫ 𝑓(z)𝑑
∆𝑧 ∆𝑧 𝑧 ∆𝑧 𝑧
1 𝑧+∆𝑧
= ∫ [𝑓() − 𝑓(𝑧)]𝑑
∆𝑧 𝑧
Since 𝑓(𝑧) is analytic, it is continuous. Thus ∀ε > 0 ∃δ > 0 such that
|𝑓() − 𝑓(𝑧)| < ε iff | − 𝑧| < δ
Using Fatou’s lemma
𝐹(𝑧 + ∆𝑧) − 𝐹(𝑧) 1 𝑧+∆𝑧
| − 𝑓(𝑧)| = | ∫ [𝑓() − 𝑓(𝑧)]𝑑|
∆𝑧 ∆𝑧 𝑧
|𝑓() − 𝑓(𝑧)| 𝑧+∆𝑧 ε
≤ ∫ 𝑑 ≤ (∆𝑧) = ε
∆𝑧 𝑧 ∆𝑧
By the definition of limit and derivative, this proves that
𝐹(𝑧 + ∆𝑧) − 𝐹(𝑧)
𝐹 ′ (𝑧) = lim = 𝑓(𝑧)
∆𝑧→0 ∆𝑧
Since 𝑧 is any point in 𝐷, this implies that 𝐹(𝑧) is analytic in 𝐷 and is
an indefinite integral of 𝑓(𝑧) in 𝐷. Namely,
𝐹(𝑧) = ∫ 𝑓(𝑧)𝑑𝑧,
Example 1 Evaluate
2+2𝑖 3+3𝜋𝑖
(𝒊) ∫ 𝑧 2 𝑑𝑧 (𝒊𝒊) ∫ 𝑒 𝑧⁄3 𝑑𝑧
0 3−𝑖𝜋
𝜋𝑖 2+2𝑖
1
(𝒊𝒊𝒊) ∫ cos 𝑧 𝑑𝑧 (𝒊𝒗) ∫ 𝑑𝑧
−𝜋𝑖 2−2𝑖 𝑧
Solution
2+2𝑖 2+2𝑖
2
𝑧3 8 16 16 16
(𝒊) ∫ 𝑧 𝑑𝑧 = | = (1 + 𝑖)3 = (−1 + 𝑖) = − +𝑖
0 3 0 3 3 3 3
3+3𝜋𝑖
3+3𝜋𝑖
𝑒 𝑧⁄3
(𝒊𝒊) ∫ 𝑒 𝑧⁄3
𝑑𝑧 = | = 3(𝑒 (3+3𝜋𝑖)⁄3 − 𝑒 (3−𝑖𝜋)⁄3 )
3−𝑖𝜋 1⁄3 3−𝑖𝜋
= 2 sin 𝜋𝑖 = 2𝑖 sinh 𝜋
2+2𝑖
1
(𝒊𝒗) ∫ 𝑑𝑧 = ln 𝑧|2+2𝑖
2−2𝑖 𝑦
2−2𝑖 𝑧
2 + 2𝑖
= ln(2 + 2𝑖) − ln(2 − 2𝑖) √8
𝟐
𝝅⁄𝟒
𝑖𝜋⁄4 −𝑖𝜋⁄4 𝑥
= ln(√8𝑒 ) − ln(√8𝑒 ) 𝟐
𝜋 𝜋 𝜋 2 − 2𝑖
= (ln √8 + 𝑖 ) − (ln √8 − 𝑖 ) = 𝑖
4 4 2 Fig. 4.12 𝑧 = 2 ± 2𝑖
Chapter 4 Complex Integration 119
𝑓(𝑧) 𝐹(𝑧)
𝑛+1
𝑧𝑛 𝑧
, 𝑛 ≠ −1
𝑛+1
1
ln 𝑧
𝑧
𝑒𝑧 𝑒𝑧
𝑎𝑧
𝑎𝑧
ln 𝑎
sin 𝑧 − cos 𝑧
cos 𝑧 sin 𝑧
tan 𝑧 − ln cos 𝑧 = ln sec 𝑧
cot 𝑧 ln sin 𝑧
sec 𝑧 ln(sec 𝑧 + tan 𝑧)
csc 𝑧 ln(csc 𝑧 − cot 𝑧)
sec 2 𝑧 tan 𝑧
csc 2 𝑧 − cot 𝑧
sec 𝑧 tan 𝑧 sec 𝑧
csc 𝑧 cot 𝑧 − csc 𝑧
sinh 𝑧 cosh 𝑧
cosh 𝑧 sinh 𝑧
tanh 𝑧 ln cosh 𝑧
coth 𝑧 ln sinh 𝑧
sech 𝑧 tan−1(sinh 𝑧)
sech2 𝑧 tanh 𝑧
120 Chapter 4 Complex Integration
csch2 𝑧 − coth 𝑧
sech 𝑧 tanh 𝑧 − sech 𝑧
csch 𝑧 coth 𝑧 − csch 𝑧
1
ln (𝑧 + √𝑧 2 ± 1)
√𝑧 2 ± 1
1
tan−1 𝑧
1 + 𝑧2
1
sin−1 𝑧
√1 − 𝑧2
1
𝐬𝐞𝐜 −𝟏 𝒛
𝑧√𝑧 2 − 1
𝑧+1
(𝒗) ∫ 𝑑𝑧 (𝒗𝒊) ∫ 𝑧 2 sin 4𝑧 𝑑𝑧
𝑧 2 + 2𝑧 − 15
Solution
1
(𝒊) ∫ cot(4𝑧 − 5) 𝑑𝑧 = ln sin(4𝑧 − 5) + 𝑐
4
1
1 1 1
(𝒊𝒊) ∫ 𝑧 cosh 𝑧 2 𝑑𝑧 = ∫ 2𝑧 cosh 𝑧 2 𝑑𝑧 = sinh 𝑧 2 |1−1 = 0
−1 2 −1 2
1
(𝒊𝒊𝒊) ∫ sin5 4𝑧 cos 4𝑧 𝑑𝑧 = ∫ sin5 4𝑧 (4 cos 4𝑧)𝑑𝑧
4
1
= sin6 4𝑧 + 𝑐
24
(𝒊𝒗) To evaluate the integral ∫ 𝑧𝑒 3𝑧 𝑑𝑧, we use the integration by parts
Chapter 4 Complex Integration 121
In this section Cauchy’s integral formula is used to show the basic fact
that complex analytic functions have derivatives of all orders. This is
very surprising because it differs from the situation in real calculus.
Indeed, if a real function is once differentiable, nothing follows about
the existence of second or higher derivatives. Thus, in this respect,
complex analytic functions behave much more simply than real
functions that are once differentiable.
122 Chapter 4 Complex Integration
1 𝑓(𝑧)
𝑓 ′′ (𝑧0 ) = ∮ 𝑑𝑧 , (3)
2𝜋𝑖 γ (𝑧 − 𝑧0 )3
⋮
(𝑛 − 1)! 𝑓(𝑧)
𝑓 (𝑛−1) (𝑧0 ) = ∮ 𝑛
𝑑𝑧 , (4)
2𝜋𝑖 γ (𝑧 − 𝑧0 )
and so on.
Proof. since
1 𝑓(𝑧)
𝑓(𝑧0 ) = ∮ 𝑑𝑧,
2𝜋𝑖 γ 𝑧 − 𝑧0
then
𝑓(𝑧0 + ∆𝑧) − 𝑓(𝑧0 ) 1 𝑓(𝑧) 𝑓(𝑧)
= [∮ 𝑑𝑧 − ∮ 𝑑𝑧]
∆𝑧 2𝜋𝑖∆𝑧 γ 𝑧 − 𝑧0 − ∆𝑧 γ 𝑧 − 𝑧0
Chapter 4 Complex Integration 123
1 (𝑧 − 𝑧0 ) − (𝑧 − 𝑧0 − ∆𝑧)
= [∮ 𝑓(𝑧) 𝑑𝑧]
2𝜋𝑖∆𝑧 γ (𝑧 − 𝑧0 − ∆𝑧)(𝑧 − 𝑧0 )
1 𝑓(𝑧)
= [∮ 𝑑𝑧]
2𝜋𝑖 γ (𝑧 − 𝑧0 − ∆𝑧)(𝑧 − 𝑧0 )
Taking the limit as ∆𝑧 → 0, we get
𝑓(𝑧0 + ∆𝑧) − 𝑓(𝑧0 )
𝑓 ′ (𝑧0 ) = lim
∆𝑧→0 ∆𝑧
1 𝑓(𝑧)
= lim ∮ 𝑑𝑧
2𝜋𝑖 ∆𝑧→0 γ (𝑧 − 𝑧0 − ∆𝑧)(𝑧 − 𝑧0 )
1 𝑓(𝑧)
= [∮ 𝑑𝑧],
2𝜋𝑖 γ (𝑧 − 𝑧0 )2
which is the required formula (2). Similarly, we can prove the other
formulas.
sin 𝑧
Example 1 Evaluate ∮γ (𝑧−𝜋𝑖)2
𝑑𝑧 where γ is any contour enclosing
Solution
sin 𝑧 𝑑
∮ 𝑑𝑧 = 2𝜋𝑖 [ sin 𝑧] = 2𝜋𝑖 cos 𝜋𝑖 = 2𝜋𝑖 cosh 𝜋
γ (𝑧 − 𝜋𝑖)2 𝑑𝑧 𝑧=𝜋𝑖
124 Chapter 4 Complex Integration
sinh α𝑧
Example 2 Evaluate ∮γ 𝑑𝑧 around the circle γ: |𝑧| = 2.
𝑧4
Solution
sinh α𝑧 2𝜋𝑖 𝑑 3
∮ 𝑑𝑧 = [ sinh α𝑧]
γ 𝑧4 3! 𝑑𝑧 3 𝑧=0
2𝜋𝑖 3 𝜋α3
= [α cosh α𝑧]𝑧=0 = 𝑖
3! 3
𝑒𝑧
Example 3 Evaluate ∮γ (𝑧−1)2 (𝑧 2 +4)
𝑑𝑧 where γ is any contour for
Solution
𝑒𝑧 𝑒 𝑧 ⁄(𝑧 2 + 4)
∮ 2 2
𝑑𝑧 = ∮ 𝑑𝑧
γ (𝑧 − 1) (𝑧 + 4) γ (𝑧 − 1)2
𝑑 𝑒𝑧 (𝑧 2 + 4)𝑒 𝑧 − 𝑒 𝑧 (2𝑧)
= 2𝜋𝑖 [ ] = 2𝜋𝑖 [ ]
𝑑𝑧 (𝑧 2 + 4) 𝑧=1 (𝑧 2 + 4)2
𝑧=1
(1 + 4)𝑒 − 2𝑒 6𝑒𝜋
= 2𝜋𝑖 ( )= 𝑖
25 25
cot 𝑧
Example 4 Evaluate ∮γ 𝜋 2
𝑑𝑧, where γ is the boundary of the
(𝑧− )
2
Solution
cot 𝑧 𝑑
∮ 2 𝑑𝑧 = 2𝜋𝑖 [ cot 𝑧] = 2𝜋𝑖[−csc 2 𝑧]𝑧=𝜋⁄2 = −2𝜋𝑖
γ 𝜋 𝑑𝑧 𝑧=𝜋⁄2
(𝑧 − 2)
Chapter 4 Complex Integration 125
Exercise 4.1
In problems 1 − 5, evaluate
𝟐. ∫ (2𝑧 − 𝑧)𝑑𝑧 , 𝛾: 𝑥 = 𝑡, 𝑦 = 𝑡 2 + 2, 0 ≤ 𝑡 ≤ 1
γ
1+𝑧
𝟑. ∫γ 𝑑𝑧, where γ is the right half of the circle |𝑧| = 1 from 𝑧 =
𝑧
−𝑖 to 𝑧 = 𝑖.
𝑧 = 4.
In problems 6 − 14, Evaluate the given integrals along the indicated
closed contours
4
𝟔. ∮ 𝑑𝑧 , |𝑧| = 5
γ (𝑧 − 3𝑖)
𝑒𝑧
𝟕. ∮ 𝑑𝑧 , |𝑧| = 4
γ (𝑧 − 𝜋𝑖)
cos 𝑧
𝟖. ∮ 𝑑𝑧 , |𝑧| = 2
γ (3𝑧 − 𝜋)
𝑧2
𝟗. ∮ 𝑑𝑧 , (𝒂) |𝑧 − 𝑖| = 2, (𝒃) |𝑧 + 2𝑖| = 1
γ 𝑧2 + 4
sin 𝑧
𝟏𝟎. ∮ 𝑑𝑧 , |𝑧 − 2𝑖| = 2
γ 𝑧2+ 𝜋2
126 Chapter 4 Complex Integration
2
𝑒𝑧
𝟏𝟏. ∮ 3
𝑑𝑧 , |𝑧 − 𝑖| = 1
γ (𝑧 − 𝑖)
cos 2𝑧
𝟏𝟐. ∮ 𝑑𝑧 , |𝑧| = 1
γ 𝑧5
𝑒 −𝑧 sin 𝑧
𝟏𝟑. ∮ 𝑑𝑧 , |𝑧 − 1| = 3
γ 𝑧3
𝑒 2𝑖𝑧 𝑧4
𝟏𝟒. ∮ ( − ) 𝑑𝑧 , |𝑧| = 6
γ 𝑧4 (𝑧 − 𝑖)3
1
In problems 15 − 18, integrate counterclockwise around each of
𝑧 4 −1
the circles
𝟏𝟓. |𝑧 − 𝑖| = 1 𝟏𝟔. |𝑧 − 1| = 1
𝟏𝟕. |𝑧 + 1| = 1 𝟏𝟖. |𝑧 + 3| = 1
In problems 19 − 21, integrate 𝑓(𝑧) around the contour γ.
tan 𝑧
𝟏𝟗. 𝑓(𝑧) = , γ is any ellipse with foci ±𝑖.
𝑧2
sin 2𝜋𝑧
𝟐𝟎. 𝑓(𝑧) = , γ: |𝑧| = 2
(𝑧 − 𝑖)3
𝑒 𝑧 tan 𝑧
𝟐𝟏. 𝑓(𝑧) = , γ: |𝑧 − 𝑖| = 1
𝑧+𝑖
In problems 22 − 27, integrate the following functions
counterclockwise around the circle |𝑧| = 2
2 2
𝑒𝑧 𝑒𝑧
𝟐𝟐. 𝟐𝟑.
(𝑧 − 𝑖)2 (𝑧 − 𝑖)2
𝑧3 sin 𝜋𝑧
𝟐𝟒. 𝟐𝟓.
(𝑧 + 1)3 𝑧3
sinh 4𝑧
𝟐𝟔. tan 𝑧 𝟐𝟕.
𝑧4
In problems 28 − 31, evaluate the following integrals
Chapter 4 Complex Integration 127
𝑖 𝑖
𝑧
𝟐𝟖. ∫ 𝑒 cos 𝑧 𝑑𝑧 𝟐𝟗. ∫ 𝑧 sin 𝑧 𝑑𝑧
𝜋 0
1+𝑖 𝜋𝑖
𝟑𝟎. ∫ 𝑧𝑒 𝑧 𝑑𝑧 𝟑𝟏. ∫ 𝑧 2 𝑒 𝑧 𝑑𝑧
𝑖 0
If 𝑓(𝑧) has a simple pole at 𝑧 = 𝑧0, then we will have the fraction
𝐴
,
(𝑧 − 𝑧0 )
and the residue 𝐴 at this pole is calculated by
𝐴 = lim [(𝑧 − 𝑧0 )𝑓(𝑧)] (1)
𝑧→𝑧0
24(𝑧 − 1)
𝐴2 = lim [(𝑧 − 2) ]
𝑧→2 𝑧(𝑧 − 2)(𝑧 + 4)
24(𝑧 − 1) 24(1)
= lim [ ]= =2
𝑧→2 𝑧(𝑧 + 4) (2)(6)
The residue at the third pole at 𝑧 = −4 is
24(𝑧 − 1)
𝐴3 = lim [(𝑧 + 4) ]
𝑧→−4 𝑧(𝑧 − 2)(𝑧 + 4)
24(𝑧 − 1) 24(−5)
= lim [ ]= = −5
𝑧→−4 𝑧(𝑧 − 2) (−4)(−6)
Therefore, we get
24(𝑧 − 1) 3 2 5
= + −
𝑧(𝑧 − 2)(𝑧 + 4) 𝑧 (𝑧 − 2) (𝑧 + 4)
156(𝑧 − 1)
𝐴2 = [(𝑧 + 3𝑖) ]
(𝑧 − 2)(𝑧 + 3𝑖)(𝑧 − 3𝑖)
𝑧=−3𝑖
156(𝑧 − 1) 156(−3𝑖 − 1)
=[ ] =[ ]
(𝑧 − 2)(𝑧 − 3𝑖) (−3𝑖 − 2)(−3𝑖 − 3𝑖)
𝑧=−3𝑖
130 Chapter 5 The Residue Theorem
156(𝑧 − 1) 156(3𝑖 − 1)
=[ ] =[ ]
(𝑧 − 2)(𝑧 + 3𝑖) (3𝑖 − 2)(3𝑖 + 3𝑖)
𝑧=3𝑖
𝑧 3 − 4𝑧 2 + 4 8 − 16 + 4
𝐴4 = [ 2 ] = = −1
𝑧 (𝑧 − 1) 𝑧=2 (4)(1)
Hence,
𝑧 3 − 4𝑧 2 + 4 2 3 1 1
2
= 2+ − −
𝑧 (𝑧 − 1)(𝑧 − 2) 𝑧 𝑧 (𝑧 − 1) (𝑧 − 2)
27
𝐴=[ ] = 1,
(𝑧 + 2)3 𝑧=1
1 27 27
𝐵3 = lim { }= = −9
0! 𝑧→−2 (𝑧 − 1) (−2 − 1)
1 𝑑 27 1 27
𝐵2 = lim { }= lim {− } = −3
1! 𝑧→−2 𝑑𝑧 (𝑧 − 1) 1! 𝑧→−2 (𝑧 − 1)2
1 𝑑2 27 1 27
𝐵1 = lim { 2 [ ]} = lim {[2 ]} = −1
2! 𝑧→−2 𝑑𝑧 (𝑧 − 1) 2! 𝑧→−2 (𝑧 − 1)3
Hence,
27 1 9 3 1
= − − −
(𝑧 − 1)(𝑧 + 2)3 (𝑧 − 1) (𝑧 + 2)3 (𝑧 + 2)2 (𝑧 + 2)
5.2 Residues
∮γ 𝑓(𝑧) 𝑑𝑧 = 0,
𝑓(𝑧) = ∑ 𝑎𝑛 (𝑧 − 𝑧0 )𝑛
𝑛=−∞
∞
𝑎−1 𝑎−2
= ∑ 𝑎𝑛 (𝑧 − 𝑧0 )𝑛 + + + ⋯,
(𝑧 − 𝑧0 ) (𝑧 − 𝑧0 )2
𝑛=0
1 𝑑𝑚−1
𝑎−1 = lim { [(𝑧 − 𝑧0 )𝑚 𝑓(𝑧)]} (3)
(𝑚 − 1)! 𝑧→𝑧0 𝑑𝑧 𝑚−1
∮ 𝑓(𝑧) 𝑑𝑧 = 2𝜋𝑖 ∑ 𝑅𝑛
γ 𝑛=1
Solution
𝑧 2
𝑒𝑧 𝑝(𝑧)
𝑓(𝑧) = 𝑒 csc 𝑧 = 2
=
sin 𝑧 𝑞(𝑧)
𝑞(𝑧) = sin2 𝑧 = 0 𝑎𝑡 𝑧 = 𝑚𝜋, 𝑚 = 0, ±1, ±2, ⋯ and at these points
𝑝(𝑧) ≠ 0, so
𝑞(𝑧) = sin2 𝑧 , 𝑞(𝑚𝜋) = 0
𝑞 ′ (𝑧) = 2 sin 𝑧 cos 𝑧 = sin 2𝑧 , 𝑞 ′ (𝑚𝜋) = 0
𝑞 ′′ (𝑧) = 2 cos 2𝑧 , 𝑞 ′′ (𝑚𝜋) = 2
𝑞 ′′′ (𝑧) = −4 sin 2𝑧, 𝑞 ′′′ (𝑚𝜋) = 0
since 𝑞 ′′ (𝑚𝜋) ≠ 0, then 𝑓(𝑧) has poles of second order at 𝑧 = 𝑚𝜋,
𝑚 = 0, ±1, ±2, ⋯. The residues at these poles are found from (2) as
𝑝′ (𝑧0 ) 2 𝑝(𝑧0 )𝑞 ′′′ (𝑧0 ) 𝑒 𝑚𝜋 2 𝑒 𝑧 (0)
𝑎−1 = 2 − = 2 − = 𝑒 𝑚𝜋
𝑞 ′′ (𝑧0 ) 3 [𝑞 ′′ (𝑧0 )]2 2 3 [2]2
The important residue theorem has various applications in connection
with complex and real integrals. We first consider some complex
integrals.
24(𝑧−1)
Example 2 Evaluate the integral ∮γ 𝑑𝑧, where γ is the circle
𝑧(𝑧−2)(𝑧+4)
γ: |𝑧| = 3.
Chapter 5 The Residue Theorem 137
24(𝑧−1)
Solution The given function 𝑧(𝑧−2)(𝑧+4)
24(𝑧 − 1) 24(1)
𝐴2 = Res 𝑓(𝑧) = | = =2
𝑧=2 𝑧(𝑧 + 4) 𝑧=2 2(6)
So that by the direct application of the residue theorem
24(𝑧 − 1)
∮ 𝑑𝑧 = 2𝜋𝑖 ∑ Residues = 2𝜋𝑖(3 + 2) = 10𝜋𝑖
γ 𝑧(𝑧 − 2)(𝑧 + 4)
100𝑧(𝑧−2)
Example 3 Evaluate the integral ∮γ (𝑧+1)2 (𝑧 2 +4)
𝑑𝑧, where γ is the
5
circle γ: |𝑧| = 2.
𝟐𝐢
poles are:
138 Chapter 5 The Residue Theorem
1 𝑑 100𝑧(𝑧 − 2)
𝐴1 = lim { [ ]}
1! 𝑧→−1 𝑑𝑧 (𝑧 2 + 4)
(𝑧 2 + 4)(2𝑧 − 2) − (𝑧 2 − 2𝑧)(2𝑧)
= lim {100 [ ]}
𝑧→−1 (𝑧 2 + 4)2
(1 + 4)(−2 − 2) − (1 + 2)(−2) −20 + 6
= 100 [ 2
] = 100 [ ]
(1 + 4) 25
−14
= 100 [ ] = −56
25
100𝑧(𝑧 − 2) 100(−2𝑖)(−2𝑖 − 2)
𝐴2 = | =
(𝑧 + 1)2 (𝑧 − 2𝑖) (−2𝑖 + 1)2 (−2𝑖 − 2𝑖)
𝑧=−2𝑖
400(−𝑖)(−𝑖 − 1) 100(−1 + 𝑖)
= =
(−2𝑖 + 1)2 (−4𝑖) (−4 + 1 − 4𝑖)(−𝑖)
100(−1 + 𝑖) (−4 − 3𝑖) 100(7 − 𝑖)
= ∙ = = (28 − 4𝑖)
(−4 + 3𝑖) (−4 − 3𝑖) (16 + 9)
100𝑧(𝑧 − 2) 100(2𝑖)(2𝑖 − 2)
𝐴3 = | =
(𝑧 + 1)2 (𝑧 + 2𝑖) (2𝑖 + 1)2 (2𝑖 + 2𝑖)
𝑧=2𝑖
400(𝑖)(𝑖 − 1) 100(−1 − 𝑖)
= 2
=
(2𝑖 + 1) (4𝑖) (−4 + 1 + 4𝑖)(𝑖)
100(−1 − 𝑖) (−4 + 3𝑖) 100(7 + 𝑖)
= ∙ = = (28 + 4𝑖)
(−4 − 3𝑖) (−4 + 3𝑖) (16 + 9)
Therefore, we obtain
24(𝑧 − 1)
∮ 𝑑𝑧 = 2𝜋𝑖 ∑ Residues
γ 𝑧(𝑧 − 2)(𝑧 + 4)
= 2𝜋𝑖(−56 + 28 − 4𝑖 + 28 + 4𝑖) = 0
𝑒𝑧
Example 4 Evaluate the integral ∮γ 𝑑𝑧 where γ is the circle
sin2 𝑧
γ: |𝑧| = 1.
Chapter 5 The Residue Theorem 139
𝑒𝑧
Solution From Example 1, the function has poles of order 2 at
sin2 𝑧
γ: |𝑧| = 1.
4 42 43 44
=1+ + + + +⋯
𝑧 2! 𝑧 2 3! 𝑧 3 4! 𝑧 4
From this expansion we see that the residue of the integrand 𝑒 4⁄𝑧 at 𝑧 =
0 is 4. Hence,
Exercise 5.1
cos 𝑧 𝑒𝑧
𝟓. 𝑓(𝑧) = 𝟔. 𝑓(𝑧) =
𝑧 (𝑧 − 𝜋)3
2 𝑒𝑧 − 1
In problems 7 − 10, use Cauchy’s integral theorem to evaluate the
given integrals along the indicated contours.
1
𝟕. ∮ 𝑑𝑧,
γ (𝑧 − 2)(𝑧 + 2)
1 3
(𝒂) |𝑧| = (𝒃) |𝑧| = (𝒄) |𝑧| = 3
2 2
(𝑧 + 1)
𝟖. ∮ 𝑑𝑧,
γ 𝑧 2 (𝑧
− 2𝑖)
(𝒂) |𝑧| = 1 (𝒃) |𝑧 − 2𝑖| = 1 (𝒄) |𝑧 − 2𝑖| = 4
𝟗. ∮ 𝑧 3 𝑒 −1⁄𝑧 𝑑𝑧,
γ
1 3
𝟏𝟐. ∮ 𝑑𝑧 , γ: |𝑧 − 2| =
γ 𝑧 3 (𝑧 − 1)4 2
1
𝟏𝟑. ∮ 𝑑𝑧 , γ: |𝑧| = 2
γ 𝑧4 − 1
Chapter 5 The Residue Theorem 141
1
𝟏𝟒. ∮ 𝑑𝑧 , γ is the ellipse 16𝑥 2 + 𝑦 2 = 4
γ (𝑧 2 + 1)(𝑧 + 1)
𝑒 𝑖𝑧 + sin 𝑧
𝟏𝟓. ∮ 𝑑𝑧 , γ: |𝑧 − 3| = 1
γ (𝑧 − 𝜋)4
cos 𝜋𝑧 1
𝟏𝟔. ∮ 𝑑𝑧 , γ: |𝑧| =
γ 𝑧2 2
tan 𝜋𝑧
𝟏𝟕. ∮ 𝑑𝑧 , γ: |𝑧 − 1| = 2
γ 𝑧
𝑧𝑒 𝑧
𝟏𝟖. ∮ 2 𝑑𝑧 , γ: |𝑧| = 2
γ 𝑧 −1
𝑒𝑧
𝟏𝟗. ∮ 𝑑𝑧 , γ: |𝑧| = 3
γ 𝑧 3 + 2𝑧 2
2𝑧−1
𝟐𝟎. ∮γ 𝑑𝑧, γ is the rectangle defined by:
𝑧 2 (𝑧 3 +1)
1
𝑥 = −2, 𝑥 = 1, 𝑦 = , 𝑦 = 1
2
𝟐𝟏. ∮γ cos 𝜋𝑧 𝑑𝑧, γ is the rectangle defined by:
1
𝑥 = , 𝑥 = 𝜋, 𝑦 = −1, 𝑦 = 1
2
cos 𝑧
𝟐𝟐. ∮ 𝑑𝑧 , γ: |𝑧 − 1| = 1
γ (𝑧 − 1)2 (𝑧 2 + 9)
2𝑧 − 1 1
𝟐𝟒. ∮ 𝑑𝑧 , γ: |𝑧| =
γ 𝑧 2 (𝑧 3+ 1) 2
𝑒 2⁄𝑧 𝑧4
𝟐𝟓. ∮ ( 4 − ) 𝑑𝑧 , γ: |𝑧| = 6
γ 𝑧 (𝑧 − 𝑖)3
142 Chapter 5 The Residue Theorem
𝟐𝝅
𝟓. 𝟒. 𝟏 𝐓𝐲𝐩𝐞 𝟏: ∫ 𝑭(𝐬𝐢𝐧 𝛉 , 𝐜𝐨𝐬 𝛉)𝒅𝛉
𝟎
2𝜋 𝑑θ
Example 1 Evaluate the integral ∫0 .
5+4 sin θ
2𝜋
𝑑𝑧
𝑑θ 𝑖𝑧 1 dz
∫ =∮ 2 = ∮ 2
0 5 + 4 sin θ γ 2𝑧 + 5𝑖𝑧 − 2 2 γ 𝑧 + (5𝑖 ⁄2)𝑧 − 1
𝑖𝑧
The roots of 𝑧 2 + (5𝑖 ⁄2)𝑧 − 1 are given by
2𝜋 cos θ
Example 2 Evaluate the integral ∫0 𝑑θ
13−12 cos 2θ
2
26 ± √(26)2 − 4(12)(12) 26 ± 10
𝑧 = =
2(12) 2(12)
from which we get by simplification
2 3
𝑧 2 = , or 𝑧 2 =
3 2
Hence the integrand has two simple poles at 𝑧 = ±√2⁄3 inside γ. To
obtain the residues at these poles, let
Chapter 5 The Residue Theorem 145
𝑝(𝑧) 𝑖(𝑧 2 + 1)
= ,
𝑞(𝑧) (12𝑧 4 − 26𝑧 2 + 12)
then
𝑞 ′ (𝑧) = 48𝑧 3 − 52𝑧,
and
2 5
𝑝 (±√2⁄3) = 𝑖 ( + 1) = 𝑖,
3 3
2
𝑞 ′ (±√2⁄3) = (±√2⁄3) (48 − 52) =
3
= (±√2⁄3) (32 − 52) = ∓20√2⁄3
Therefore
2𝜋
cos θ
∫ 𝑑θ = 2𝜋𝑖 ∑ Residues = 2𝜋𝑖(𝐴1 + 𝐴2 ) = 0
0 13 − 12 cos 2θ
∞
𝟓. 𝟒. 𝟐 𝐓𝐲𝐩𝐞 𝟐: ∫ 𝑭(𝒙)𝒅𝒙
−∞
around a path γ shown in Fig. 6.4. Since 𝐹(𝑥) is rational, 𝐹(𝑧) has
finitely many poles in the upper half-plane, and if we choose 𝑅 large
enough, then γ enclosed all these poles. By the residue theorem we then
obtain
𝑅
∮ 𝐹(𝑧)𝑑𝑧 = ∫ 𝐹(𝑧)𝑑𝑧 + ∫ 𝐹(𝑧)𝑑𝑧 = 2𝜋𝑖 ∑ Res 𝐹(𝑧)
γ −𝑅
∫ 𝐹(𝑧)𝑑𝑧 = 0 as 𝑅 → ∞
Hence, as 𝑅 → ∞,
∞
∫ 𝐹(𝑥)𝑑𝑥 = 2𝜋𝑖 ∑ Res 𝐹(𝑧), (1)
−∞
∞ 𝑑𝑥
Example 1 Evaluate the integral ∫0 1+𝑥 4
.
Chapter 5 The Residue Theorem 147
1
Solution Since the function 1+𝑥 4 is even function, then we have
∞
𝑑𝑥 1 ∞ 𝑑𝑥
∫ 4
= ∫
0 1+𝑥 2 −∞ 1 + 𝑥 4
1
The function 𝐹(𝑧) = 1+𝑧 4 has four simple poles at the points
𝑝(𝑧1 ) 1 1
𝐴1 = Res 𝐹(𝑧) = ′
= 𝑖𝜋 ⁄4 3
= 𝑒 −𝑖3𝜋⁄4 ,
𝑧→𝑧1 𝑞 (𝑧1 ) 4(𝑒 ) 4
𝑝(𝑧2 ) 1 1
𝐴2 = Res 𝐹(𝑧) = ′
= 𝑖3𝜋 ⁄4 3
= 𝑒 −𝑖9𝜋⁄4
𝑧→𝑧2 𝑞 (𝑧2 ) 4(𝑒 ) 4
So that
𝑅
𝑑𝑧 𝑑𝑧 𝑑𝑧
∮ 4
= ∫ 4
+ ∫ 4
γ (1 + 𝑧 ) (1 + 𝑧 ) −𝑅 (1 + 𝑧 )
𝑑𝑧
Taking the limit as 𝑅 → ∞, the integral ∫ (1+𝑧 4 )
vanishes and
∞
𝑑𝑥 1 ∞ 𝑑𝑥 1
∫ 4
= ∫ 4
= 𝜋𝑖(𝑒 −𝑖3𝜋⁄4 + 𝑒 −𝑖𝜋⁄4 )
0 1 + 𝑥 2 −∞ 1 + 𝑥 4
1
= 𝜋𝑖(cos 3 𝜋⁄4 − 𝑖 sin 3 𝜋⁄4 + cos 𝜋⁄4 − 𝑖 sin 𝜋⁄4)
4
2 1 1
= 𝜋𝑖 (−𝑖 ) = 𝜋
4 √2 2√2
148 Chapter 5 The Residue Theorem
2 + 2𝑖 (1 − 2𝑖)
= 𝑔(𝑖) (−2𝑖 + 𝑖 − )
(1 + 2𝑖) (1 − 2𝑖)
6 − 2𝑖 −5𝑖 − 6 + 2𝑖 −6 − 3𝑖
= 𝑔(𝑖) (−𝑖 − ) = 𝑔(𝑖) ( ) = 𝑔(𝑖) ( )
5 5 5
But
−1 −1
𝑔(𝑖) = =
(2𝑖)2 (−1 + 2𝑖 + 2) (−4)(1 + 2𝑖)
1 1 (1 − 2𝑖) (1 − 2𝑖)
= =
4 (1 + 2𝑖) (1 − 2𝑖) 20
Therefore,
(1 − 2𝑖) −6 − 3𝑖 1
𝐴1 = Res 𝐹(𝑧) = 𝑔′ (𝑖) = ( )= (−12 + 9𝑖)
𝑧→𝑖 20 5 100
The residue at 𝑧 = −1 + 𝑖 is
𝑧2
𝐴2 = Res 𝐹(𝑧) = lim { 2 }
𝑧→−1+𝑖 𝑧→𝑖 (𝑧 + 1)2 (𝑧 + 1 + 𝑖)
∞
𝐜𝐨𝐬 𝒎𝒙
𝟓. 𝟒. 𝟑 𝐓𝐲𝐩𝐞 𝟑: ∫ 𝑭(𝒙) { 𝒅𝒙
−∞
𝐬𝐢𝐧 𝒎𝒙
These types of integrals are evaluated in a way similar to that used for
𝑇𝑦𝑝𝑒 2 integrals of the last section. The function 𝐹(𝑥) satisfies the
same conditions as in 𝑇𝑦𝑝𝑒 2. In fact, we may consider the
corresponding integral
Solution
∞
cos 𝑚𝑥 1 ∞ cos 𝑚𝑥
∫ 2 2
𝑑𝑥 = ∫ 𝑑𝑥
0 (𝑥 + 𝑎 ) 2 −∞ (𝑥 2 + 𝑎2 )
Consider the contour integral
𝑒 𝑖𝑚𝑧 𝑒 𝑖𝑚𝑧
∮ 𝑑𝑧 = ∮ 𝑑𝑧 (3)
γ (𝑧 2 + 𝑎2 ) γ (𝑧 + 𝑎𝑖)(𝑧 − 𝑎𝑖)
Chapter 5 The Residue Theorem 151
Solution Note that the integrand does not satisfy the conditions of
𝑻𝒚𝒑𝒆 𝟏 integrals. From the residue theorem we have
2
∮ 𝑒 𝑖𝑧 𝑑𝑧 = 0,
γ
since there is no poles inside γ. The contour γ is broken into three curves
as shown in the figure, so we can divide the contour integral into three
integrals as
𝑅 𝜋⁄4
2 2 𝑖θ )2
∮ 𝑒 𝑖𝑧 𝑑𝑧 = ∫ 𝑒 𝑖𝑥 𝑑𝑥 + ∫ 𝑒 𝑖(𝑅𝑒 𝑑(𝑖𝑅𝑒 𝑖θ )
γ 0 0
0
𝑖π⁄4 )2
+ ∫ 𝑒 𝑖(𝑟𝑒 𝑑(𝑟𝑒 𝑖π⁄4 ) = 0, (1)
𝑅
𝜋⁄4 2 𝜋⁄4
𝑖(𝑅𝑒 𝑖θ ) 𝑖θ 2 (cos 2θ+𝑖 sin 2θ)
(𝐼𝐼) = ∫ 𝑒 𝑑(𝑖𝑅𝑒 ) = ∫ 𝑒 𝑖𝑅 (𝑖𝑅𝑒 𝑖θ )𝑑θ
0 0
𝜋⁄4
2 cos 2θ 2 sin 2θ
=∫ 𝑒 𝑖𝑅 𝑒 −𝑅 (𝑖𝑅𝑒 𝑖θ )𝑑θ,
0
which implies
𝜋⁄4
2 cos 2θ 2 sin 2θ
|𝐼𝐼| ≤ ∫ |𝑒 𝑖𝑅 𝑒 −𝑅 (𝑖𝑅𝑒 𝑖θ )|𝑑θ
0
𝜋⁄4
2 cos 2θ 2 sin 2θ
≤∫ |𝑒 𝑖𝑅 ||𝑒 −𝑅 ||(𝑖𝑅𝑒 𝑖θ )|𝑑θ
0
𝜋⁄4
2 sin 2θ
≤∫ 𝑅𝑒 −𝑅 𝑑θ
0
0
2 (cosπ⁄2+𝑖 sinπ⁄2)
= ∫ 𝑒 𝑖𝑟 𝑒 𝑖π⁄4 𝑑𝑟
𝑅
𝑅
2
= −𝑒 𝑖π⁄4 ∫ 𝑒 −𝑟 𝑑𝑟
0
√π 1 √π √π
= (cos(π⁄4) + 𝑖 sin(π⁄4)) = ( + 𝑖 )
2 2 √2 √2
Equating the real and imaginary parts we obtain the required assertion.
Solution The function 𝑒 𝑖𝑧 ⁄𝑧 does not have poles inside the given
contour, then
𝑒 𝑖𝑧
∮ 𝑑𝑧 = 0
γ 𝑧
This equal to
−ρ 𝑖𝑥 0 𝑖(ρ𝑒 ) 𝑖θ 𝑅 𝑖𝑥 𝜋 𝑖(𝑅𝑒 ) 𝑖θ
𝑒 𝑒 𝑖θ
𝑒 𝑒
∫ 𝑑𝑥 + ∫ 𝑖θ )
𝑑(ρ𝑒 ) + ∫ 𝑑𝑥 + ∫ 𝑖θ
𝑑(𝑅𝑒 𝑖θ ) = 0
−𝑅 𝑥 𝜋 (ρ𝑒 ρ 𝑥 0 (𝑅𝑒 )
(4)
Therefore, we have
−ρ 𝑖𝑥 0 𝑖(ρ𝑒 ) 𝑖θ 𝑅 𝑖𝑥
𝑒 𝑒 𝑖θ
𝑒
∫ 𝑑𝑥 + ∫ 𝑖θ
(𝑖ρ𝑒 )𝑑θ + ∫ 𝑑𝑥
−𝑅 𝑥 𝜋 (ρ𝑒 ) ρ 𝑥
𝜋 𝑖θ
𝑒 𝑖(𝑅𝑒 )
+∫ 𝑖θ )
(𝑖𝑅𝑒 𝑖θ )𝑑(θ) = 0, (5)
0 (𝑅𝑒
which is written as (𝐼) + (𝐼𝐼) + (𝐼𝐼𝐼) + (𝐼𝑉) = 0. Let us compute
every term separately. In the first integral we use the substitution
𝑥 = −𝑢 𝑑𝑥 = −𝑑𝑢
and the new limits of integral will be
𝑥 = −𝑅 𝑢 = 𝑅, 𝑥 = −ρ 𝑢 = ρ
Hence we can write the first term of (5) as
−ρ 𝑖𝑥 ρ −𝑖𝑢 𝑅 −𝑖𝑥
𝑒 𝑒 𝑒
(𝐼) = ∫ 𝑑𝑥 = ∫ (−𝑑𝑢) = − ∫ 𝑑𝑥 ( 6)
−𝑅 𝑥 𝑅 −𝑢 ρ 𝑥
𝜋 𝑖(𝑅𝑒𝑖θ ) 𝜋
𝑒 𝑖θ
(𝐼𝑉) = ∫ 𝑖𝑅𝑒 𝑑θ = 𝑖 ∫ 𝑒𝑖(𝑅𝑒 ) 𝑑θ
𝑖θ
0 (𝑅𝑒𝑖θ ) 0
𝜋 𝜋
𝑖θ
|𝐼𝑉| ≤ |𝑖 ∫ 𝑒𝑖(𝑅𝑒 ) 𝑑θ| ≤ ∫ |𝑒𝑖𝑅(cos θ+𝑖 sin θ) |𝑑θ ≤
0 0
𝜋⁄2 𝜋⁄2
≤ 2∫ 𝑒 −𝑅 sin θ
𝑑θ ≤ 2 ∫ 𝑒−2𝑅θ⁄𝜋 𝑑θ
0 0
𝜋⁄2
𝑒−2𝑅θ⁄𝜋 𝜋
≤2 | = (1 − 𝑒−𝑅 )
− 2𝑅⁄𝜋 𝑅
0
Thus we have
(𝐼𝑉) → 0 𝑎𝑠 𝑅 → ∞ (8)
Collecting (5) − (8), we obtain, as ρ → 0 and 𝑅 → ∞,
∞ −𝑖𝑥 ∞ 𝑖𝑥
𝑒 𝑒
−∫ 𝑑𝑥 − 𝑖𝜋 + ∫ 𝑑𝑥 + 0 = 0
0 𝑥 0 𝑥
Hence,
∞ 𝑖𝑥
𝑒 − 𝑒 −𝑖𝑥
∫ 𝑑𝑥 = 𝜋
0 𝑖𝑥
or,
∞
sin 𝑥 𝜋
∫ 𝑑𝑥 =
0 𝑥 2
2
∮ 𝑒−𝑧 𝑑𝑧 = 0
γ
As shown in Fig. 5.12 we have the equations of the curves of the contour
γ, therefore the given integral will be decomposed along the different
paths of this contour to give the equation
𝑅 𝑎 0
−𝑥 2 −(𝑅+𝑖𝑦)2 2
∫ 𝑒 𝑑𝑥 + ∫ 𝑒 𝑑(𝑅 + 𝑖𝑦) + ∫ 𝑒 −(𝑥+𝑖𝑎) 𝑑(𝑥 + 𝑖𝑎)
0 0 R
0
−(𝑖𝑦)2
+∫ 𝑒 𝑑(𝑖𝑦) = (𝐼) + (𝐼𝐼) + (𝐼𝐼𝐼) + (𝐼𝑉) = 0 (9)
𝑎
∞ 𝑎
√π 𝑎2 −𝑥 2 (cos 2
+0−𝑒 ∫ 𝑒 2𝑎𝑥 + 𝑖 sin 2𝑎𝑥)𝑑𝑥 − 𝑖 ∫ 𝑒 𝑦 𝑑𝑦 = 0
2 0 0
or
∞
2 √π −𝑎2
∫ 𝑒 −𝑥 cos 2𝑎𝑥 𝑑𝑥 = 𝑒
0 2
Exercise 5.2
𝑒𝑧
𝟑. ∮ 𝑑𝑧 𝟒. ∮ 𝑒 𝑧 cot 𝑧 𝑑𝑧
γ cos 𝜋𝑧 γ
sinh 𝑧
𝟓. ∮ cosh 𝑧 𝑑𝑧 𝟔. ∮ 𝑑𝑧
γ γ (4𝑧 2 + 1)
In problems 7 − 10, evaluate the following trigonometric integrals
2𝜋 2𝜋
1 1
𝟕. ∫ 𝑑θ 𝟖. ∫ 𝑑θ
0 1 + 0.5 sin θ 0 1 + 3 cos2 θ
2𝜋 2𝜋
cos 2 θ sin2 θ
𝟗. ∫ 𝑑θ 𝟏𝟎. ∫ 𝑑θ
0 3 − sin θ 0 5 + 4 cos θ
In problems 11 − 18, Evaluate the following improper integrals
∞ ∞
𝑑𝑥 𝑑𝑥
𝟏𝟏. ∫ 2 2
𝟏𝟐. ∫ 2 2 2
−∞ (𝑥 + 4) −∞ (𝑥 + 1) (𝑥 + 9)
∞ ∞ (𝑥 2
𝑑𝑥 + 1)
𝟏𝟑. ∫ 6
𝟏𝟒. ∫ 𝑑𝑥
−∞ (𝑥 + 4) 0 (𝑥 4 + 1)
160 Chapter 5 The Residue Theorem
∞ ∞
𝑥 sin 𝑥 cos 𝑥
𝟏𝟓. ∫ 2
𝑑𝑥 𝟏𝟔. ∫ 𝑑𝑥
−∞ (𝑥 + 4) 0 (𝑥 2 + 4)2
∞ ∞
cos 2𝑥 cos 𝑥
𝟏𝟕. ∫ 4
𝑑𝑥 𝟏𝟖. ∫ 2 2
𝑑𝑥
−∞ (𝑥 + 1) −∞ (𝑥 + 1)(𝑥 + 9)
(𝒙 ഥ𝒊 )
ഥ𝒊 , 𝒚
𝑦
𝒚𝒋
∆𝑦𝑗
𝒚𝒋−𝟏 𝑥
∆𝑥𝑖
𝑥
Fig. 6.1 Division of the domain into 𝒎𝒏 sub-rectangles
, as in Fig. 6.1. Next we choose a general point (𝑥̅𝑖 , 𝑦̅𝑖 ) and form the
double Riemann sum
𝑚 𝑛
Then the double integral of the function 𝑓(𝑥, 𝑦) over the domain is
𝑚 𝑛
𝑉 = ∬ 𝑓(𝑥, 𝑦)𝑑𝐴
Thus, for any two functions 𝑓 and 𝑔 defined and continuous in a region
,
ഥ𝒊 )
ഥ𝒊 , 𝒚
𝒇(𝒙
𝒙
∆𝐴𝑖𝑗 (𝒙 ഥ𝒊 )
ഥ𝒊 , 𝒚
There are two types of the domain of the function 𝑓(𝑥, 𝑦). is said
to be of 𝑡𝑦𝑝𝑒 𝐼 if it lies between the graphs of two continuous functions
of 𝑥, that is,
164 Chapter 6 Multiple Integrals
𝒚 𝒚
𝒅
𝒚 = 𝒈𝟐 (𝒙)
𝒙 = 𝒉𝟏 (𝒚)
𝒕𝒚𝒑𝒆 𝑰
𝒕𝒚𝒑𝒆 𝑰𝑰
𝒙 = 𝒉𝟐 (𝒚)
𝒚 = 𝒈𝟏 (𝒙) 𝒄
𝒙 𝒙
a b
Fig. 6.3 Fig. 6.4
𝑻𝒚𝒑𝒆 𝑰𝑰: For this region we choose a horizontal strip starts from
the vertical line 𝑦 = 𝑐 and moves in the positive direction of the
𝑦 − 𝑎𝑥𝑖𝑠 up to the line 𝑦 = 𝑑. The strip meets the boundary of
the region in two points at which we express x as a function
of 𝑦. So we express 𝑑𝐴 = 𝑑𝑥𝑑𝑦, and evaluate the double
𝑥=1 𝑦=2
Example 1 Evaluate the integral ∫𝑥=0 ∫𝑦=1 (𝑥 2 + 𝑦) 𝑑𝑦𝑑𝑥.
Solution
𝑥=1 𝑦=2 𝑥=1 𝑦=2
∫ ∫ (3𝑥 2 + 2𝑦) 𝑑𝑦𝑑𝑥 = ∫ [∫ (3𝑥 2 + 2𝑦) 𝑑𝑦] 𝑑𝑥
𝑥=0 𝑦=1 𝑥=0 𝑦=1
166 Chapter 6 Multiple Integrals
𝑥=1
=∫ [3𝑥 2 𝑦 + 𝑦 2 ]12 𝑑𝑥
𝑥=0
𝑥=1
=∫ [(3𝑥 2 (2) + 4) − (3𝑥 2 (1) + 1)]𝑑𝑥
𝑥=0
𝑥=1 𝑥=1
=∫ [(6𝑥 2 + 4) − (3𝑥 2 + 1)]𝑑𝑥 = ∫ (3𝑥 2 + 3)𝑑𝑥
𝑥=0 𝑥=0
= [𝑥 3 + 3𝑥]10 =4
4 𝒚
Another Solution. From Fig. 6.6 (𝟐, 𝟒)
we see that can also be written as 3
a type II region.
2 𝒚 = 𝟐𝒙
𝒚 = 𝒙𝟐
4 𝑦 1
𝑉 = ∫0 [∫𝑦√⁄2(𝑥 + 2𝑦) 𝑑𝑥] 𝑑𝑦
4√ 𝑦 0 𝒙
𝑥2 0 1 2
= ∫ [ + 2𝑦𝑥] 𝑑𝑦
0 2 𝑦⁄2 Fig. 6.6 as a type II region
4 (𝑦⁄2)2
𝑦
= ∫ [( + 2𝑦(√𝑦)) − ( + 2𝑦(𝑦⁄2))] 𝑑𝑦
0 2 2
4 4
𝑦 3⁄2
𝑦2 2
𝑦2 2 5⁄2 9 𝑦 3
= ∫ [ + 2𝑦 − − 𝑦 ] 𝑑𝑦 = [ + 𝑦 − ]
0 2 8 4 5⁄2 8 3 0
4 3 4 28
= (4 + (32) − (64)) = 4 + (32) − 24 =
5 8 5 5
2
Solution (3, √12)
The double integrals are used to compute areas, volumes, mass and
centroids of regions.
The area of a Region
𝐴 = ∬ 𝑑𝑥𝑑𝑦
𝑉 = ∬ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑀 = ∬ ρ(𝑥, 𝑦)𝑑𝑥𝑑𝑦
The centre of gravity (𝑥̅ , 𝑦̅) of the mass 𝑀 with a density ρ(𝑥, 𝑦) is
𝐼𝑥 = ∬ 𝑦 2 ρ(𝑥, 𝑦)𝑑𝑥𝑑𝑦,
𝐼𝑦 = ∬ 𝑥 2 ρ(𝑥, 𝑦)𝑑𝑥𝑑𝑦,
and the polar moment of inertia 𝐼0 about the origin of the mass in is
𝐼0 = ∬ (𝑥 2 + 𝑦 2 )ρ(𝑥, 𝑦)𝑑𝑥𝑑𝑦
Solution (𝒂) From Fig. 6.8, the given region is of type II, so that the
area is
(𝟒, 𝟐)
2 𝑦+2
𝐴=∫ ∫ 𝑑𝑥𝑑𝑦
−1 𝑦 2
2
𝑦+2
= ∫ [𝑥]𝑦 2 𝑑𝑦 (𝟏, −𝟏)
−1
2 Fig. 6.8
= ∫ (𝑦 + 2 − 𝑦 2 )𝑑𝑦
−1
2
𝑦2 𝑦3 8 3 1 9
= [ + 2𝑦 − ] = (2 + 4 − ) − (− + ) = .
2 3 −1 3 2 3 2
(b) Since the density is constant, then
∬ 𝑥𝑑𝑥𝑑𝑦 ∬ 𝑦𝑑𝑥𝑑𝑦
𝑥̅ = , 𝑦̅ =
𝐴 𝐴
But the area is computed, so we shall evaluate the numerator of each of
the above two equations.
170 Chapter 6 Multiple Integrals
2 𝑦+2
∬ 𝑥𝑑𝑥𝑑𝑦 = ∫ ∫ 𝑥𝑑𝑥𝑑𝑦
−1 𝑦 2
2 𝑦+2
2 (𝑦
𝑥2 + 2)2 𝑦 4
=∫ [ ] 𝑑𝑦 = ∫ ( − ) 𝑑𝑦
−1 2 𝑦 2 −1 2 2
2
1 (𝑦 + 2)3 𝑦 5 36
= [ − ] =
2 3 5 −1 5
Thus,
∬ 𝑥𝑑𝑥𝑑𝑦 36⁄5 72 8
𝑥̅ = = = =
𝐴 9⁄2 45 5
Also
2 𝑦+2
∬ 𝑦𝑑𝑥𝑑𝑦 = ∫ ∫ 𝑦𝑑𝑥𝑑𝑦
−1 𝑦 2
2 2
𝑦+2
= ∫ [𝑥𝑦]𝑦 2 𝑑𝑦 = ∫ ((𝑦 + 2)𝑦 − (𝑦 2 )𝑦)𝑑𝑦
−1 −1
2
= ∫ (𝑦 2 + 2𝑦 − 𝑦 3 )𝑑𝑦
−1
2
𝑦3 𝑦4 3 9
= [ + 𝑦2 − ] = 3 − =
3 4 −1 4 4
Thus,
∬ 𝑦𝑑𝑥𝑑𝑦 9⁄4 1
𝑦̅ = = =
𝐴 9⁄2 2
8 1
So that the centroid of the given region is (5 , ).
2
6.9. In this case the above integral will be divided by the same way as
the region . For instant, take the integral of the area as a guide for this
division
1 √𝑥 4 √𝑥
=∫ ∫ 𝑑𝑦𝑑𝑥 + ∫ ∫ 𝑑𝑦𝑑𝑥 (𝟒, 𝟐)
0 −√𝑥 1 𝑥−2
1 4
= ∫ [𝑦]√−𝑥√𝑥 𝑑𝑥 𝑥
+ ∫ [𝑦]√𝑥−2 𝑑𝑥 2
0 1 1
1 4
= ∫ 2√𝑥𝑑𝑥 + ∫ (√𝑥 − 𝑥 + 2)𝑑𝑥 (𝟏, −𝟏)
0 1
Fig. 6.9 Region of Ex. 4
3⁄2 1 4
𝑥 𝑥 3⁄2 𝑥 2
= [2 ] +[ − + 2𝑥]
3⁄2 0 3⁄2 2 1
4 8 − 1 16 − 1 15 9
= + − + (8 − 2) = 6 − +6=
3 3⁄2 2 2 2
Exercise 6.1
4 √𝑥 1 1−𝑥 2
𝟓. ∫ 𝑑𝑥 ∫ (2𝑦 − 5𝑥𝑦)𝑑𝑦 𝟔. ∫ ∫ (𝑥 + 𝑦)𝑑𝑦𝑑𝑥
1 0 0 0
1 |𝑥| 1 √1−𝑥 2
𝟕. ∫ ∫ (𝑥 2 𝑦 + 𝑥𝑦 2 )𝑑𝑦𝑑𝑥
𝟖. ∫ ∫ 𝑥𝑑𝑦𝑑𝑥
−1 0 −1 −√1−𝑥2
1 𝑦2 2 1+𝑥 2
𝟗. ∫ ∫ (𝑥 2 + 𝑦)𝑑𝑥𝑑𝑦 𝟏𝟎. ∫ ∫ 𝑥𝑦𝑑𝑦𝑑𝑥
−2 0 −1 −𝑥 2
172 Chapter 6 Multiple Integrals
𝜋 𝜋
𝟏𝟐. ∬ (3𝑥 + 𝑦)𝑑𝐴 , = {(𝑥, 𝑦)| ≤ 𝑥 ≤ , sin 𝑥 ≤ 𝑦 ≤ cos 𝑥}
6 4
𝑦 2 = 𝑥, 𝑥 = 1.
𝑥
𝟏𝟓. ∬ 𝑑𝐴 , 𝑤ℎ𝑒𝑟𝑒 is a hyperbolic segment bounded by
√𝑦
𝑥𝑦 = 4, 𝑥 + 𝑦 = 5.
In problems 16 − 18, find the mass and centre of gravity of the lamina
that occupies the given region and has the given density function ρ.
𝟏𝟔. = {(𝑥, 𝑦)| − 1 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1}, ρ(𝑥, 𝑦) = 𝑥 2
𝟏𝟕. = {(𝑥, 𝑦)|0 ≤ 𝑥 ≤ 𝜋, 0 ≤ 𝑦 ≤ sin 𝑥}, ρ(𝑥, 𝑦) = 𝑦
𝟏𝟖. is bounded by the parabola y = 9 − 𝑥 2 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑥 − 𝑎𝑥𝑖𝑠,
ρ(𝑥, 𝑦) = 𝑦.
𝟏𝟗. (𝒂) Sketch the region bounded by 𝑦 2 = 2𝑥 𝑎𝑛𝑑 𝑦 = 𝑥,
(𝒃) Find the area of the given region
(𝒄) Find the polar moment of inertia of the region assuming that
the density is constant.
𝟐𝟎. Sketch the region in the 𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒 bounded by
𝑦 = 𝑥 2 , 𝑥 = 2 and 𝑦 = 1,
𝑦
Solution We note that the
integrand function cannot be
integrated, so we have to
interchange the order of
= −6(0 − 1) = 6
174 Chapter 6 Multiple Integrals
Example 2. Evaluate
4 2
sin 𝑥
∫ ∫ ( ) 𝑑𝑥𝑑𝑦
0 √𝑦
𝑥2
where
𝜕𝑥 𝜕𝑥
𝜕(𝑥, 𝑦)
𝐽= = |𝜕𝑢 𝜕𝑣|
𝜕(𝑢, 𝑣) 𝜕𝑦 𝜕𝑦
𝜕𝑢 𝜕𝑣
𝑣
𝑦
S
𝑥 𝑢
So that
1 1 1
𝑥 2 + 𝑦 2 = (𝑢 + 𝑣)2 + (𝑢 − 𝑣)2 = (𝑢2 + 𝑣 2 )
4 4 2
Therefore, we have
1 2 2 2 1
∬ (𝑥 2 + 𝑦 2 )𝑑𝑥𝑑𝑦 = ∫ ∫ (𝑢 + 𝑣 2 ) |− | 𝑑𝑢𝑑𝑣
2 0 0 2
2
1 2 𝑢3 1 2 8
= ∫ [ + 𝑢𝑣 ] 𝑑𝑣 = ∫ ( + 2𝑣 2 ) 𝑑𝑣
2
4 0 3 0
4 0 3
2
1 8 2 1 16 16 8
= [ 𝑣 + 𝑣3] = ( + ) =
4 3 3 0 4 3 3 3
𝜕𝑥 𝜕𝑥
𝜕(𝑥, 𝑦) 𝜕θ| = |cos θ −𝑟 sin θ
𝐽= = | 𝜕𝑟 |
𝜕(𝑟, θ) 𝜕𝑦 𝜕𝑦 sin θ 𝑟 cos θ
𝜕𝑟 𝜕θ
= 𝑟(cos2 θ + sin2 θ) = 𝑟
Therefore,
1 θ=2𝜋 𝑟=2 −𝑟 2
= ∫ ∫ (𝑒 (−2𝑟)𝑑𝑟)𝑑θ
−2 θ=0 𝑟=1
Chapter 6 Multiple Integrals 179
1 θ=2𝜋 −𝑟 2 2 1 θ=2𝜋 −4
= ∫ [𝑒 ]1 𝑑θ = ∫ (𝑒 − 𝑒 −1 ) 𝑑θ
−2 θ=0 −2 θ=0
(𝑒 −1 − 𝑒 −4 )
= (2𝜋) = 𝜋(𝑒 −1 − 𝑒 −4 )
2
: 𝑥 = 0, 𝑥 = 𝑎⁄√2 , 𝑦 = 𝑥, 𝑦 = √𝑎2 − 𝑥 2
From Fig. 6.15, we get
𝒚 𝒚=𝒙
𝒚= √𝒂 𝟐 − 𝒙𝟐
(𝑎⁄√2 , 𝑎⁄√2)
𝐅𝐢𝐠. 𝟔. 𝟏𝟓
𝑥2 𝑦2 2π
∬ √(1 − 2
− 2 ) 𝑑𝑥𝑑𝑦 = 𝑎𝑏,
𝑎 𝑏 3
𝑥2 𝑦2
where is the ellipse 𝑎2
+ 𝑏2 = 1.
2𝜋 1
𝑥2 𝑦2
∬ √(1 − 2 − 2 ) 𝑑𝑥𝑑𝑦 = ∫ ∫ √(1 − 𝑟 2 )𝑎𝑏𝑟𝑑𝑟𝑑θ
𝑎 𝑏 0 0
1 2𝜋 1
= ∫ ∫ √(1 − 𝑟 2 )𝑎𝑏(−2𝑟)𝑑𝑟𝑑θ
−2 0 0
3⁄2 1
𝑎𝑏 2𝜋 ((1 − 𝑟 2 ))
= ∫ [( )] 𝑑θ
−2 0 3⁄2
0
𝑎𝑏 2 2𝜋𝑎𝑏
= ∙ − (2𝜋) =
−2 3 3
Example 5 Find the volume of the solid that lies under the paraboloid
𝑧 = 𝑥 2 + 𝑦 2 , above the 𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒, and inside the cylinder 𝑥 2 + 𝑦 2 =
2𝑥.
𝑦
Solution The volume of the solid is given by
D
𝑉 = ∬ 𝑧𝑑𝐴 = ∬ (𝑥 2 + 𝑦 2 )𝑑𝑥𝑑𝑦,
(1,0) 𝑥
𝜋⁄2 𝜋⁄2
4
= 4∫ cos θ 𝑑θ = 8 ∫ cos4 θ 𝑑θ
−𝜋⁄2 0
3 ∙ 1 𝜋 3𝜋
=8 =
4∙2 2 2
Here, we have used the well-known law
Chapter 6 Multiple Integrals 183
𝜋⁄2 2 𝜋⁄2
𝑟3 8 8 cos3 θ
=∫ [ ] cos θ 𝑑θ = ∫ ( − ) cos θ 𝑑θ
0 3 2 cos θ 0 3 3
8 𝜋⁄2 8 ⁄ 8 3 ∙ 1𝜋
= ∫ (cos θ − cos 4 θ)𝑑θ = ([sin θ]𝜋0 2 ) − ∙
3 0 3 3 4∙22
8 𝜋
= −
3 2
184 Chapter 6 Multiple Integrals
Exercise 6.2
lines 𝑥 = 0, 𝑥 = 1, 𝑦 = 0, 𝑦 = 𝑥.
𝟏𝟎. ∬ 𝑥𝑑𝐴 where is the disk with centre the origin and radius 5.
𝟏𝟐. ∬ 𝑥𝑦𝑑𝐴 where is the region in the first quadrant that lies
between the circles 𝑥 2 + 𝑦 2 = 4 and 𝑥 2 + 𝑦 2 = 25.
𝑏 √𝑏 2 −𝑥 2
𝟏𝟓. ∫ ∫ (𝑥 2 + 𝑦 2 )3⁄2 𝑑𝑦𝑑𝑥
−𝑏 0
2 √4 −𝑥 2
𝟏𝟔. ∫ ∫ 𝑥 2 𝑦 2 𝑑𝑦𝑑𝑥
0 −√4 −𝑥 2
2 √2𝑥 −𝑥 2
𝟏𝟕. ∫ ∫ √𝑥 2 + 𝑦 2 𝑑𝑦𝑑𝑥
0 0
0 𝑥
𝟏𝟖. ∫ ∫ cos(𝑥 2 + 𝑦 2 ) 𝑑𝑦𝑑𝑥
−2 −√8 −𝑥 2
lines 𝑦 = 𝑥, 𝑦 = 𝑥 − 1, 𝑥 + 2𝑦 = 0, 𝑥 + 2𝑦 = 2.
186 Chapter 6 Multiple Integrals
𝑥2
𝟐𝟓. ∬ 𝑑𝐴 over the region bounded by the lines
𝑦
𝑥 = 0, 𝑥 = 2, 𝑦 = 1, 𝑦=2
Check your answer by integrating in the reverse order.
∭ 𝑓(𝑥, 𝑦, 𝑧) 𝑑𝑉 (1)
𝑅
or
𝑦=𝑑 𝑥=ℎ2 (𝑥) 𝑧=𝛼2 (𝑥,𝑦)
∭ 𝑓(𝑥, 𝑦, 𝑧)𝑑𝑉 = ∫ ∫ ∫ 𝑓(𝑥, 𝑦, 𝑧)𝑑𝑧𝑑𝑦𝑑𝑥 (5)
𝑅 𝑦=𝑐 𝑥=ℎ1 (𝑥) 𝑧=𝛼1 (𝑥,𝑦)
outwards.
𝑦=𝑑 𝑥=ℎ2 (𝑥) 𝑧=𝛼2 (𝑥,𝑦)
∫ ∫ ∫ 𝑓(𝑥, 𝑦, 𝑧)𝑑𝑧 𝑑𝑦 𝑑𝑥
𝑦=𝑐 𝑥=ℎ1 (𝑥) 𝑧=𝛼1 (𝑥,𝑦)
In each of Equations (7) and (9) there may be two possible expressions
for the integral depending on whether is of a 𝑡𝑦𝑝𝑒 𝐼 𝑜𝑟 𝐼𝐼 plane
region.
3 1 2
Example 1 Evaluate ∫1 ∫−1 ∫0 (𝑥 + 2𝑦 − 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧.
Solution
3 1 2 3 1 2
𝑥2
∫ ∫ ∫ (𝑥 + 2𝑦 − 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧 = ∫ ∫ [ + 2𝑥𝑦 − 𝑥𝑧] 𝑑𝑦𝑑𝑧
1 −1 0 1 −1 2 0
3 1 3
= ∫ ∫ (2 + 4𝑦 − 2𝑧)𝑑𝑦𝑑𝑧 = ∫ [2𝑦 + 2𝑦 2 − 2𝑦𝑧]1−1 𝑑𝑧
1 −1 1
3 3
= ∫ [(2 + 2 − 2𝑧) − (−2 + 2 + 2𝑧)]𝑑𝑧 = ∫ (4 − 4𝑧)𝑑𝑧
1 1
𝑧 𝑦
(0,0,1)
(0,1)
𝑥+𝑦=1
𝑥+𝑦+𝑧 =1
(0,1,0) 𝑦 (1,0) 𝑥
(1,0,0)
𝑥 (𝒂) (𝒃)
Fig. 6.19
Chapter 6 Multiple Integrals 189
𝑉𝑜𝑙𝑢𝑚𝑒 = ∭ 𝑑𝑉
𝑅
The mass 𝑴 in a region 𝑹
Let ρ(𝑥, 𝑦, 𝑧) be the density of a solid body, its mass 𝑀 is
𝑀 = ∭ ρ(𝑥, 𝑦, 𝑧)𝑑𝑉
𝑅
190 Chapter 6 Multiple Integrals
∭𝑅 𝑥ρ(𝑥, 𝑦, 𝑧)𝑑𝑉
𝑥̅ = ,
𝑀
∭𝑅 𝑦ρ(𝑥, 𝑦, 𝑧)𝑑𝑉
𝑦̅ = ,
𝑀
∭𝑅 𝑧ρ(𝑥, 𝑦, 𝑧)𝑑𝑉
𝑧̅ =
𝑀
The moment of inertia of 𝑹
The moment of inertia of 𝑅 about the three co-ordinate axes are:
𝐼𝑥 = ∭ (𝑦 2 + 𝑧 2 )ρ(𝑥, 𝑦, 𝑧)𝑑𝑉 ,
𝑅
𝐼𝑦 = ∭ (𝑥 2 + 𝑧 2 )ρ(𝑥, 𝑦, 𝑧)𝑑𝑉 ,
𝑅
𝐼𝑧 = ∭ (𝑥 2 + 𝑦 2 )ρ(𝑥, 𝑦, 𝑧)𝑑𝑉
𝑅
(4,2)
Solution The region 𝑅 is of
𝑥
𝑡𝑦𝑝𝑒 1, so 0 2 𝒙=𝟒
4
(4, −2)
4 2√ 𝑥 2𝑥
𝑉=∫ ∫ ∫ 𝑑𝑧𝑑𝑦𝑑𝑥 =
0 −2√𝑥 0
Fig. 6.20
Chapter 6 Multiple Integrals 191
4 2√𝑥 4 2√𝑥 4
=∫ ∫ [𝑧]2𝑥
0 𝑑𝑦𝑑𝑥 = ∫ ∫ 2𝑥𝑑𝑦𝑑𝑥 = ∫ [2𝑥𝑦]2−2
√𝑥
√𝑥
𝑑𝑥
0 −2√𝑥 0 −2√𝑥 0
4
4
𝑥 5⁄2 16 512
= ∫ 8𝑥 √𝑥𝑑𝑥 = 8 [ ] = × 32 =
0 5⁄2 0 5 5
Solution
𝑧=𝑦+2
𝑉=∬ ∫ 𝑧𝑑𝑧𝑑𝐴 = ∬ (2𝑦 + 8 − (𝑥 2 + 𝑦 2 ))𝑑𝐴
𝑧=𝑥 2 +𝑦2
where is the projection of the solid into the 𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒 which is the
circle:
𝑧
𝑥 2 + 𝑦 2 = 2𝑦 + 8, 𝟐 𝟐
𝒛=𝒙 +𝒚
or
𝑥 2 + 𝑦 2 − 2𝑦 + 1 − 1 − 8 = 0,
which is the circle centered at the point 𝑦
cos θ −𝑟 sin θ
=| | = 𝑟,
sin θ 𝑟 cos θ
𝑑𝑥𝑑𝑦 = |𝐽|𝑑𝑟𝑑θ = 𝑟𝑑𝑟𝑑θ
Then, the volume is
1 2𝜋
= − ∫ ((9 − 9)2 − (0 − 9)2 )𝑑θ
4 0
81 2𝜋 81𝜋
= ∫ 𝑑θ =
4 0 2
1 1 1 1
𝑥2
= ρ ∫ ∫ 𝑥𝑑𝑥𝑑𝑦 = ρ ∫ [ ] 𝑑𝑦
−1 𝑦 2 −1 2 𝑦 2
ρ 1
= ∫ (1 − 𝑦 4 )𝑑𝑦
2 −1
1
𝑦5 1 4
= ρ [𝑦 − ] = ρ (1 − ) = ρ,
5 0 5 5
1 1 𝑥
∭ 𝑥ρ(𝑥, 𝑦, 𝑧)𝑑𝑉 = ∫ ∫ ∫ 𝑥ρ𝑑𝑧𝑑𝑥𝑑𝑦 ,
𝑅 −1 𝑦 2 0
1 1 1 1
2
𝑥3
= ρ ∫ ∫ 𝑥 𝑑𝑥𝑑𝑦 = ρ ∫ [ ] 𝑑𝑦
−1 𝑦 2 −1 3 𝑦 2
ρ 1
= ∫ (1 − 𝑦 6 )𝑑𝑦
3 −1
1
2ρ 𝑦7 2ρ 1 4
= [𝑦 − ] = (1 − ) = ρ,
3 7 0 3 7 7
1 1 𝑥
∭ 𝑧ρ(𝑥, 𝑦, 𝑧)𝑑𝑉 = ∫ ∫ ∫ 𝑧ρ𝑑𝑧𝑑𝑥𝑑𝑦 ,
𝑅 −1 𝑦 2 0
1 1
𝑥2 ρ 1 31
= ρ∫ ∫ 𝑑𝑥𝑑𝑦 = ∫ [𝑥 ]𝑦 2 𝑑𝑦
−1 𝑦 2 2 6 −1
ρ 1
= ∫ (1 − 𝑦 6 )𝑑𝑦
6 −1
1
ρ 𝑦7 ρ 1 2
= [𝑦 − ] = (1 − ) = ρ
3 7 0 3 7 7
Therefore, the centre of mass is
4 2
ρ ρ 5 5
(𝑥̅ , 𝑦̅, 𝑧̅) = ( , 0, 7 ) = ( , 0,
7 )
4 4 7 14
ρ ρ
5 5
194 Chapter 6 Multiple Integrals
ordinates: 𝒛=𝟎
𝑦
𝑥 𝑦
= 𝑟 cos θ, = 𝑟 sin θ
3 2
𝑥2 𝑦2 𝑥
+ = 𝑟 2,
9 4 𝑦
𝑑𝑥𝑑𝑦 = 3 × 2𝑟𝑑𝑟𝑑θ
𝒙𝟐 𝒚𝟐
The elliptic polar coordinates 𝒛 =𝟏− −
𝟗 𝟒 𝑥
transform the ellipse into a unit
circle centred at the origin.
Fig. 6.23
Therefore, the volume is
2𝜋 1
𝑥2 𝑦2
𝑉 = ∬ (1 − − ) 𝑑𝐴 = ∫ ∫ (1 − 𝑟 2 )(6𝑟𝑑𝑟𝑑θ)
9 4 0 0
2𝜋 1 2𝜋 1
2 )(−2𝑟𝑑𝑟)
(1 − 𝑟 2 )2
= −3 ∫ ∫ (1 − 𝑟 𝑑θ = −3 ∫ [ ] 𝑑θ
0 0 0 2 0
1
=3× × 2𝜋 = 3𝜋
2
Chapter 6 Multiple Integrals 195
(𝑥 2 + 4𝑦 2 )
= ∬ (2 − ) 𝑑𝐴
8
Fig. 6.24 (a)
where is the intersection
𝑦
region of 8𝑧 = 𝑥 2 + 4𝑦 2 and
𝑧 = 2, i.e.,
𝒙𝟐 𝒚𝟐
: 8 × 2 = 𝑥 2 + 4𝑦 2 , (− 4,0)
+
𝟏𝟔 𝟒
=𝟏
(4,0) 𝑥
or
𝑥2 𝑦2
: + =1 Fig. 6.24 (b)
16 4
Change into elliptic polar coordinates
𝑥 𝑦 𝑥2 𝑦2
= 𝑟 cos θ, = 𝑟 sin θ, + = 𝑟 2 , 𝑑𝑥𝑑𝑦 = 4 × 2𝑟𝑑𝑟𝑑θ
4 2 16 4
So the volume is
(𝑥 2 + 4𝑦 2 ) 𝑥2 𝑦2
𝑉 = ∬ (2 − ) 𝑑𝐴 = 2 ∬ (1 − − ) 𝑑𝐴
8 16 4
2𝜋 1 2𝜋 1
2 )(8𝑟𝑑𝑟𝑑θ)
= 2∫ ∫ (1 − 𝑟 = − 8∫ ∫ (1 − 𝑟 2 )(−2𝑟𝑑𝑟𝑑θ)
0 0 0 0
2𝜋 1
(1 − 𝑟 2 )2 1
= − 8∫ [ ] 𝑑θ = 8 × × 2𝜋 = 8𝜋
0 2 0
2
196 Chapter 6 Multiple Integrals
𝑃(𝑟, θ, φ)
𝑟 cos θ
𝑟
θ
φ 𝑦
𝒓 𝐬𝐢𝐧 𝛉 𝐜𝐨𝐬 𝛗
Q
𝑥
Fig. 6.25
(𝒂) The distance 𝑟 from the origin to 𝑃
(𝒃) The angle θ between 0𝑃 and the direction of the positive half-axis 𝑧.
(𝒄) The angle φ between 0𝑄 and the positive direction of the 𝑥 − 𝑎𝑥𝑖𝑠.
From Fig. 6.25, the relation between the Cartesian and the spherical co-
ordinates is given by
𝑥 = 𝑟 sin θ cos φ,
𝑦 = 𝑟 sin θ sin φ,
𝑧 = 𝑟 cos θ,
𝑥2 + 𝑦2 + 𝑧2 = 𝑟 2,
with
(𝑟 ≥ 0, 0 ≤ θ < 𝜋, 0 ≤ φ < 2𝜋 )
Chapter 6 Multiple Integrals 197
∭ √𝑥 2 + 𝑦 2 + 𝑧 2 𝑑𝑉 ,
e𝑅 𝒙𝟐 + 𝒚 𝟐 + 𝒛𝟐 = 𝟏
where 𝑅x is the solid hemisphere
with centre
p the origin, radius 1, 𝐳=𝟎
𝑦
that liesr above the 𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒.
𝑥
e Fig. 6.26
s
Solution From Fig. 6.26, and the spherical co-ordinates, we have
s 2𝜋 𝜋⁄2 1
∭i √𝑥 2 + 𝑦 2 + 𝑧 2 𝑑𝑉 = ∫ ∫ ∫ 𝑟 ∙ (𝑟 2 sin θ 𝑑𝑟𝑑θdφ)
𝑅 0 0 0
o
n
𝑥2+𝑦2+𝑧2
198 Chapter 6 Multiple Integrals
2𝜋 𝜋⁄2 1
𝑟4 1 2𝜋 ⁄
= ∫ ∫ [ ] sin θ 𝑑θdφ = ∫ [− cos θ]𝜋0 2 dφ
0 0 4 0 4 0
2𝜋
1 𝜋
= ∫ dφ =
4 0 2
Example 2 Use spherical coordinates to find the volume of the solid that lies
above the cone 𝑧 = √𝑥 2 + 𝑦 2 and below the sphere 𝑥 2 + 𝑦 2 + 𝑧 2 = 4𝑧.
𝜋
cos θ = sin θ tan θ = 1 θ=
4
Therefore, the description of the solid in spherical coordinates is
𝜋
𝑅 = ((𝑟, θ, φ)|0 ≤ 𝑟 ≤ 4 cos θ , 0 ≤ θ < , 0 ≤ φ < 2𝜋 ),
4
and its volume is
2𝜋 𝜋⁄4 4 cos θ
𝑉 = ∭ 𝑑𝑉 = ∫ ∫ ∫ 𝑟 2 sin θ 𝑑𝑟𝑑θdφ
𝑅 0 0 0
2𝜋 𝜋⁄4 3 4 cos θ
𝑟
=∫ ∫ [ ] sin θ 𝑑θdφ
0 0 3 0
1 2𝜋 𝜋⁄4
= ∫ ∫ (64 cos 3 θ) sin θ 𝑑θdφ
3 0 0
𝜋⁄4
64 2𝜋 cos 4 θ
= ∫ [− ] dφ
3 0 4 0
16 2𝜋 1
= ∫ (1 − ) dφ = 8𝜋
3 0 4
𝑃(𝜌, 𝜑, 𝑧)
φ 𝑦
𝜌
𝝆 𝐜𝐨𝐬 𝛗 𝑄
𝑥
Fig. 6.28
200 Chapter 6 Multiple Integrals
(0 ≤ ρ < ∞, 0 ≤ φ < 2𝜋 )
The Jacobian of the transformation of Cartesian co-ordinates into the
cylindrical co-ordinates is
𝜕𝑥 𝜕𝑥 𝜕𝑥
|𝜕ρ 𝜕φ 𝜕𝑧 |
𝜕(𝑥, 𝑦, 𝑧) 𝜕𝑦 𝜕𝑦 𝜕𝑦
𝐽= =
𝜕(ρ, φ, 𝑧) 𝜕ρ 𝜕φ 𝜕𝑧
| 𝜕𝑧 𝜕𝑧 𝜕𝑧 |
𝜕ρ 𝜕φ 𝜕𝑧
cos φ − ρ sin φ 0
= | sin φ ρ cos φ 0| = ρ(cos 2 φ + sin2 φ) = ρ
0 0 1
Thus
𝑑𝑥𝑑𝑦𝑑𝑧 = |𝐽|𝑑ρ𝑑φd𝑧 = ρ𝑑ρ𝑑φd𝑧
∭ (𝑥 2 + 𝑦 2 + 𝑧 2 )𝑑𝑉 ,
𝑅
Chapter 6 Multiple Integrals 201
𝑎4 𝑎 2 ℎ3 𝜋𝑎2 ℎ
= 𝜋( ℎ + )= (3𝑎2 + 2ℎ2 )
4 2 3 12
Exercise 6.3
3 √9−𝑥 2 𝑥
𝟐. ∫ ∫ ∫ 𝑦𝑧𝑑𝑦𝑑𝑧𝑑𝑥
0 0 0
1 𝑥 𝑦
𝟑. ∫ ∫ ∫ 𝑥𝑦𝑧𝑑𝑧𝑑𝑦𝑑𝑥
0 0 0
2𝜋 𝜋 1
𝟒. ∫ ∫ ∫ 𝑟 3 sin θ 𝑑𝑟𝑑θdφ
0 0 0
202 Chapter 6 Multiple Integrals
4 𝜋⁄2 2
𝟓. ∫ ∫ ∫ (ρ2 + 𝑧 2 )ρ𝑑ρ𝑑φd𝑧
0 0 0
In problems 6 − 7, find the mass and centre of mass of the given solid
𝑅 with the given density function ρ.
𝟔. 𝑅 is bounded by the parabolic cylinder 𝑧 = 1 − 𝑦 2 and the planes
𝑥 + 𝑧 = 1, 𝑥 = 0, 𝑧 = 0, ρ(𝑥, 𝑦, 𝑧) = 4.
𝟕. 𝑅 is the cube given by 0 ≤ 𝑥 ≤ 𝑎, 0 ≤ 𝑦 ≤ 𝑎, 0 ≤ 𝑧 ≤ 𝑎 and
ρ(𝑥, 𝑦, 𝑧) = 𝑥 2 + 𝑦 2 + 𝑧 2 .
𝟖. Find the volume of the region bounded by 𝑧 = 𝑥 2 + 𝑦 2 and 𝑧 = 2𝑥.
𝟗. Find the volume of a sphere of radius 𝑎 with its centre at the origin.
𝟏𝟎. Find the volume of the solid that lies between the spheres
𝑟 = 1, 𝑟 = 3 and above the cone θ = 𝜋⁄4.
𝟏𝟏. Find the volume of a cylinder of radius 𝑎 and height ℎ.
In problems 12 − 13, evaluate the given iterated integral by changing
to spherical coordinates.
3 √9−𝑥2 √9−𝑥2 −𝑦2
𝟏𝟐. ∫ ∫ ∫ 𝑧√𝑥 2 + 𝑦 2 + 𝑧 2 𝑑𝑧𝑑𝑦𝑑𝑥
−3 −√9−𝑥 2 0
3 √9−𝑦 2 √18−𝑥2 −𝑦 2
𝟏𝟑. ∫ ∫ ∫ (𝑥 2 + 𝑦 2 + 𝑧 2 )𝑑𝑧𝑑𝑥𝑑𝑦
0 0 √𝑥 2 +𝑦2
∫ 𝑓 𝑑𝑙
𝐶
and 𝑓(𝑥, 𝑦) be a function defined along the curve. Then the line
integral of 𝑓(𝑥, 𝑦) over the contour 𝐶, connected between the two
points 𝐴(𝑎1 , 𝑏1 ) and 𝐵(𝑎2 , 𝑏2 ), is defined by
𝑦
𝑩(𝒂𝟐 , 𝒃𝟐 )
𝑑𝑙
𝑑𝑦
𝑑𝑥
𝑨(𝒂𝟏 , 𝒃𝟏 )
𝑥
Fig. 6.29. Contour of integration
𝐵
∫ 𝑓(𝑥, 𝑦) 𝑑𝑙 = ∫ 𝑓(𝑥, 𝑦) √(𝑑𝑥)2 + (𝑑𝑦)2
𝐶 𝐴
𝑎2
= ∫ 𝑓(𝑥, 𝑦(𝑥)) √1 + (𝑑𝑦⁄𝑑𝑥 )2 𝑑𝑥
𝑎1
𝑏2
= ∫ 𝑓(𝑥(𝑦), 𝑦) √(𝑑𝑥⁄𝑑𝑦)2 + 1 𝑑𝑦
𝑏1
𝐵
= ∫ 𝑓(𝑥(𝑡), 𝑦(𝑡)) √(𝑑𝑥⁄𝑑𝑡)2 + (𝑑𝑦⁄𝑑𝑡)2 𝑑𝑡
𝐴
∮𝐶 𝑓 𝑑𝑙 .
𝑦
Along the path 𝑪𝟏 . On 𝐶1 we choose
(1,2)
𝑥 as the parameter so that
𝒙=𝟏
𝐶2
𝐶1 : 𝑦 = 𝑥 2 𝑦 ′ = 2𝑥, 0 ≤ 𝑥 ≤ 1,
(1,1)
1
∫ 2𝑥 𝑑𝑙 = ∫ 2𝑥 √1 + (𝑑𝑦⁄𝑑𝑥)2 𝑑𝑥 𝐶1
𝐶1 0
1 𝑥
= ∫ 2𝑥 √1 + 4𝑥 2 𝑑𝑥
0
Fig. 6.30
1
1
= ∫ 4 × 2𝑥 √1 + 4𝑥 2 𝑑𝑥
4 0
1
1 (1 + 4𝑥 2 )3⁄2 1 5√5 − 1
= [( )] = (53⁄2 − 1) = (1)
4 3⁄2 0
6 6
Along the path 𝑪𝟐 . On this path we have
𝐶2 : 𝑥 = 1 𝑑𝑥⁄𝑑𝑦 = 0, 1 ≤ 𝑦 ≤ 2,
and
2
∫ 2𝑥 𝑑𝑙 = ∫ 2(1) √(𝑑𝑥⁄𝑑𝑦)2 + 1 𝑑𝑦
𝐶2 1
1
= ∫ 2𝑑𝑦 = 2 (2)
0
Thus from (1) and (2)
5√5 − 1
∫ 2𝑥 𝑑𝑙 = ∫ 2𝑥 𝑑𝑙 + ∫ 2𝑥 𝑑𝑙 = +2
𝐶 𝐶1 𝐶2 6
206 Chapter 6 Line Integrals
𝑦
Solution From Fig. 6.31 we have the
𝒕 = 𝝅 ⁄𝟐
parametric form: 𝒙𝟐 + 𝒚𝟐 = 𝟗
𝑥 = 3 cos 𝑡 , 𝑦 = 3 sin 𝑡,
𝜋 𝜋 𝑥
𝒕 = − 𝝅 ⁄𝟐
where − 2 ≤ 𝑡 ≤ 2 , then
𝑑𝑙 = √(𝑑𝑥⁄𝑑𝑡)2 + (𝑑𝑦⁄𝑑𝑡)2 𝑑𝑡
so that
𝜋⁄2
2 (3 cos 𝑡)(3 sin 𝑡)2 (3𝑑𝑡)
∫ 𝑥𝑦 𝑑𝑙 = ∫
𝐶 −𝜋⁄2
𝜋⁄2
⁄
= 81 ∫ sin2 𝑡 cos 𝑡 𝑑𝑡 = 27[sin3 𝑡]𝜋−𝜋2⁄2 = 54
−𝜋⁄2
(𝒊) ∫ 𝑥 𝑑𝑙 , 𝐶: 𝑥 = 𝑡 3 , 𝑦 = 𝑡, 0≤𝑡≤1
𝐶
Solution
𝑑𝑥 𝑑𝑦
(𝒊) Here we have 𝑥 = 𝑡 3 , 𝑦 = 𝑡 = 3𝑡 2 , =1
𝑑𝑡 𝑑𝑡
Substitute in the parametric formula of the line integral we get
Chapter 6 Line Integrals 207
1
∫ 𝑥 𝑑𝑙 = ∫ (𝑡 3 )√(𝑑𝑥⁄𝑑𝑡)2 + (𝑑𝑦⁄𝑑𝑡)2 𝑑𝑡
𝐶 0
1
= ∫ 𝑡 3 √(3𝑡 2 )2 + (1)2 𝑑𝑡
0
1
1 1 1 (9𝑡 4 + 1)3⁄2
= ∫ √9𝑡 4 + 1(36𝑡 3 )𝑑𝑡 = [ ]
36 0 36 3⁄2 0
1 10√10 − 1
= [(10)3⁄2 − 1] =
54 54
(𝒊𝒊) Here we have
𝑦 = 𝑥 2 𝑑𝑦 = 2𝑥𝑑𝑥,
so that
1
∫ (𝑥 − 2𝑦 2 ) 𝑑𝑦 = ∫ (𝑥 − 2(𝑥 2 )2 ) (2𝑥𝑑𝑥)
𝐶 −2
1 1
2𝑥 3 4𝑥 6
=∫ (2𝑥 2 − 4𝑥 5)
𝑑𝑥 = [ − ]
−2 3 6 −2
2 4 2(−8) 4(64)
=( − )−( − )
3 6 3 6
16 128 144
=( + )= = 48
3 3 3
𝛽
𝑑𝑥 2 𝑑𝑦 2 𝑑𝑧 2
√
∫ 𝑓(𝑥, 𝑦, 𝑧) 𝑑𝑙 = ∫ 𝑓(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) ( ) + ( ) + ( ) 𝑑𝑡
𝐶 𝛼 𝑑𝑡 𝑑𝑡 𝑑𝑡
208 Chapter 6 Line Integrals
𝜋⁄2 2 2 2
𝑑𝑥 𝑑𝑦 𝑑𝑧
∫ 𝑥𝑦𝑧 𝑑𝑙 = ∫ 𝑥(𝑡)𝑦(𝑡)𝑧(𝑡)√( ) +( ) + ( ) 𝑑𝑡
𝐶 0 𝑑𝑡 𝑑𝑡 𝑑𝑡
𝜋⁄2
=∫ (2𝑡)(3 sin 𝑡)(3 cos 𝑡)√(2)2 + (3 cos 𝑡)2 + (−3 sin 𝑡)2 𝑑𝑡
0
𝜋⁄2
= 18 ∫ 𝑡 sin 𝑡 cos 𝑡 √4 + 9 cos2 𝑡 + 9 sin2 𝑡 𝑑𝑡
0
18√13 𝜋⁄2 𝜋⁄2
= ∫ 𝑡 sin 2𝑡 𝑑𝑡 = 9√13 ∫ 𝑡 sin 2𝑡 𝑑𝑡
2 0 0
𝜋 −1 9𝜋√13
= 9√13 [( ) (− ) − (1)(0)] =
2 2 4
6.3.3 Line integrals of vector fields
Suppose that
𝐹⃗ = 𝑃(𝑥, 𝑦, 𝑧)𝑖 + 𝑄(𝑥, 𝑦, 𝑧)𝑗 + 𝑅(𝑥, 𝑦, 𝑧)𝑘,
is a vector field that is defined on a region containing the curve 𝐶,
represented by
𝑟(𝑡) = 𝑥(𝑡)i + 𝑦(𝑡)j + 𝑧(𝑡)k,
Chapter 6 Line Integrals 209
∫ 𝐹⃗ (𝑟) ∙ 𝑑𝑟 = ∫ 𝑃 𝑑𝑥 + 𝑄 𝑑𝑦 + 𝑅 𝑑𝑧
𝐶 𝐶
β
= ∫ 𝐹⃗ (𝑟(𝑡)) ∙ 𝑟̇ (𝑡) 𝑑𝑡
α
β
𝑑𝑥 𝑑𝑦 𝑑𝑧
= ∫ (𝑃 +𝑄 + 𝑅 ) 𝑑𝑡
α 𝑑𝑡 𝑑𝑡 𝑑𝑡
Solution
𝑟(𝑡) = cos 𝑡 i + sin 𝑡 j
𝑟̇ (𝑡) = − sin 𝑡 i + cos 𝑡 j
𝐹⃗ (𝑟(𝑡)) = − sin2 𝑡 i + sin 𝑡 cos 𝑡 j
𝐹⃗ (𝑟(𝑡)) ∙ 𝑟̇ (𝑡) = sin3 𝑡 + sin 𝑡 cos2 𝑡 }
Therefore, the work done is
π
∫ 𝐹⃗ (𝑟) ∙ 𝑑𝑟 = ∫ 𝐹⃗ (𝑟(𝑡)) ∙ 𝑟̇ (𝑡) 𝑑𝑡
𝐶 0
π
= ∫ (sin3 𝑡 + sin 𝑡 cos2 𝑡) 𝑑𝑡
0
π
= ∫ (sin3 𝑡 + sin 𝑡 (1 − sin2 𝑡)) 𝑑𝑡
0
π
= ∫ sin 𝑡 𝑑𝑡 = [− cos 𝑡]𝜋0 = 2
0
210 Chapter 6 Line Integrals
Solution
1
(𝒊) ∫ 𝐹⃗ (𝑟) ∙ 𝑑𝑟 = ∫ 𝐹⃗ (𝑟(𝑡)) ∙ 𝑟̇ (𝑡) 𝑑𝑡
𝐶 0
𝑟(𝑡) = 𝑡 3 i + 𝑡 4 j
𝑟̇ (𝑡) = 3𝑡 2 i + 4𝑡 3 j
𝐹⃗ (𝑟(𝑡)) = ((𝑡 3 )2 )(𝑡 4 )𝑖 − (𝑡 3 )(𝑡 4 )𝑗 = 𝑡10 𝑖 − 𝑡 7 𝑗
𝐹⃗ (𝑟(𝑡)) ∙ 𝑟̇ (𝑡) = 4𝑡 + 3𝑡 2 − 6𝑡 2
1 1
𝑡3
∫ 𝐹⃗ (𝑟) ∙ 𝑑𝑟 = ∫ (4𝑡 − 3𝑡 2 ) 𝑑𝑡 = 2 [−3 ]
𝐶 −1 3 0
3 4 19
= −( − )=−
13 11 143
Chapter 6 Line Integrals 211
1
(𝒊𝒊) ∫ 𝐹⃗ (𝑟) ∙ 𝑑𝑟 = ∫ (2𝑡𝑖 + 𝑡 2 𝑗 + 3𝑡k) ∙ (2i + 3j − 2𝑡k) 𝑑𝑡
𝐶 −1
1 1
= ∫ (4𝑡 + 3𝑡 2 − 6𝑡 2 ) 𝑑𝑡 = ∫ (4𝑡 − 3𝑡 2 ) 𝑑𝑡
−1 −1
1
𝑡3
= 0 + 2 [−3 ] = −2
3 0
(𝒊𝒊𝒊) ∫ 𝐹⃗ (𝑟) ∙ 𝑑𝑟
𝐶
1
= ∫ (sin 𝑡 3 𝑖 + cos(−𝑡 2 ) 𝑗 + (𝑡 3 )(𝑡)k) ∙ (3𝑡 2 i − 2𝑡j + 𝑘) 𝑑𝑡
0
1
= ∫ (3𝑡 2 sin 𝑡 3 − 2𝑡 cos 𝑡 2 + 𝑡 4 ) 𝑑𝑡
0
1
3
𝑡5 2
1
= [− cos 𝑡 − sin 𝑡 + ] = (− cos 1 − sin 1 + + 1)
5 0 5
6
= − cos 1 − sin 1
5
Hence,
2𝜋
∫ 𝐹⃗ (𝑟) ∙ 𝑑𝑟 = ∫ [(𝑡 − sin 𝑡)(1 − cos 𝑡) + sin 𝑡 (3 − cos 𝑡)] 𝑑𝑡
𝐶 0
2𝜋
(𝑡 − sin 𝑡)2 (3 − cos 𝑡)2
=[ + ]
2 2 0
because the value of the integral depends only on the points 𝐴 and 𝐵
and not on the particular choice of the path 𝐶 joining them.
𝑏
The formula ∫𝑎 𝑓 ′ (𝑥) 𝑑𝑥 = 𝑓(𝑏) − 𝑓(𝑎), expresses one version of the
fundamental theorem of calculus. To generalize this theorem to higher
dimensions, we have to generalize the integral itself. This section
enables us to give an easy extension of the fundamental theorem in
which the derivative of 𝑓 is replaced by the gradient of 𝑓. The formula
is
𝑏
∫ ∇𝑓 ∙ 𝑑𝑟 = 𝑓(𝑏) − 𝑓(𝑎)
𝑎
Chapter 6 Line Integrals 213
∫ 𝐹⃗ ∙ 𝑑𝑟 = 0,
𝐶
Example 1 Find φ if
∇φ(𝑥, 𝑦) = (𝑦 2 + 2𝑥𝑦)𝑖 + (2𝑥𝑦 + 𝑥 2 )𝑗
∫ (𝑦 + 𝑧) 𝑑𝑥 + (𝑥 + 𝑧) 𝑑𝑦 + (𝑥 + 𝑦) 𝑑𝑧,
𝐶
Therefore, with the sum of the last equations and take the repeated terms
one time
φ = 𝑥𝑦 + 𝑥𝑧 + 𝑦𝑧 + 𝑐
From the fundamental theorem of the line integral we have
𝐵(1,1,1)
∫ 𝐹⃗ (𝑟) ∙ 𝑑𝑟 = ∫ 𝐹⃗ (𝑟) ∙ 𝑑𝑟
𝐶 𝐴(0,0,0)
𝐵(1,1,1)
=∫ ∇φ ∙ 𝑑𝑟 = φ(1,1,1) − φ(0,0,0)
𝐴(0,0,0)
= (1 + 1 + 1 + 𝑐) − (0 + 0 + 0 + 𝑐) = 3
Solution
𝑖 𝑗 𝑘
𝜕 𝜕 𝜕
∇ × 𝐹⃗ = | |
𝜕𝑥 𝜕𝑦 𝜕𝑧
𝑦 (𝑥 + 𝑧) 𝑦
= (1 − 1)𝑖 − (0 − 0)𝑗 + (1 − 1)𝑘 = 0
Therefore, 𝐹⃗ is conservative, that is, we can write 𝐹⃗ as
𝐹⃗ = ∇φ,
∂φ
= 𝑦 φ = 𝑥𝑦 + 𝑐1 ,
∂𝑥
∂φ
= (𝑥 + 𝑧) φ = 𝑥𝑦 + 𝑦𝑧 + 𝑐2 ,
∂y
Chapter 6 Line Integrals 217
∂φ
=𝑦 φ = 𝑦𝑧 + 𝑐3
∂z
Thus we have
φ = 𝑥𝑦 + 𝑦𝑧 + 𝑐
From the fundamental theorem of the line integral we have
(8,3,−1) (8,3,−1)
∫ 𝐹⃗ (𝑟) ∙ 𝑑𝑟 = ∫ 𝐹⃗ (𝑟) ∙ 𝑑𝑟 = ∫ ∇φ ∙ 𝑑𝑟
𝐶 (2,1,4) (2,1,4)
Exercise 6.4
along any two different curves and show that the integral is path
independent.
Definition 6.3 We say the curve 𝐶 is simple if it does not intersect itself.
An ellipse is simple while a figure eight is not simple (see Fig. 6.32).
Simple
Not Simple
Here, in Fig. 6.33 is a sketch of simple and closed curve 𝐶. First, notice
that because the curve is simple and closed there are no holes in the
region . Also notice that a direction has been put on the curves.
𝑦
Proof. For simplicity we shall
𝐵(𝑎2 , 𝑏2 )
prove the theorem for simple
divides the curve 𝐶 into two parts; the lower 𝑦 = 𝑢(𝑥) and the upper
𝑦 = 𝑣(𝑥). Since
So that we get
𝐵
∮ 𝑃(𝑥, 𝑦) 𝑑𝑥 = ∫ [𝑃(𝑥, 𝑢(𝑥)) − 𝑃(𝑥, 𝑣(𝑥))]𝑑𝑥
𝐶 𝐴
𝐵 𝑣(𝑥)
𝜕𝑃(𝑥, 𝑦)
= − ∫ [∫ 𝑑𝑦] 𝑑𝑥
𝐴 𝑢(𝑥) 𝜕𝑦
𝜕𝑃(𝑥, 𝑦)
= −∬ 𝑑𝑦 𝑑𝑥
𝜕𝑦
Similarly, we can prove that
𝜕𝑄(𝑥, 𝑦)
∮ 𝑄(𝑥, 𝑦) 𝑑𝑦 = ∬ 𝑑𝑦 𝑑𝑥
𝐶 𝜕𝑥
and this completes the proof. ∎
Remark 5 The above equation can be put in the vector form using
the nabla operators as follows:
∮ 𝐹⃗ ∙ 𝑑𝑟 = ∬ (∇ × 𝐹⃗ ) ∙ 𝑘 𝑑𝑥 𝑑𝑦,
𝐶
where
𝐹⃗ = 𝑃(𝑥, 𝑦)𝑖 + 𝑄(𝑥, 𝑦) 𝑗,
𝑑𝑟 = 𝑑𝑥𝑖 + 𝑑𝑦𝑗
222 Chapter 6 Line Integrals
Solution We first sketch the closed curve
𝐶 as shown in Fig.6.35. From this figure (𝟎, 𝟎) (𝟏, 𝟎) 𝑥
the closed region is defined by Fig. 6.35
: 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 2𝑥
We can identify 𝑃 and 𝑄 from the line integral. Here they are
𝜕𝑃
𝑃 = 𝑥𝑦 = 𝑥,
𝜕𝑦
𝜕𝑄
𝑄 = 𝑥2𝑦3 = 2𝑥𝑦 3
𝜕𝑥
From Green's theorem, we get
𝜕𝑄 𝜕𝑃
∮ 𝑃 𝑑𝑥 + 𝑄 𝑑𝑦 = ∬ ( − ) 𝑑𝑦 𝑑𝑥
𝐶 𝜕𝑥 𝜕𝑦
1 2𝑥
∮ 𝑥𝑦 𝑑𝑥 + 𝑥 2 𝑦 3 𝑑𝑦 = ∫ ∫ (2𝑥𝑦 3 − 𝑥) 𝑑𝑦 𝑑𝑥
𝐶 0 0
1 2𝑥
2𝑥𝑦 4
=∫ [ − 𝑥𝑦] 𝑑𝑥
0 4 0
1
= ∫ (8𝑥 5 − 2𝑥 2 ) 𝑑𝑥
0
1
8𝑥 6 2𝑥 3 2
=[ − ] =
6 3 0 3
Chapter 6 Line Integrals 223
∮ −𝑦 𝑑𝑥 + 𝑥 𝑑𝑦,
𝐶
∮ −𝑦 𝑑𝑥 + 𝑥 𝑑𝑦 = ∬ 2 𝑑𝑥 𝑑𝑦 (7)
𝐶
L.H.S. of (7)
∮ −𝑦 𝑑𝑥 + 𝑥 𝑑𝑦
𝐶=𝐶1 +𝐶2
∫ (−𝑦 𝑑𝑥 + 𝑥 𝑑𝑦) =
𝐶1
1 1 1
𝑥3 1
=∫ (−𝑥 2 𝑑𝑥 + 𝑥 (2𝑥𝑑𝑥)) = ∫ 𝑥 𝑑𝑥 = [ ] = 2 (8)
0 0 3 0 3
0
∫ (−𝑦 𝑑𝑥 + 𝑥 𝑑𝑦) = ∫ (−𝑦 (2𝑦𝑑𝑦) + 𝑦 2 𝑑𝑦)
𝐶2 1
0 0
2
𝑦3 1
= ∫ −𝑦 𝑑𝑦 = − [ ] = (9)
1 3 1 3
Adding (8) and (9) we get
2
∮ −𝑦 𝑑𝑥 + 𝑥 𝑑𝑦 = (10)
𝐶 3
R.H.S. of (7)
1 √𝑦 1
∬ 2 𝑑𝑥 𝑑𝑦 = ∫ ∫ 2𝑑𝑥𝑑𝑦 = 2 ∫ (√𝑦 − 𝑦 2 )𝑑𝑦
0 𝑦2 0
3 1
𝑦 3⁄2 𝑦 2
= 2[ − ] = (11)
3⁄2 3 0 3
From (10) and (11), Green’s theorem is verified.
∮ 𝑦 sin 𝑥 𝑑𝑥 + 𝑥𝑒 𝑦 𝑑𝑦,
𝐶
Solution
𝜕𝑃
𝑃 = 𝑦 sin 𝑥 = sin 𝑥,
𝜕𝑦
𝜕𝑄
𝑄 = 𝑥𝑒 𝑦 = 𝑒𝑦
𝜕𝑥
From Green's theorem, we get
𝜕𝑄 𝜕𝑃
∮ 𝑃 𝑑𝑥 + 𝑄 𝑑𝑦 = ∬ ( − ) 𝑑𝑦 𝑑𝑥
𝐶 𝜕𝑥 𝜕𝑦
𝜋⁄2 𝑥
= ∫0 ∫0 (𝑒 𝑦 − sin 𝑥) 𝑑𝑦 𝑑𝑥
𝜋⁄2 𝜋⁄2
=∫ [𝑒 𝑦 − 𝑦 sin 𝑥]0𝑥 𝑑𝑥 = ∫ (𝑒 𝑥 − 1 − 𝑥 sin 𝑥) 𝑑𝑥
0 0
𝜋⁄2
= [𝑒 𝑥 − 𝑥 − [(𝑥)(− cos 𝑥) − (1)(− sin 𝑥)]]0
⁄
= [𝑒 𝑥 − 𝑥 + 𝑥 cos 𝑥 − sin 𝑥]𝜋0 2
𝜋 𝜋
= 𝑒 𝜋⁄2 − 1 − + 0 − 0 − 1 = 𝑒 𝜋⁄2 − − 2
2 2
∮ 𝑦 3 𝑑𝑥 − 𝑥 3 𝑑𝑦 = ∬ (−3𝑥 2 − 3𝑦 2 ) 𝑑𝑦 𝑑𝑥,
𝐶
226 Chapter 6 Line Integrals
where is a disk of radius 2 centred at the origin. So, change into polar
coordinates:
𝑥 = 𝑟 cos θ , 𝑦 = 𝑟 sin θ, 𝑥2 + 𝑦2 = 𝑟 2, 𝑑𝑥𝑑𝑦 = 𝑟𝑑𝑟𝑑θ
Thus we have
∮ 𝑦 3 𝑑𝑥 − 𝑥 3 𝑑𝑦 = −3 ∬ (𝑥 2 + 𝑦 2 ) 𝑑𝑦 𝑑𝑥
𝐶
2𝜋 2
= −3 ∫ ∫ (𝑟 2 )(𝑟𝑑𝑟𝑑θ)
0 0
2
𝑟4
= −3(2𝜋) [ ] = −24𝜋
4 0
Exercise 6.5
∮ 𝑥 2 𝑦 𝑑𝑥 + 𝑥𝑦 3 𝑑𝑦,
𝐶
𝑘
𝑧
𝑛
γ
γ
𝑑𝑥𝑑𝑦
𝑺
𝟏
𝑥 Fig. 6.38
𝑛
The direction cosines of the unit normal vector 𝑛̂ = |𝑛| is obtained using
the notation of the differential operator nabla; namely
𝑛 = ∇𝑔 = 𝑔𝑥 𝑖 + 𝑔𝑦 𝑗 + 𝑔𝑧 𝑘,
which implies
∇𝑔 𝑔𝑥 𝑖 + 𝑔𝑦 𝑗 + 𝑔𝑧 𝑘
𝑛̂ = =
|∇𝑔| √𝑔𝑥2 + 𝑔𝑦2 + 𝑔𝑧2
Now we can evaluate cos γ from this relation by
𝑔𝑧
cos γ = 𝑛̂ ∙ 𝑘 =
√𝑔𝑥2 + 𝑔𝑦2 + 𝑔𝑧2
Suppose that 𝑓(𝑥, 𝑦, 𝑧) is a bounded function defined on the surface 𝑆.
Then we define the 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 of 𝑓 over 𝑆 by
√𝑔𝑥2 + 𝑔𝑦2 + 𝑔𝑧2
∬ 𝑓(𝑥, 𝑦, 𝑧)𝑑𝑆 = ∬ 𝑓(𝑥, 𝑦, 𝑧(𝑥, 𝑦)) 𝑑𝑥 𝑑𝑦
𝑆 1 𝑔𝑧
Similarly,
230 Chapter 6 Line Integrals
√1 + 1 + 1
∬ 3(𝑥 + 𝑦 + 𝑧)𝑑𝑆 = ∬ 3(𝑥 + 𝑦 + (𝑥 + 𝑦)) 𝑑𝑥 𝑑𝑦
𝑆 1 −1
1 𝑥 1 𝑥
𝑦2
= ∫ ∫ − 6√3(𝑥 + 𝑦) 𝑑𝑦 𝑑𝑥 = −6√3 ∫ [(𝑥𝑦 + )] 𝑑𝑥
0 0 0 2 0
1 1
𝑥2 2
3 𝑥3
= −6√3 ∫ (𝑥 + ) 𝑑𝑥 = −6√3 × [ ] = −3√3
0 2 2 3 0
Solution Since,
𝑔(𝑥, 𝑦, 𝑧) = 𝑥 + 𝑦 2 − z ∇𝑔 = 𝑖 + 2𝑦𝑗 − 𝑘,
then,
√1 + 4𝑦2 + 1
∬ 𝑦𝑑𝑆 = ∬ 𝑦 𝑑𝑥 𝑑𝑦
𝑆 1 −1
2
2 1
1 (2 + 4𝑦2 )3⁄2
= − ∫ ∫ 𝑦 √2 + 4𝑦2 𝑑𝑥 𝑑𝑦 = − ([ ] ) ∙ [𝑥]10
0 0 8 3⁄2 0
2 1
=− ((18)3⁄2 − (2)3⁄2 ) = ((18)3⁄2 − (2)3⁄2 )
24 12
1
= ((2 × 9)3⁄2 − (2)3⁄2 )
12
1
= ((2)3⁄2 (9)3⁄2 − (2)3⁄2 )
12
2√2 13√2
= ((9)3⁄2 − 1) =
12 3
2 √4−𝑥 2
1 1
= 2∬ 𝑑𝑦 𝑑𝑥 = 8 ∫ ∫ 𝑑𝑦 𝑑𝑥
1 √4 − 𝑥 2 0 0 √4 − 𝑥 2
2 2
2 2 1
= 8∫ [𝑦]√4−𝑥
0 𝑑𝑥 = 8 ∫ (√4 − 𝑥 2 ) 𝑑𝑥
√4 − 𝑥 2 √4 − 𝑥 2
0 0
2
= 8 ∫ 𝑑𝑥 = 16
0
Exercise 6.6
𝐹⃗ ∙ 𝑛
∬ 𝐹⃗ ∙ 𝑑𝑆 = ∬ 𝑑𝑦𝑑𝑧,
𝑆 3 𝑛. 𝑖
Solution The surface 𝑆 is the paraboloid given in Fig. 6.40 (a) with its
projection on the 𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒 is the unit circle 1 centred at the origin
shown in Fig. 6.40 (b). Therefore,
𝑧
𝑦
𝒛=𝟒
𝒙𝟐 + 𝒚𝟐 = 𝟏
𝟏 𝑥
𝒛 = 𝟒(𝒙𝟐 + 𝒚𝟐 )
𝑥
(𝒂) (𝒃)
Fig. 6.40
𝑔(𝑥, 𝑦, 𝑧) = 4(𝑥 2 + 𝑦 2 ) − 𝑧 = 0,
𝐹⃗ = 𝑖 + 2𝑗 + 7𝑘,
𝑛 = ∇𝑔 = 8𝑥𝑖 + 8𝑦𝑗 − 𝑘,
𝐹⃗ ∙ 𝑛 = 8𝑥 + 16𝑦 − 7,
𝑛. 𝑘 = −1
This gives
𝐹⃗ ∙ 𝑛 8𝑥 + 16𝑦 − 7
∬ 𝐹⃗ ∙ 𝑑𝑆 = ∬ 𝑑𝑥𝑑𝑦 = ∬ 𝑑𝑥𝑑𝑦
𝑆 1 𝑛. 𝑘 1 −1
Change into polar co-ordinates:
236 Chapter 6 Line Integrals
Solution
𝐹⃗ ∙ 𝑛
∬ 𝐹⃗ ∙ 𝑑𝑆 = ∬ 𝑑𝑥𝑑𝑦,
𝑆 1 𝑛. 𝑘
𝑔(𝑥, 𝑦, 𝑧) = 𝑥 2 + 𝑦 2 − 𝑧 = 0,
𝐹⃗ = 𝑒 𝑦 𝑖 + 𝑦𝑒 𝑥 𝑗 + 𝑥 2 𝑦𝑘,
𝑛 = ∇𝑔 = 2𝑥𝑖 + 2𝑦𝑗 − 𝑘,
𝐹⃗ ∙ 𝑛 = 2𝑥𝑒 𝑦 + 2𝑦 2 𝑒 𝑥 − 𝑥 2 𝑦,
𝑛. 𝑘 = −1
Thus we have
1 1
∬ 𝐹⃗ ∙ 𝑑𝑆 = − ∫ ∫ (2𝑥𝑒 𝑦 + 2𝑦 2 𝑒 𝑥 − 𝑥 2 𝑦)𝑑𝑥𝑑𝑦
𝑆 0 0
1 1
𝑥3
2 𝑦 2 𝑥
= − ∫ [𝑥 𝑒 + 2𝑦 𝑒 − 𝑦] 𝑑𝑦
0 3 0
1
1
= − ∫ (𝑒 𝑦 + 2𝑦 2 𝑒 − 𝑦 − 2𝑦 2 ) 𝑑𝑦
0 3
1
𝑦
𝑦3 1 𝑦3 𝑦3
= − [𝑒 + 2 𝑒 − −2 ]
3 3 2 3 0
2 1 2
= − (𝑒 + 𝑒 − − − 1)
3 6 3
5 11
= −( 𝑒 − )
3 6
238 Chapter 6 Line Integrals
Exercise 6.7
∬ 𝐹⃗ ∙ 𝑑𝑆 = ∭ (∇ ∙ 𝐹⃗ )𝑑𝑉 (1)
𝑆 𝑅
Proof. Let us begin by defining the vector field 𝐹⃗ (𝑥, 𝑦, 𝑧) and the unit
normal to 𝑆 by
Chapter 6 Line Integrals 239
The first integral on the right hand side of (5) can be written in the form
of the surface integral of the function 𝐹3 (𝑥, 𝑦, 𝑧) taken over the upper
side of the surface
𝑆2 : 𝑧 = 𝑧2 (𝑥, 𝑦)
Similarly, the second integral
𝜕𝐹2
∭ 𝑑𝑥𝑑𝑦𝑑𝑧 = ∬ 𝐹2 cos β 𝑑𝑆 (8)
𝑅 𝜕𝑦
Adding together equations (6) − (8), we get (2) and the proof
completes. ∎
∬ 𝐹⃗ ∙ 𝑑𝑆 = ∭ (∇ ∙ 𝐹⃗ )𝑑𝑉 = ∭ (2 + 2y + 2z)𝑑𝑉
𝑆 𝑅 𝑅
∬ (2𝑥𝑖 + 𝑦 2 𝑗 + 𝑧 2 𝑘) ∙ 𝑑𝑆
𝑆
2𝜋 𝜋 1
=∫ ∫ ∫ (2 + 2𝑟 sin θ sin φ + 2𝑟 cos θ)(𝑟 2 sin θ 𝑑𝑟𝑑θdφ)
0 0 0
2𝜋 𝜋 1
=∫ ∫ ∫ (2𝑟 2 sin θ + 2𝑟 3 sin2 θ sin φ + 2𝑟 3 sin θ cos θ)𝑑𝑟𝑑θdφ
0 0 0
2𝜋 𝜋 1
𝑟3 𝑟4 𝑟4
=∫ ∫ (2 sin θ + 2 sin2 θ sin φ + 2 sin θ cos θ) 𝑑θdφ
0 0 3 4 4 0
2𝜋 𝜋
2 1 θ − sin 2θ⁄2 1
=∫ (− cos θ + ( ) sin φ + sin2 θ) dφ
0 3 2 2 2 0
2𝜋
4 8𝜋
=∫ dφ =
0 3 3
𝐹⃗ (𝑥, 𝑦, 𝑧) = 𝑥 3 𝑖 + 𝑦 3 𝑗 + 𝑧 3 𝑘,
𝒛=𝟐
and 𝑆 is the surface of the solenoid
bounded by the cylinder 𝑥 2 + 𝑦 2 = 1
𝒙𝟐 + 𝒚𝟐 = 𝟏
and the planes 𝑧 = 0 𝑎𝑛𝑑 𝑧 = 2 (see
Fig. 6.43). 𝒛=𝟎
𝑦
𝑥
Solution Since Fig. 6.43
𝑑𝑖𝑣𝐹⃗ = 3(𝑥 2 + 𝑦 2 + 𝑧 2 )
Then the divergence theorem may be applied easily and yields
Chapter 6 Line Integrals 243
∬ 𝐹⃗ ∙ 𝑑𝑆 = ∭ (∇ ∙ 𝐹⃗ )𝑑𝑉
𝑆 𝑅
2
= ∬ ∫ 3(𝑥 2 + 𝑦 2 + 𝑧 2 )𝑑𝑧𝑑𝑦𝑑𝑥
0
2
𝑧3 2 2
= 3 ∬ [𝑥 𝑧 + 𝑦 𝑧 + ] 𝑑𝑦𝑑𝑥
3 0
= ∬ (6(𝑥 2 + 𝑦 2 ) + 8)𝑑𝑦𝑑𝑥
∬ 𝐹⃗ ∙ 𝑑𝑆 = ∭ (∇ ∙ 𝐹⃗ )𝑑𝑉 (9)
𝑆 𝑅
= 2 ∬ [1 − 𝑥 2 − 𝑦 2 ]2 𝑑𝑦𝑑𝑥
polar coordinates
2𝜋 1
∭ 𝑑𝑖𝑣𝐹⃗ 𝑑𝑉 = 2 ∫ ∫ (1 − 𝑟 2 )2 𝑟𝑑𝑟𝑑θ
𝑅 0 0
2𝜋 1
1
= × 2 ∫ ∫ (1 − 𝑟 2 )2 (−2𝑟)𝑑𝑟𝑑θ
−2 0 0
1
(1 − 𝑟 2 )3 1 2𝜋
= −2𝜋 [ ] = −2𝜋 [0 − ] = (10)
3 0
3 3
Now we compute the left hand side of (9). The surface of the given solid
is divided into two parts; namely the surface of the solid and the surface
of the bottom plane. Thus we can write
with
𝑔(𝑥, 𝑦, 𝑧) = 𝑥 2 + 𝑦 2 + 𝑧 − 1 = 0,
𝐹⃗ (𝑥, 𝑦, 𝑧) = 𝑥𝑧𝑖 + 𝑦𝑧𝑗 + 𝑧 2 𝑘,
𝑦
𝑛𝑠𝑖𝑑𝑒𝑠 = ∇𝑔 = 2𝑥𝑖 + 2𝑦𝑗 + 𝑘,
𝑛𝑠𝑖𝑑𝑒𝑠 . 𝑘 = 1 𝒏𝒃𝒐𝒕𝒕𝒐𝒎
𝑥
𝐹⃗ ∙ 𝑛𝑠𝑖𝑑𝑒𝑠 = 2𝑥 2 𝑧 + 2𝑦 2 𝑧 + 𝑧 2 ,
Fig. 6.44
= 2𝑧(𝑥 2 + 𝑦 2 ) + 𝑧 2
= 2𝑧(1 − 𝑧) + 𝑧 2
= 2𝑧 − 𝑧 2
= 𝑧(2 − 𝑧)
Chapter 6 Line Integrals 245
This gives
= ∬ (1 − 𝑥 2 − 𝑦 2 )[2 − (1 − 𝑥 2 − 𝑦 2 )] 𝑑𝑥𝑑𝑦
1
= ∬ (1 − (𝑥 2 + 𝑦 2 ))(1 + (𝑥 2 + 𝑦 2 )) 𝑑𝑥𝑑𝑦
1
= ∬ [1 − (𝑥 2 + 𝑦 2 )2 ] 𝑑𝑥𝑑𝑦
1
2𝜋 1
=∫ ∫ (1 − 𝑟 4 )𝑟𝑑𝑟𝑑θ
0 0
2 1
𝑟 𝑟6 4 2𝜋
= 2𝜋 [ − ] = 2𝜋 ( ) = (12)
2 6 0 12 3
On the bottom of the surface, we have
𝑔(𝑥, 𝑦, 𝑧) = 𝑧 = 0 (𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒),
𝐹⃗ (𝑥, 𝑦, 𝑧) = 𝑥𝑧𝑖 + 𝑦𝑧𝑗 + 𝑧 2 𝑘,
𝑛𝑏𝑜𝑡𝑡𝑜𝑚 = − 𝑘,
𝐹⃗ ∙ 𝑛𝑠𝑖𝑑𝑒𝑠 = − 𝑧 2 = 0,
(∬ 𝐹⃗ ∙ 𝑑𝑆) =0 (13)
𝑆 𝑏𝑜𝑡𝑡𝑜𝑚
The verification of Gauss' theorem is concluded from equations (10) −
(13).
Exercise 6.8
into a surface integral over the surface 𝑆. Let us begin by the integral
248 Chapter 6 Line Integrals
𝑧
Solution From Stokes’ theorem (𝟎, 𝟎, 𝟒)
∮ 𝐹⃗ (𝑟) ∙ 𝑑𝑟 = ∬ 𝑐𝑢𝑟𝑙𝐹⃗ ∙ 𝑑𝑆
𝐶 𝑆
𝑺
𝑐𝑢𝑟𝑙𝐹⃗ ∙ 𝑛
=∬ ∙ 𝑑𝑥𝑑𝑦,
𝑛. 𝑘 (𝟎, 𝟐, 𝟎) 𝑦
where is the projection of (𝟒, 𝟎, 𝟎)
𝑆: 𝑧 = 4 − 𝑥 − 2𝑦, 𝑥 𝑦
on the 𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒. (𝟎, 𝟐)
𝑖 𝑗 𝑘
𝑥
𝜕 𝜕 𝜕 (𝟒, 𝟎)
∇ × 𝐹⃗ = | |=
𝜕𝑥 𝜕𝑦 𝜕𝑧 Fig. 6.46
𝑦 𝑧 −𝑥𝑦
= (−𝑥 − 1)𝑖 − (−𝑦 − 0)𝑗 + (0 − 1)𝑘
= −(𝑥 + 1)𝑖 + 𝑦𝑗 − 𝑘,
𝑔(𝑥, 𝑦, 𝑧) = 𝑥 + 2𝑦 + 𝑧 − 4,
𝑛 = ∇𝑔 = 𝑖 + 2𝑗 + 𝑘,
𝑐𝑢𝑟𝑙𝐹⃗ ∙ 𝑛 = −(𝑥 + 1) + 2𝑦 − 1 = −2 − 𝑥 + 2𝑦,
𝑛. 𝑘 = 1
250 Chapter 6 Line Integrals
Thus we have
𝑪
𝑦
Solution The closed contour 𝐶 is 𝑦
𝑥
𝑟(𝑡) = cos 𝑡 i + sin 𝑡 j + 0𝑘
𝑟̇ (𝑡) = − sin 𝑡 i + cos 𝑡 j + 0𝑘 𝒙𝟐 + 𝒚𝟐 = 𝟏 𝑥
Hence,
2𝜋 2𝜋
∮ 𝐹⃗ (𝑟) ∙ 𝑑𝑟 = ∫ 𝐹⃗ (𝑟(𝑡)) ∙ 𝑟̇ (𝑡)𝑑𝑡 = ∫ − sin2 𝑡 𝑑𝑡
𝐶 0 0
2𝜋
1 − cos 2𝑡
= −∫ 𝑑𝑡 = −𝜋 (12)
0 2
On the other hand, we now consider the integral over
𝑆: 𝑔(𝑥, 𝑦, 𝑧) = 𝑥 2 + 𝑦 2 + 𝑧 − 1,
𝑐𝑢𝑟𝑙𝐹⃗ ∙ 𝑛
∬ 𝑐𝑢𝑟𝑙𝐹⃗ ∙ 𝑑𝑆 = ∬ ∙ 𝑑𝑥𝑑𝑦,
𝑆 𝑛. 𝑘
𝑖 𝑗 𝑘
𝜕 𝜕 𝜕
𝑐𝑢𝑟𝑙𝐹⃗ = | | = (0 − 1)𝑖 − (1 − 0)𝑗 + (0 − 1)𝑘
𝜕𝑥 𝜕𝑦 𝜕𝑧
𝑦 𝑧 𝑥
= −𝑖 − 𝑗 − 𝑘,
𝑛 = ∇𝑔 = 2𝑥𝑖 + 2𝑦𝑗 + 𝑘,
𝑐𝑢𝑟𝑙𝐹⃗ ∙ 𝑛 = −2𝑥 − 2𝑦 − 1,
𝑛. 𝑘 = 1
The domain is the circle 𝑥 2 + 𝑦 2 = 1, so the change into polar
coordinates yields
2𝜋 1
∬ 𝑐𝑢𝑟𝑙𝐹⃗ ∙ 𝑑𝑆 = ∫ ∫ (−2𝑟 cos θ − 2𝑟 sin θ − 1)𝑟𝑑𝑟𝑑θ
𝑆 0 0
2𝜋 1
=∫ ∫ (−2𝑟 2 cos θ − 2𝑟 2 sin θ − 𝑟)𝑑𝑟𝑑θ
0 0
2𝜋 1
𝑟3 𝑟3 𝑟2
=∫ [−2 cos θ − 2 sin θ − ] 𝑑θ
0 3 3 2 0
2𝜋
2 2 1
=∫ (− cos θ − sin θ − ) 𝑑θ
0 3 3 2
252 Chapter 6 Line Integrals
2 2 1 2𝜋
= [− sin θ + cos θ − θ] = − 𝜋 (13)
3 3 2 0
From (12) and (13), Stokes’ theorem is verified.
where
𝑟(𝑡) = 𝑏 cos 𝑡 i + 𝑏 sin 𝑡 j + 𝑏 2 𝑘
𝑟̇ (𝑡) = − 𝑏 sin 𝑡 i + 𝑏 cos 𝑡 j + 0𝑘
𝐹⃗ (𝑟(𝑡)) = 2(𝑏 sin 𝑡)𝑖 + (𝑏 2 )𝑗 + 3(𝑏 sin 𝑡)𝑘
Exercise 6.9
In problems 11 − 15, verify that Stokes’ theorem is true for the given
vector field 𝐹⃗ and the surface 𝑆.
𝟏𝟏. 𝐹⃗ (𝑥, 𝑦, 𝑧) = 𝑦 3 𝑖 − 𝑥 3 𝑗 and 𝑆 is the circular disk 𝑥 2 + 𝑦 2 ≤ 1,
𝑧 = 0.
𝟏𝟐. 𝐹⃗ (𝑥, 𝑦, 𝑧) = 3𝑦𝑖 + 4𝑧𝑗 − 6𝑥𝑘 𝑆 is the part of the paraboloid
𝑧 = 9 − 𝑥 2 − 𝑦 2 that lies above the 𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒, oriented upward.
𝟏𝟑. 𝐹⃗ (𝑥, 𝑦, 𝑧) = 3𝑦𝑖 + 4𝑧𝑗 − 6𝑥𝑘 𝑆 is the part of the plane 𝑥 + 𝑦 + 𝑧 = 1
that lies in the first octant, oriented upward.
𝟏𝟒. 𝐹⃗ (𝑥, 𝑦, 𝑧) = 𝑥𝑦𝑖 + 𝑦𝑧𝑗 + 𝑥𝑧𝑘 over the surface 𝑧 = √𝑎2 − 𝑥 2 − 𝑦 2 ,
oriented upward.
References