Ch4 Solutions
Ch4 Solutions
6.
14.
1 " "
a. "$ f. &#
7. " "
0 b. %
g. #'
" "
8. c. &#
h. #'
1
# "
d. "$
i. #
9.
1 0.20 œ 0.80 % "
e. "$
j. #
Since the probability that it won't rain is
80%, you could leave your umbrella at home 15.
and be fairly safe. There are 20 possible outcomes.
b. 0 e. 1 16.
c. "# f. #$ a. P(begins with M) œ )
œ %
&! #&
62
Chapter 4 - Probability and Counting Rules
28.
b. All girls or all boys would be BBB and a. P(not oil) œ 1 0.39 œ 0.61
GGG; hence, P(all girls or all boys) œ "% Þ
b. P(natural gas or oil) œ
c. Exactly two boys or two girls would be 0.39 0.24 œ 0.63
BBG, BGB, GBB, BBG, GBG, or BGG.
The probability then is ') œ $% Þ c. P(nuclear) œ 0.08
63
Chapter 4 - Probability and Counting Rules
1 2,1
30.
2 2,2
P(individual or corporate taxes) œ 0.60 2 3 2,3
4 2,4
31.
$5 $1, $5 1 3,1
$1 $10 $1, $10 2 3,2
$20 $1, $20 3 3 3,3
4 3,4
$1 $5, $1
$5 $10 $5, $10 1 4,1
$20 $5, $20 2 4,2
4 3 4,3
4 4,4
$1 $10, $1
$10 $5 $10, $5
$20 $10, $20 34.
Appetizers Entrees Desserts
$1 $20, $1
$20 $5 $20, $5
$10 $20, $10 D1 A1, E1, D1
E1 D2 A1, E1, D2
D3 A1, E1, D3
32. D1 A1, E2, D1
H HHHH
H T HHHT E2 D2 A1, E2, D2
H D3 A1, E2, D3
T H HHT H
T HHTT A1 D1 A1, E3, D1
H E3 D2 A1, E3, D2
H HTHH
H T HTHT D3 A1, E3, D3
T D1 A1, E4, D1
T H HTT H
T HTTT
E4 D2 A1, E4, D2
D3 A1, E4, D3
H THHH D1 A2, E1, D1
H T THHT
H E1 D2 A2, E1, D2
T H THT H D3 A2, E1, D3
T THTT
T D1 A2, E2, D1
H TTHH E2 D2 A2, E2, D2
H T TTHT
T
D3 A2, E2, D3
T H TTT H A2 D1 A2, E3, D1
T TTTT
E3 D2 A2, E3, D2
D3 A2, E3, D3
D1 A2, E4, D1
E4 D2 A2, E4, D2
D3 A2, E4, D3
D1 A3, E1, D1
E1 D2 A3, E1, D2
D3 A3, E1, D3
D1 A3, E2, D1
E2 D2 A3, E2, D2
D3 A3, E2, D3
A3 D1 A3, E3, D1
E3 D2 A3, E3, D2
D3 A3, E3, D3
D1 A3, E4, D1
E4 D2 A3, E4, D2
D3 A3, E4, D3
64
Chapter 4 - Probability and Counting Rules
35. 38.
English Math Elective Probably
1 1, 1, 1 39.
2 1, 1, 2 The statement is probably not based on
1 3 1, 1, 3 empirical probability and probably not true.
4 1, 1, 4
5 1, 1, 5 40.
The outcomes will be:
1 1, 2, 1 0,0 0,1 0,2 0,3 0,4
2 1, 2, 2 1,0 1,1 1,2 1,3 1,4
1 2 3 1, 2, 3 2,0 2,1 2,2 2,3 2,4
4 1, 2, 4
3,0 3,1 3,2 3,3 3,4
5 1, 2, 5
4,0 4,1 4,2 4,3 4,4
1 1, 3, 1 ' "! # *
a. b. œ c.
2 1, 3, 2 #& #& & #&
3 3 1, 3, 3 "# & "
4 1, 3, 4 d. #&
e. #&
œ &
5 1, 3, 5
41.
1 2, 1, 1 Actual outcomes will vary, however each
2 2, 1, 2 number should occur approximately "' of the
1 3 2, 1, 3 time.
4 2, 1, 4
5 2, 1, 5 42.
Actual outcomes will differ; however, the
1 2, 2, 1 probabilities of 0, 1, and 2 heads will be
2 2, 2, 2 approximately "% ß "# ß and "% respectively.
2 2 3 2, 2, 3
4 2, 2, 4
43.
5 2, 2, 5
a. 1:5, 5:1 e. 1:12, 12:1
1 2, 3, 1
b. 1:1, 1:1 f. 1:3, 3:1
2 2, 3, 2 c. 1:3, 3:1 g. 1:1, 1:1
3 3 2, 3, 3 d. 1:1, 1:1
4 2, 3, 4
5 2, 3, 5 EXERCISE SET 4-2
1.
36.
Two events are mutually exclusive if they
H HH
H T HT
cannot occur at the same time. Examples
will vary.
1 T1
2 T2 2.
T 3 T3 a. No e. No
4 T4 b. No f. Yes
5 T5 c. Yes g. Yes
6 T6 d. No
37. 3.
"ß$%)ß&!$
a. 0.08 a. "ß*!(ß"(# œ !Þ707
b. 0.01
c. 0.08 0.27 œ 0.35 b. %'ß!#%
"ß!*)ß$("
#"ß')$
œ
"ß*!(ß"(# "ß*!(ß"(# "ß*!(ß"(#
d. 0.01 0.24 0.11 œ 0.36
65
Chapter 4 - Probability and Counting Rules
13.
8.
18 - 24 25 - 34 Total
P(amusement park) P(water
Male 7922 2534 10,456
park) P(both) œ 0.95
Female 5779 995 6,774
0.47 0.58 P(both) œ 0.95
1.05 P(both) œ 0.95 Total 13,701 3529 17,230
P(both) œ 0.1 or 10% **&
a. P(female aged 25 - 34) œ "(ß#$!
œ 0.058
9.
P(football or basketball) œ b. P(male or aged 18 - 24) œ
&) %! ) *!
#!!
œ #!! or !Þ45
"!ß%&' "$ß(!" (*##
"(ß#$! "(ß#$! "(ß#$! œ
*! ""
P(neither) œ " #!! œ #! or !Þ55
"'ß#$&
"(ß#$! œ !Þ942
10.
a. There are four 4's and 13 diamonds, but c. P(under 25 years and not male) œ
the 4 of diamonds is counted twice; hence,
P(4 or diamond) œ P(4) P(diamonds) &((*
œ 0.335
% "(ß#$!
P(4 of diamonds) œ &# "$ "
&# &#
"' %
œ &# œ "$ . 14.
Endangered - US Endangered - Foreign
13 13 26 "
b. P(club or diamond) œ 52 52 œ 52 or #
Mammals 68 251
Birds 77 175
4 26 2 Reptiles 14 64
c. P(jack or black) œ 52 52 52 Amphibians 11 8
œ 28 7
52 or 13
Total 170 498
66
Chapter 4 - Probability and Counting Rules
$!
b. P(20 or female) œ b. P(at least one) œ $#
œ 0.938
$"() ('*( "&&$ *$##
"&ß(%( "&ß(%( "&ß(%( œ "&ß(%( œ 0.592
c. P(1 - 5 or more than 15) œ
")
$# œ 0.563
'%)%
c. P(at least 20) œ "&ß(%( œ 0.412
17. 21.
Class Yes No No Opinion Total The total of the frequencies is 24.
Freshmen 15 8 5 28 a. "! &
#% œ "#
Sophomores 24 4 2 30 #" $ "
Total 39 12 7 58 b. #% œ #% œ )
"!$#" "' #
a. P(no opinion) œ ( c. #% œ #% œ $
&)
67
Chapter 4 - Probability and Counting Rules
#!! # 25.
b. P(non-alcoholic) œ $!! œ $
P(export or
c. P(non-alcoholic with normal ethanol) œ "Þ*
""
"Þ'
"" !
"" œ 0.318
cholesterol) œ "&(
$!!
26.
23. There are 6$ œ 216 possible outcomes.
' "
a. There are 4 kings, 4 queens, and 4 jacks; a. #"' œ $' since there are 6 triples: (1,1,1),
hence P(king or queen or jack) œ "#
&# œ "$
$ (2,2,2), . . . , (6,6,6).
' "
b. There are 13 clubs, 13 hearts, and 13 b. #"' œ $' since there are six possible
spades; hence, P(club or heart or spade) œ outcomes summing to 5: (1,2,2), (2,1,2),
"$"$"$ $*
&#
œ &# œ %$ (2,2,1), (1,1,3), (1,3,1), and (3,1,1).
68
Chapter 4 - Probability and Counting Rules
2. 11. continued
P(all 5 exercise b. P(all three had cable
regularly) œ (0.37)& œ 0.007 or 0.7% TV) œ (0.86)$ œ 0.636
The event is unlikely to occur since its
probability is very small. c. P(at least one had cable TV)
œ 1 0.003
3. œ 0.997
a. P(none play video or computer
games) œ (0.31)% œ 0.009 or 0.9% 12.
# " "
P(both are defective) œ ' † & œ "&
b. P(all four play video or computer
games) œ (0.69)% œ 0.227 or 22.7% 13.
% $ # " "
a. &# † &" † &! † %* œ #(!ß(#&
4.
P(all 4 used a seat belt) œ (.52)% œ 7.3% b. "$
† "#
† ""
† "!
œ ""
&# &" &! %* %"'&
% $ "
c. P(both are kings) œ &#
† &"
œ ##"
11.
a. P(none had cable TV) œ (0.14)$ œ 0.003
69
Chapter 4 - Probability and Counting Rules
26.
c. P(female student or a student who P(swim | bridge) œ P(play bridge and swim)
P(play bridge)
receives federal aid) œ
P(female) P(federal aid) P(female with !Þ($
federal aid) œ œ !Þ)#
œ 0.89 or 89%
0.5763 (0.115 0.1894) 0.1894 œ 0.69
27.
!Þ!%#
20. P(calculus | dean's list) œ !Þ#"
œ 0.2
" 5 " $ " % %*
P(red) œ $
† 8
$
† %
$
† '
œ (#
28.
!Þ(#
21. P(graduate | play golf) œ !Þ)!
œ 0.9
Risk
A (0.6)(0.01) = 0.006 29.
!Þ'&
0.01 P(salad | pizza) œ !Þ*&
œ 0.684 or 68.4%
Low
0.6 0.99 30.
NA a. P(coffee or
A (0.3)(0.05) = 0.015 candy) œ %$
((
##
((
"!
((
œ 0.714
0.05
0.3 Medium "!Î((
b. P(tea | contains mugs) œ #$Î((
œ 0.435
0.95
NA "#
c. P(tea and cookies) œ (( œ 0.156
A (0.1)(0.09) = 0.009
0.1 0.09
31.
High
a. P(O ) œ 0.06
0.91
b. P(type O l Rh ) œ !Þ$(
!Þ)&
œ 0.435
NA
c. P(A or AB ) œ 0.34 0.01 œ 0.35
d. P(Rh | type B) œ !Þ!#
!Þ"# œ 0.167
P(accident) œ .006 .015 .009 œ 0.03
32.
22. $$ß!#!
"#%ß'%&
P(defective) œ 0.15 a. P(male | pediatrician) œ ''ß$(" œ 0.498
"#%ß'%&
P(defective &
misclassified) œ (0.15)(0.1) œ 0.015 b. P(pathologist | female) œ &'!%
œ 0.109
&"ß#%(
P(good & correctly classified) œ
(0.85)(0.9) œ 0.765
c. No. P(pathologist | female) Á P(female)
P(good) œ 0.765 0.015 œ 0.78
70
Chapter 4 - Probability and Counting Rules
b. P(at least one has a computer) œ P(at least one is read to) œ 1 P(none are
1 P(none of three has a computer) œ read to)
1 0.0954 œ 0.905 œ 1 P(all five are not read to)
œ 1 (0.42)& œ 0.987
c. P(all three have computers) œ
(0.543)$ œ 0.160 42.
a. P(all three have
35. assistantships) œ (0.6)$ œ 0.216
a. P(all 3 get enough
exercise) œ (0.27)$ œ 0.020 b. P (none have
assistantships) œ (0.4)$ œ 0.064
b. P(at least one gets enough
exercise) œ 1 (0.73)$ œ 0.611 c. P(at least one has an
assistantship) œ 1 (none have
36. assistantships)
P(5 buy at least 1) œ œ 1 0.064 œ 0.936
*! )* )) )( )'
"#! † ""* † "") † ""( † ""' œ 0.231
43.
37. P(at least one club) œ 1 P(no clubs)
a. P(none have been " $* $) $( $' '$#(
&# † &" † &! † %* œ " #!ß)#&
"%ß%*)
married) œ (0.703)& œ !Þ"(2 œ #!ß)#&
38. 45.
a. P(all three caused by driver a. P(not a family and children's
error) œ (0.54)$ œ 0.157 game) œ 1 0.198 œ 0.802
P(none of five are family and children's
b. P(none caused by driver games) œ (0.802)& œ 0.332
error) œ (0.46)$ œ 0.097
b. P(at least one is family and children's
c. P(at least one caused by driver game) œ 1 0.332 œ 0.668
error) œ 1 P(none by driver error)
œ 1 0.0973 œ 0.9027 or 0.903 46.
P(at least one will not improve) œ "
39. P(all will improve) œ " Ð!Þ(&Ñ"#
P(at least one not on time) œ œ 0.968 or 96.8%
1 P(none not on time)
71
Chapter 4 - Probability and Counting Rules
47. 55.
P(at least one tail) œ 1 P(no tails) Yes.
" Ð "# Ñ& œ " $#
"
œ $"
$#
P(enroll) œ 0.55
48.
P(at least one X) œ 1 P(no X's) P(enroll | DW) P(enroll) which indicates
" Ð #&
#'
Ñ$ œ " "&ß'#&
"(ß&('
"*&"
œ "(ß&(' or 0.111 that DW has a positive effect on enrollment.
The event is unlikely to occur since the
probability is only about 11%. P(enroll | LP) œ P(enroll) which indicates
that LP has no effect on enrollment.
49.
P(rolling a 4) œ "' P(enroll | MH) P(enroll) which indicates
that MH has a low effect on enrollment.
P(at least one 4) œ 1 P(no fours)
P(at least one 4) œ 1 P(all 6 are not 4's)
Thus, all students should meet with DW.
P(at least one 4) œ 1 ( &' )' œ 0.665
It will happen almost 67% ( #$ ) of the time. 56.
It's somewhat likely. P(buy) œ 0.35
72
Chapter 4 - Probability and Counting Rules
7. 13. continued
10! œ 3,628,000 j. ' P# œ Ð' 'x#Ñx
8. œ '†&†%†$†#†"
œ 30
%†$†#†"
2 † 25 † 24 † 23 œ 27,600
2 † 26 † 26 † 26 œ 35,152 14.
)x )x
) P) œ Ð))Ñx
œ !x
œ 40,320
9.
10 † 10 † 10 œ 1000
1 † 9 † 8 œ 72 15.
%x %†$†#†"
% P% œ Ð%%Ñx
œ !x
œ 24
10.
If repetitions are permitted: 6% œ 1296 16.
(x (†'†&†%x
If repetitions are not permitted: ( P$ œ Ð($Ñx œ %x œ 210
6 † 5 † 4 † 3 œ 360
17.
11. ##x
## C% œ Ð##%Ñx %x
œ 7315
6 † 5 † 5 † 4 œ 600
18.
12. "!x "!x
2†4 œ 8 "! P& œ Ð"!&Ñx
œ &x
œ 30,240
13. 19.
(x (†'†&†%†$†#†"
a. 8x œ 8 † 7 † 6 † 5 † 4 † 3 † 2 † 1 œ 40,320 ( P% œ Ð(%Ñx
œ $†#†"
œ 840
b. 10x œ 10 † 9 † 8 † 7 † 6 † 5 † 4 † 3 † 2 † 1 20.
10x œ 3,628,800 4 † 6 † 5 œ 120
c. 0x œ 1 21.
"!x "!†*†)†(†'†&†%†$†#†"
"! P' œ Ð"!'Ñx
œ %†$†#†"
œ 151,200
d. 1x œ 1
(x
22.
e. ( P& œ Exactly 3 samples: œ "$x
œ 286
Ð( &Ñx "$ C$ Ð"$ $Ñx $x
(†'†&†%†$†#†"
œ #†"
œ 2520 Up to 3 samples:
"$ C! "$ C" "$ C# "$ C$ œ 378
"#x
f. "# P% œ Ð"# %Ñx
23.
"#†""†"!†*†)†(†'†&†%†$†#†" &!x &!x
œ )†(†'†&†%†$†#†"
œ 11,880 &! P% œ Ð&!%Ñx œ %'x œ 5,527,200
&x
g. & P$ œ Ð& $Ñx 24.
""x
"" C% œ Ð""%Ñx %x
œ 330
&†%†$†#†"
œ #†" œ 60
25.
'x "#x
h. ' P! œ Ð' !Ñx Same task: "# C% œ Ð"# %Ñx %x œ 495
'†&†%†$†#†" "#x
œ '†&†%†$†#†" œ1 Different tasks: "# P% œ Ð"# %Ñx œ 11,880
&x
i. & P& œ Ð& &Ñx 26.
(x (x (†'†&†%†$†#x
( P& œ Ð(&Ñx
œ #x
œ #x
œ 2520
&†%†$†#†"
œ !x œ 120
73
Chapter 4 - Probability and Counting Rules
c. (x
œ 35 h. *x
œ 36 38.
$x %x #x (x "!x "!x
"! C$ † "! C$ œ (x $x † (x $x
"!†*†)†(x "!†*†)†(x
d. 'x
œ 15 i. "#x
œ 66 œ (x † $†#†" † (x † $†#†" œ 120 † 120 œ 14,400
4x 2x "!x #x
e. 'x
œ 15 j. %x
œ4 39.
#x %x "x $x
The possibilities are CVV or VCV or VVV.
28.
&#x &#†&"†&!†%*x Assuming the same vowel can't be used
&# C$ œ %*x $x œ %*x † $†#†" œ 22,100
twice in a "word":
7 † 5 † 4 5 † 7 † 4 5 † 4 † 3 œ 340
29.
6x '†&†%†$x
' P$ œ $x œ $x œ 120 Assuming the same vowel can be used twice
in a "word":
30. 7 † 5 † 5 5 † 7 † 5 5 † 5 † 5 œ 475
"#x *x
"# C% † * C$ œ )x %x
† 'x $x
40.
"#†""†"!†*†)x *†)†(†'x "#x "!x
œ )x † %†$†#†"
† 'x †$†#†"
œ 41,580 "# C' † "! C' œ 'x 'x
† %x 'x
35. 43.
Different programs: There are ( C# œ 21 tiles with unequal
")x numbers and 7 tiles with equal numbers.
") C"! œ Ð") "!Ñx "!x œ 43,758
Thus, the total number of tiles is 28.
Starting and ending with the same song:
"'x 44.
"' C) œ Ð"' )Ñx )x œ 12,870 "'x "&x
"' C% † "& C# œ Ð"' %Ñx %x
† Ð"& #Ñx #x
36.
%x "#x (x œ 191,100
% C# † "# C& † ( C$ œ #x #x † (x &x † %x $x
"# C% œ 495
47.
( C# † & C# œ 21 † 10 œ 210 "!x "#x
"! C' † "# C' œ %x 'x † 'x 'x œ 194,040
74
Chapter 4 - Probability and Counting Rules
54.
"!x "!†*†)x EXERCISE SET 4-5
"! C) œ Ð"! )Ñx )x
œ #†"†)x
œ 45
55. 1.
"# "" ""
&x &†%†$†#†" P(2 face cards) œ † œ
& P& œ !x
œ "
œ 120 &# &" ##"
56. 2.
&†%x
&x &x &x & C% "
& P$ & P% & P& œ œ 300 a. #& C%
œ %x†"
#&†#%†#$†##†#"x œ #&$!
#x "x !x #"x†%†$†#†"
75
Chapter 4 - Probability and Counting Rules
3. continued 9.
d. There are $ C" ways to select one man and a. P(one of each) œ
") C" †"! C"† $ C" &%!
% C# ways of selecting two women; hence, œ %%*& œ 0.120
$" C$
P( 1 man and 2 women) œ $ C("C†%$C# œ ")
$&
Þ
b. P(no Navy members) œ
#" C$
4. There are %" C$ ways to select 3
$" C$
œ "$$!
%%*&
œ 0.296
Republicans; hence, P(3 Republicans) œ
%" C$ "!ß''!
"!! C$
œ "'"ß(!! œ !Þ066 c. P(three Marines) œ
") C$ †"! C! †$ C! )"'
$" C$
œ %%*& œ 0.182
There are &( C$ ways to select 3 Democrats;
&( C$
hence P(3 Democrats) œ "!! C$ 10.
#*ß#'!
P(3 Democrats) œ "'"ß(!! œ !Þ181 There are 6 red face cards and 16 black
cards numbered 2 - 9, for a total of 22 cards.
There are %" C" ways to select one
' C% †"' C!
Republican, # C" ways to select one a. P(all 4 red) œ ## C%
œ 0.002
Independent, and &( C" ways to select one
' C# †"' C#
Democrat; hence P(one from each b. P(2 red and 2 black) œ ## C%
œ 0.246
†# C" †&( C"
party) œ %" C""!! C$
%'(%
œ "'"ß(!! œ !Þ029
c. P(at least one red) œ 1 P(none red)
5. P(at least one red) œ 1 ' C##! †C"'%C% œ 0.751
a. P(all Republicans) œ
&" C$ † %) C! † " C! #!ß)#& "' C% †' C!
"!! C$
œ "'"ß(!! œ 0.129 d. P(all 4 black) œ œ 0.249
## C%
8. 14.
There are % C$ ways of getting 3 of a kind for a. P(all 4 seniors)
one denomination and there are 13 œ "! C% †#! C'&!C†#!%C! †"& C! œ 0.0003
denominations. There are % C# ways of
getting two of a kind and 12 denominations b. P(one of each)
left. There are &# C& ways to get five cards; œ #! C" †#! C'&"C†"&%C" †"! C" œ 0.089
hence,
P(full house) œ "$†% C&#$C†"#†
&
% C# 6
œ 4165 c. P(2 sophomores and 2 freshmen)
œ #! C# †#! C'&#C†"&%C! †"! C! œ 0.053
76
Chapter 4 - Probability and Counting Rules
14. continued 6.
*
d. P(at least 1 senior) a. $&
œ 1 P(none are seniors)
C% ( "' #$
œ 1 &&
'& C%
b. $& $& œ $&
œ 0.496
$ ( * "*
c. $&
$&
$&
œ $&
15.
There are 5! œ 120 ways to arrange 5 "' "*
d. " $& œ $&
washers in a row and 2 ways to have them in
correct order, small to large or large to 7.
# "
small; hence, the probability is "#! œ '! Þ P(either air-conditioning or CD player)
œ 0.5 0.37 0.06 œ 0.81
16. P(neither air-conditioning nor CD)
&#x
There are &# C& œ %(x &x
œ 2,598,960 possible œ 1 0.81 œ 0.19
hands.
% $' 8.
a. #ß&*)ß*'! b. #ß&*)ß*'!
Refer to the sample space for tossing two
c. '#% dice.
#ß&*)ß*'!
5. 11.
"$ "
P(preferred juice) œ '!
P(enrolled in an online course) œ '
or 0.167
a. P(all 5 took an online
course) œ ( "' )& œ 0.0001
77
Chapter 4 - Probability and Counting Rules
13. 18.
Model
a. #'
&#
† #&
&"
† #%
&!
œ #
"( S (0.4)(0.03) = 0.012
0.03
"$ "# "" $$ ""
b. &#
† &"
† &!
œ #&&!
œ )&!
A
0.97
% $ # " NS
c. &#
† &"
† &!
œ &&#& 0.4 S (0.4)(0.07) = 0.028
0.07
14. 0.4 B
a. "# † %
&#
œ "
#'
0.93
0.2 NS
" #' " S (0.2)(0.09) = 0.018
b. #
† &#
œ % 0.09
C
" "$ " 0.91
c. #
† &#
œ )
NS
15.
Total number of movie releases œ 1384 P(stereo) œ 0.012 0.028 0.018 œ 0.058
or 5.8%
)$%
a. P(European) œ "$)%
œ 0.603
19.
P(NC and C) !Þ$(
b. P(US) œ %("
œ 0.340 P(NC | C) œ P(C)
œ !Þ($
œ 0.507
"$)%
78
Chapter 4 - Probability and Counting Rules
22. 30.
P(bus late | bad weather) œ )x )x
8! œ ) P) œ Ð) )Ñx œ !x œ 40,320
P(bus late and bad weather)
P(bad weather) œ !Þ!#$
!Þ%! œ 0.058
31.
"!x
23. "! C# œ )x #x œ 45
<4 yrs HS HS College Total
Smoker 6 14 19 39 32.
18 7 25 50 'x &x %x
Non-Smoker ' C$ † & C# † % C" œ $x $x
† $x #x
† $x "x
Total 24 21 44 89
œ 20 † 10 † 4 œ 800
a. There are 44 college graduates and 19 of
them smoke; hence, the probability is "*
%% Þ 33.
100x
b. There are 24 people who did not graduate
from high school, 6 of whom do not smoke; 34.
hence, the probability is 5 † 3 † 2 œ 30
' "
#% œ % Þ
35.
"#x "#†""†"!†*†)x
24. "# C% œ )x %x
œ %†$†#†"†)x
œ 495
P(veteran) œ 0.11; P(not a veteran) œ 0.89
P(none of 5 are veterans) œ (0.89)& œ 0.558 36.
P(at least one is a "$x "$†"#†""†"!x
"$ C$ œ "!x $x
œ "!x † $†#†"
œ 286
veteran) œ 1 0.558 œ 0.442
37.
25. #! C& œ
#!x
œ #!†"*†")†"(†"'†"&x
œ 15,504
"&x &x "&x &†%†$†#†"
P(at least one household has no DVD
player) 38.
œ 1 P(none have no DVD player) 3 † 5 † 4 œ 60
œ 1 P(all 6 have DVD players)
œ 1 (0.81)' œ 0.718 39.
Total number of outcomes:
26. 26 † 26 † 26 † 10 † 10 † 10 † 10 œ 175,760,000
P(at least one has chronic sinusitis) œ Total number of ways for USA followed by
" P(none has chronic sinusitis) a number divisible by 5:
" Ð!Þ)&Ñ& œ 0.556 or 55.6% 1 † 1 † 1 † 10 † 10 † 10 † 2 œ 2000
2000
Hence P œ 175,760,000 œ 0.00001
27.
If repetitions are allowed:
40.
#' † #' † #' † "! † "! † "! œ 175,760,000
There are $ C# ways of attending two plays
and & C" ways of attending one movie, and a
If repetitions are not allowed:
#'†#&†#%†#$x "!†*†)†(†'x total of "! C$ of attending 3 events; hence, the
#' P$ † "! P% œ †
#$x 'x probability is:
œ 78,624,000 $ C# †& C" "&
œ "#! œ ")
"! C$
79
Chapter 4 - Probability and Counting Rules
42. 16. b
P(Yahtzee on first roll) œ 17. b
' " " " "
' † ' † ' † ' † ' œ 0.000772 or 0.0008
18. Sample space
19. 0, 1
P(Yahtzee on two successive rolls) œ 20. 0
(0.000772)# œ 0.0000006 21. 1
22. Mutually exclusive
43.
% " "' %
A M, S, A 23. a. &#
œ "$
c. &#
œ "$
S Fa M, S, Fa
St M, S, St
% "
b. &#
œ "$
A M, Ma, A
Ma Fa M, Ma, Fa
"$ "
St M, Ma, St 24. a. &#
œ %
d. 4
="
&# "$
M
A M, D, A %"$" % #' "
D Fa M, D, Fa b. &#
œ "$
e. &#
œ #
St M, D, St
"
A M, W, A c. &#
W Fa M, W, Fa
St M, W, St "# #(
25Þ a. $"
c. $"
A F, S, A
S Fa F, S, Fa "# #%
St F, S, St
b. $"
d. $"
80
Chapter 4 - Probability and Counting Rules
38. 2,646
39. 40,320
40. 1,365
42. 720
43. 33,554,432
44. 56
"
45. 4
3
46. "4
"#
47. &&
48.
PE B, BP, PE
BP GB B, BP, GB
B
MP PE B, MP, PE
GB B, MP, GB
PE P. BP, PE
BP GB P, BP, GB
P
MP PE P, MP, PE
GB P, MP, GB
PE C, BP, PE
BP GB C, BP, GB
C
MP PE C, MP, PE
GB C, MP, GB
PE V, BP, PE
BP GB V, BP, GB
V
MP PE V, MP, PE
GB V, MP, GB
81