0% found this document useful (0 votes)
13 views8 pages

223 759 (Ecm3b)

This document is an examination paper for the BA 3rd Semester in Economics, focusing on Quantitative Methods for Economic Analysis. It includes various types of questions such as definitions, multiple-choice questions, fill-in-the-blanks, and problem-solving related to economic concepts and mathematical functions. The exam is structured to assess students' understanding of key economic theories and quantitative methods, with a total of 80 marks allocated over a 3-hour period.

Uploaded by

sakillaskar9911
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
13 views8 pages

223 759 (Ecm3b)

This document is an examination paper for the BA 3rd Semester in Economics, focusing on Quantitative Methods for Economic Analysis. It includes various types of questions such as definitions, multiple-choice questions, fill-in-the-blanks, and problem-solving related to economic concepts and mathematical functions. The exam is structured to assess students' understanding of key economic theories and quantitative methods, with a total of 80 marks allocated over a 3-hour period.

Uploaded by

sakillaskar9911
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 8

No.

of Printed Pages—8
759 (ECM3B)

[ 20-HRGPNW–D3S(N)21A ]

BA 3rd Semester (New) Exam., 2020 (W)

ECONOMICS

[ GEC S3–02 (M) ]

( Quantitative Methods for Economic Analysis—I )

Full Marks : 80

Time : 3 hours

The figures in the margin indicate full marks for the questions

1. (a) Answer the following questions in one/two sentence(s) : 1×8=8

t¡º¹ šøÅ—γèÒ¹ l¡üv¡¹ &i¡à/ƒåi¡à ¤àA¡¸¹ [®¡t¡¹t¡ [ºJA¡ :


(i) Define power function.
Qàt¡ ó¡º>¹ Î}`¡à "àK¤Øn¡à*A¡¡ú
(ii) Cite an example of empty set.
[¹v¡û¡ Î}Ò[t¡¹ &i¡à l¡üƒàÒ¹o "àK¤Øn¡à*A¡¡ú
(iii) State the general form of a production function.
l¡ü;šàƒ> ó¡º>¹ Îà‹à¹o ¹ê¡šìi¡à l¡üìÀJ A¡¹A¡¡ú
(iv) When are two matrices conformable for the multiplication?
ëA¡[t¡Úà ƒåi¡à ë³ïºA¡Û¡A¡ šè¹o A¡[¹¤ š¹à ™àÚ?
(v) When is an isoquant function said to be convex to the origin?
ëA¡[t¡Úà &i¡à γ-l¡ü;šÄ ó¡º> ³èº [¤–ƒå ÎàìšìÛ¡ l¡üv¡àº ÒÚ?
(vi) Compute marginal utility of x for the utility function
u = 5xy - y 2 + x 2 .

u = 5xy - y 2 + x 2 l¡üšì™à[Kt¡à ó¡º>ìi¡à¹ š¹à x ¹ šøà[”zA¡ l¡üšì™à[Kt¡à [>o¢Ú A¡¹A¡¡ú

/223 ( Turn Over )


( 2 )

(vii) State the sum rule of integration.


">åA衺>¹ ë™àK >ã[t¡ìi¡à l¡üìÀJ A¡¹A¡¡ú

(viii) State the equation of a polynomial function.


¤×šƒ ó¡º>¹ γãA¡¹oìi¡à l¡üìÀJ A¡¹A¡¡ú

(b) Choose the correct option : 1×4=4

Ç¡‡ý¡ [¤A¡¿ìi¡à ¤à[á l¡ü[ºÚà*A¡ :

(i) Keynes is associated with which type of function?


ëA¡à>ìi¡à ó¡º>¹ ºKt¡ ëA¡ÒüX \[Øl¡t¡?
(1) Production function
l¡ü;šàƒ> ó¡º>¹ ºKt¡
(2) Consumption function
l¡üšì®¡àK ó¡º>¹ ºKt¡
(3) Profit function
ºà®¡ ó¡º>¹ ºKt¡
(4) Revenue function
"àÚ ó¡º>¹ ºKt¡

2 3 1
(ii) The value of the determinant 4 2 2 is
2 3 1

2 3 1
4 2 2 [>ÆW¡àÚA¡ìi¡à¹ ³à> Ò’º
2 3 1

(1) 0

(2) –5

(3) 5

(4) 4

/223 ( Continued )
( 3 )

é3 0 0ù
(iii) The matrix ê0 3 0ú is an example of
ê ú
ë0 0 3û

é3 0 0ù
ê0 3 0ú ë³ïºA¡Û¡ìi¡à &i¡à l¡üƒàÒ¹o íÒìá
ê ú
ë0 0 3û

(1) scalar matrix


"[ƒÅ ë³ïºA¡Û¡¹

(2) identity matrix


"쮡ƒ ë³ïºA¡Û¡¹

(3) row matrix


Åà¹ã ë³ïºA¡Û¡¹

(4) (1) and (2) of the above


l¡üš¹¹ (1) "à¹ç¡ (2)

(iv) The equation of a budget line is


¤àì\i¡ ë¹J๠γãA¡¹oìi¡à íÒìá

(1) M = Px Q x + Py Q y

(2) M = Px Q y + Py Q x

(3) M = Q x Q y + Px Py

P
(4) M = Px Q + y Q
x y

/223 ( Turn Over )


( 4 )

(c) Fill in the blanks : 1×4=4

Jàºã k¡àÒü šè¹ A¡¹A¡ :

Proportionate change in quantity supply


(i) Elasticity of supply = ________________________________________

ë™àKà>¹ "à>åšà[t¡A¡ š[¹¯t¢¡>


ë™àKà>¹ [Ñ‚[t¡Ñ‚àšA¡t¡à =
_____________________

Q
(ii) Consumer’s surplus = ò0 (Demand function expressed in terms

of Q )dQ – _____.

Q
뮡àv¡û¡à¹ l¡ü‡õv¡ = ò0 (Q ¹ ÎÒàÚt¡ šøA¡àÅ A¡¹à W¡à[Òƒà ó¡º>)dQ – _____ ú

(iii) ed =
AR - MR

(iv) _____ = ò MPC dy

2. Answer any five from the following questions : 2×5=10


t¡º¹ šøÅ—γèÒ¹ š¹à [™ ëA¡àì>à šòàW¡i¡à¹ l¡üv¡¹ [ºJA¡ :

(a) Distinguish between independent and dependent variable.

Ѭt¡”| "à¹ç¡ [>®¢¡¹Å㺠W¡ºA¡¹ ³à\¹ šà=¢A¡¸ [>o¢Ú A¡¹A¡¡ú

(b) What is meant by range of a function?

&i¡à ó¡º>¹ š[¹Î¹ ³àì> [A¡ ¤å\à ™àÚ?

(c) State the two conditions of profit maximization.

ºà®¡ Τ¢à[‹A¡¹o¹ W¡t¢¡ ƒåi¡à l¡üìÀJ A¡¹A¡¡ú

/223 ( Continued )
( 5 )

(d) When are two matrices said to be equal?

ëA¡[t¡Úà ƒåi¡à ë³ïºA¡Û¡A¡ γà> ¤å[º ëA¡à¯à ÒÚ?

(e) When is a function said to be continuous at a particular point?

ó¡º> &i¡àA¡ &i¡à [>[ƒ¢Ê¡ [¤–ƒåt¡ "[¤[ZáÄ ¤å[º ëA¡[t¡Úà ëA¡à¯à ÒÚ?

(f) Distinguish between global maxima and global minima.

Τ¢¤¸àšã K[¹Ë¡ "à¹ç¡ Τ¢¤¸àšã º[QË¡ ³à>¹ ³à\¹ šà=¢A¡¸ [>o¢Ú A¡¹A¡¡ú

3. Answer any six from the following questions : 4×6=24


t¡º¹ šøÅ—γèÒ¹ š¹à [™ ëA¡àì>à áÚi¡à¹ l¡üv¡¹ [ºJA¡ :

(a) If U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}


A = {2, 4, 6, 8, 10}
B = {3, 6, 9}
and C = {1, 2, 3, 4, 5}, then find—

(i) AÇC

(ii) A¢

(iii) A È B¢

(iv) C ¢ÇB

™[ƒ U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}


A = {2, 4, 6, 8, 10}
B = {3, 6, 9}

"à¹ç¡ C = {1, 2, 3, 4, 5}, ët¡ì”z l¡ü[ºÚà*A¡—


(i) AÇC

(ii) A¢

(iii) A È B¢

(iv) C ¢ÇB

/223 ( Turn Over )


( 6 )

(b) From the following linear market model, find equilibrium price and
output :

t¡ºt¡ [ƒÚà í¹[JA¡ ¤\๠"à[Ò¢ìi¡à¹ š¹à ®¡à¹Î೸ ƒ¹ "à¹ç¡ š[¹³ào [>‹¢à¹o A¡¹A¡ :
Qd = a - bP
Qs = - c + dP
Qd = Qs

(c) Find the value of

³à> [>o¢Ú A¡¹A¡ :


x2 -4
lim
x ®2 x 2 - 3x + 2

ax 2 + b dy
(d) If y = , then find .
cx dx

ax 2 + b dy
™[ƒ y= ÒÚ, ët¡ì”z l¡ü[ºÚà*A¡¡ú
cx dx

5000
(e) If the consumption function is given by c = 1000 - , then find the
(3 + y)
marginal propensity to save, when y = 97.
5000
™[ƒ 뮡àK ó¡º>ìi¡à c = 1000 - ÒÚ, ët¡ì”z Îe¡Ú A¡¹à¹ šøà[”zA¡ šø¯ot¡à [>o¢Ú A¡¹A¡,
(3 + y)
ë™[t¡Úà y = 97 ÒÚ¡ú

(f) Find out the relative extrema of the following function :

t¡ºt¡ [ƒÚà ó¡º>ìi¡à¹ "àìš[Û¡A¡ W¡¹³ ³à> l¡ü[ºÚà*A¡ :


y = 2x 2 - 16x + 50

(g) Find the output at which the average cost is minimum from the following
total cost function :
TC = 2Q 2 + 5Q + 18

t¡ºt¡ [ƒÚà ³åk¡ ¤¸Ú ó¡º>ìi¡à¹ š¹à &ì> l¡ü;šàƒ>¹ š[¹³ào l¡ü[ºÚà*A¡ ™’t¡ KØl¡ ¤¸Ú
Τ¢[>³— ÒÚ :
TC = 2Q 2 + 5Q + 18

/223 ( Continued )
( 7 )

4. Answer any five from the following questions : 6×5=30


t¡º¹ šøÅ—γèÒ¹ š¹à [™ ëA¡àì>à šòàW¡i¡à¹ l¡üv¡¹ [ºJA¡ :

(a) Solve the following equations by using Cramer’s rule :

t¡º¹ γãA¡¹oì¤à¹A¡ ëyû¡³à¹¹ >ã[t¡ šøìÚàK A¡[¹ γà‹à> A¡¹A¡ :


x + 2y + 3z = 6
3x - 2y + z = 2
4x + 2y + z = 7

(b) If u = log(x 2 + y 2 + z 2 ), then show that


¶u ¶u ¶u
x× +y× +z× =2
¶x ¶y ¶z

™[ƒ u = log(x 2 + y 2 + z 2 ) ÒÚ, ët¡ì”z ëƒJå*¯àA¡ ë™


¶u ¶u ¶u
x× +y× +z× =2
¶x ¶y ¶z

(c) A firm has the following price and total cost functions :
P = 46 - 3q
q2
C = 110 + 6q +
2
Find the price at which profit is maximum.

&i¡à ¤¸¯ÎàÚ šø[t¡Ë¡à>¹ ƒ¹ "à¹ç¡ ³åk¡ ¤¸Ú ó¡º> t¡ºt¡ [ƒÚà ‹¹o¹ :
P = 46 - 3q
q2
C = 110 + 6q +
2

ët¡ì”z ƒà³ [>o¢Ú A¡¹A¡ ™’t¡ ºà®¡ Τ¢à[‹A¡ ÒÚ¡ú

(d) Evaluate : 3+3

³à> [>o¢Ú A¡¹A¡ :

ò xe
x
(i) dx

3
ò-1(2x + 5)dx
2
(ii)

/223 ( Turn Over )


( 8 )

(e) The producer’s supply function is given as Q = -5 + 3P and market price


is 10, then find the producrer’s surplus.

l¡ü;šàƒ>A¡à¹ã¹ ë™àKà> ó¡º>ìi¡à &ì>ƒì¹ [ƒÚà "àìá Q = -5 + 3 P "à¹ç¡ ¤\๠³èº¸ìi¡à ™[ƒ
10 ÒÚ, ët¡ì”z l¡ü;šàƒ>A¡à¹ã¹ l¡ü‡õv¡ [>o¢Ú A¡¹A¡¡ú

(f) Derive the relationship between AR, MR and e d .

AR, MR "à¹ç¡ ed ¹ ³à\¹ δ¬Þê¡ [>o¢Ú A¡¹A¡¡ú

HHH

/223 HK-21—200

You might also like