0 ratings 0% found this document useful (0 votes) 30 views 61 pages ML Unit-1
The document provides an overview of machine learning concepts, including supervised, unsupervised, and reinforcement learning, as well as various algorithms and techniques used in the field. It discusses the applications of machine learning in areas such as autonomous vehicles, robotics, and data analysis. Additionally, it touches on the historical context and foundational figures in machine learning, emphasizing its significance in modern technology.
AI-enhanced title and description
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, 
claim it here .
Available Formats
Download as PDF or read online on Scribd
Go to previous items Go to next items 
ee os ___Ma chine heaantng —
C
Void <1
» Leasnin TY per 0) Machine Leaiain supavited |
Leaning - “the Bratn and -lhe het - Destgn
|
al carntn syelem - pene peelivet and Rete
In Machine Leaning ~ concepl’ mang "2 bath ©
~ Concept Learntng at seanch - Pindta
Mani ally Specifte Hy pothests - Verefon seit
and the Candidate El{minadtion Al orsthm ~
Linear Discriminant! $- Perception - Linear
Sepacabs lt ty. - Linean Regression,
Unit =I
Mult? —Cayen Pe ceptyon - Giiesi Ponwarrds ~ f
| Soin g Backwards § $ Back _ Propagation Error -,
| Hultt- Laven pecceptron i practice ; Examples
| using the MLP- overview. - Deriving Back-
Propagation ~ Radial Baste Punctions and
Splines-~ Concept - RBF Network - Curse of
Di imensionaltty = Dorie polaktons + Basic
pcan - Support vector Machines.
oft -n
Unit
Learning wstth-lreet - Deelston Trees - Constructing
Deckston Trees-Classitteattont Peqwestion Trees ~
Ensemble Learning - Boosting paging - Different
ways +o combine classifiers. Baste stat slics -
Gaussian Moature Models - Nearest va hbo
Methods ~ UNSuper vised Leanning - Emeans
Algorithme.
 
+Unit |
pimenstonaltt Peduetton ~ Linear lovee stem
Analyets - principal Component Ana oe
Faclow Analyste - Podependent Component
Analyste - Locally Linear Embeddin + Peomap
Least cannes Optimization Evolut¥onouy,
Leaning - Genetic algovtthms ~Genekic,
pesid +> Genette Operators 5 Using Genette
| Algon ms., wb sa alee : e Ajed
Reinforcement Learnin = Overvievd ~ Gren
ae Example Markov chas,, Monte carlo
Methods _ le :
ethods sampling ~ Propocal Distatbution
-Harkoy of
oa Grain, Mente Carly ~ Graphs cal.
Pardon prea 3” Neloonks - Matvyy.
be . Fields ~ Hidden M ax koy Modelé
“9 Methods. eesMachine. peas
MLAS @ beanch of Ad that enabler
alyertthmt to uncover hidden pitternt within
Aatasetes atlocaing them -to make
on neta Limilac date vwottho
pag amin fon each bark:
== Machine  leountng's frpact enatends to
autonemeus vehicles, devnet, qobots -
This Approach mark: a break through whue
machines Jean fedm atta example: to
jenevate accurate outcomes, Closely inte
wined vofth data mining 4 Lats colence
the field of mackie lecunin 4 tas founded
el Comput ex Sclentist “atan Turing an the
“ay0s”
predictions
ub expltett
Leawain .
pooing fe a phenomena and Preocess wshteh
hak manifestations ot Various aspects « Leomning
Process includet gatnta Df new & mbolfe
kn ousledge and clevelopment of cogat eve. Skflls
— Hrrough wnsteructtons and Practise. 2 ie also
— dtscovain Oo new fact and theort
es ‘through
Observation and experience.Mi ts about making
adopt thets acttons
ck mone actuate where actura
Vreasmed by how well the choosen acbion:
ceflect the Cormect ones. , :
Computes Program §:
A computer program $2 a set to leaun {rom
Eupatencer 6" w96th evetpeck, -0 Some Cha sees
% Tasks “T" and Pertormance measure ‘p
improves usith Ex patence ~E*
Example A Computer Program: that. lecun#
Plow “checkers” Mr ht Amp-rove att perlormance
aS MeoSure by ete absltty +6 wen at the
cla
is a Task — tavolyan playing checker gat
“ough experience “4 4 6
bk as age
Mg Ryptochsthitts siecrenegeeo, Cee oem
oe Learntn prob lees |
aa a8, Playin chs ™ :
SH satis 5 4 echets
computers enodtty ov
¢o that these actfone
te
 
 
 
 
  
  
 
  
 
  
  
a Practise
Openents.
* playing Practice gatost ol
of games “udon agi
| Exper’ ence “eOA Robot sstuing. learning peoblem a
rosk’T' 4 ee on publte foreline highway
ye vfston Sensors.
Peformance ‘p!; AVenage isd once lea vetled
befove and Other (as Judged by
agen obsewe)
Expestince °E “E'S A Sequence Of Images and
at ae Command. secorded aah? le
Obserun tg a human diver.
Need of Mac ne shearrotng ae
> Main Oat of ML. fs +o device leatning
alsortthm -that do the learntoa automat tal
without human entervactton ov bee
BP the ML Paradtsm | mecthortology can. be Viewed
as Prog ecome' 4 by examples. © to
=To develop competi tional models Of human
leaning Process and pertorm Computer,
Simultaneously, ; :
D> the goat of ML ts to build computer system
thet can Aaah and learn from expertences .
Js ML algortthens ca n fs ure out’ how to
Pepin tmportoant tasks by genexalt aa
fiom examples.
DsML provider bidesnerd Sngtde and intelligence
decision makes ox provided ” with arreoter
insights folb hela organ’ SSations .
setance.“Pov ove dtseutted rretattonthipe bh 4h,
    
       
   
  
 
 
Vaniables OQ a  guetem oom al trect Say,
the system, ;
oe ‘Ler_utting Machtne Lecrntng ¢
= Some tatkt can'{ be cleltned well etc. \
by example. ip
v
= Relations hips and Co-velat one Con be bey
large amount of date. ;
= Human desfan us
thot to net york
ThE onviconment Sn ushteh .
=> The t e
OY knowled, @ ava?
Curtain tasks q :
mMaht Ap i
aoa u hind © louge fon explit
belng 6
\ b :
; ie , q Mumans.
els fogotse Spoken words
4 8 an automonus Veh
M4 New Structures,
= sed - Play Jomes. |
n en sege Under ‘tending
Sele.
hnwee
Tapes of Machine Learnin
E, oe taper of ML d
# Supervised rau
4# Unsupervised J eantn
# Reinforcement | earnin
¥ Evolution axy teauning
Before classifying cthe fnto. et might be usefuh
and bated on that foam a trainin dataset
Leoning al meankn ettin better at Some
4ask. through practise £0 accordin +o
leosning to fudge howd much Pt Correct or
won eesponces . Pinal we meaht not have
an correct we fust . want the algorithm
+o find Prnputs that, have edmeth?
nq $0 ae
Common.
*Supewised Leamin
e
A pia Sek Of example wlth Correct
cresponses © (target) fs provided and based on
this trai nin Sot. The Alaort thm generaltces
+o “respond Correctly to all osstble Snputs -.
Ths ts alto calted Learning {oom exarnples.
# nsupervised Feavaing B
Correct responses are not Provided but enstant
the ortthm tyfet +o tdentify semelorttyes blo
“he input. $0 that Snpucts that have Somethin
fn Common oul categortsed -Logether +o Stotiste
approach -to Unsuparvised
densfty estematson.
leaning Ss knousn at8
r Roi lowcement ee 2
She toe Supetvi te d at Unsu permite d ty
combined 8, hts ee resting Le ont Ha
acts told wohon ~the answer fe Wr py, bud
por: get sold how to Conereck a
har to explore and ustte shen
Foowbllever unl et UW er ky
the anwu arta lt l comrect. Reps,
dooining % someLyne Cotle 4
wie catia Pen Ob thee sone ri
Hot Stove hy antwe but doeinot
Suagert ‘npeovements,. re
* Evolution
Biloateat Evolutton. can
ng Procett - Broly, foal ;
otopt to imparove theta Seautval rater {
ond nee f avin O44 pati Pr thew
Envivonenent, yoy HORM book. Lak” hous “uae Ge
MOd ol Au a
le Compute using an idea
Hotness, WOK
Scare Low
Comnespondence to a” |
qeod wthe Lormeet: col? fs
J
forceme,
leant
L Carnin Z
be Seen ae a
Organtsatfons
houReal Meme Examplet
Supervised Leountng ¢
=P —Reaunin
ar Image clattificatton
=> Spam Detectton
=> sentiment Anature
=> Houte Prfee predtetton
= Medical Sagnoste
posapelvised shen ning. ¢
=> curtomet Segmentation
= Anomaly Detect on
=> Morket  Batket Analysts
= Document cluttetn
=> ‘Dimenslo nal Reduction
— Refnborcement Lecuning ;
= Mutonomous . Vehteles
= Game Playing
= Robotics
= Powt folfo Management
= Pasonalized . Recommendottons
| Evolutionay Learning
Pe Aet 4 Muse Generatton
= ateuct ural Optimization
I De
 
i Discovuy
=> Volkele Routing Pao ble
= Pnienna DertanSvpavised Leanntag :
Se Lan gett oue ghoutd Produce 0}
‘The
~ (Sen cable owtputs)
the S]p ae af 4 target % ue
ethe S' Goder  Susoerke that we have i
BH plecer of Naka tndened b i
fom Ute some Uppalemtt N
~The tnputs £ ton ete ane w9ettten ent Hats
Mty Vectors. kince eae
phase font ~to “9
% tate hag Values boa several 3
p
{
1 erunnty
  
    
   
   
  
 
phase
Jentuset
=> Every posetble Pteces of elp Aata thoutd be
fonssdered | at st NO need for MLa
: oll. etnias 4 { t97P SRG
5 “Types et Supevise d Leainta 2
© ¥ Reg werelon d :
+ chasstls cotton
The above “hen Jenuntin ome enhet trea)
WOomld Prrocete GL Eg heatd hand ty Spee!
Genel. sokt on # ‘ : :
°
Rearesston 4
TA 8: about Predledin
8K Lonneous
Value
Ex;
Aohewe n= O-uy
7.7 Poked eet: bi)
x {
0 o
Oy 1.8
pou foo.y
oe >-54
6 te
3.14 0
When a= o.uu hese otit te -thece ay not
enfsh. Wer conssler © at iour tacgeb be’
Rs
- Sfoce ~the
Value
not fn.-the
example But
Some vwhee — Whot
the. values
Ms O.4UY Re
ko, Yin d.[ predict
value Pt hat. Cow that
comet ron Some Sont junction,
B4ind out nohat the. funy, % . the o[p'value
“y! atone any given value of Sot thts %2 knowr
as fede tae problem ey stalietier.
2the aM Seng show a plot of # Values 5
ash aa while the othe plot fho,, |
she MY tHeent attemptr ott a curve the,
athe docks pofnty
“athe M4 tm Shows that
qound by using St. nes to co
Potmts -
Poserbre anti,
nnect UP the
“And tates to. ute a cubic tunetion
The Hal frnage “shows that etn» Pini
(Sinx 83 combination of tve + -vé value)
80 ay stort feng $s the  comreck ant
Lompouing to pens Imag 8. “that mar)
at atves. a betty sol” dat! how well
they genealice. i
"Tn the machine leant ng Algorithms candy
is fntu plotes blo -the! sal points for
‘enprouing ~the pufomance and gol the
eee aD eae problems.
  
  
|
  
 
- mame §s about Predicting a clat!
(OF) Aiseeete Values
Exs Consider a Vending Machine, ushue
We We a tne network besun to
‘ecoantse au the dtff Points | comeCameoae a AI
Page daain the ebassttters, FO 65
4 tows on
tnt. ttdher 4 $b fe chew
a Comms, : ae
sfeent chm per bub ob gives Abe A ee
pared on boundasiet. that meant mee
0] gh Inet (on not GW 6.0
 
  
 
 
j nz
Cit: 144
Hl yer
7 yi 4
|
C | oO
t 5 |
pofsa gp
4
bis pe
“4 Lr
1 i ’
———;- 5 5 t he
Lines tlostle alton Lia Paj0n Uneas class heaklon
sy, 4
the Brratn and Neuron |
Newen Networks
dasae Ao» OL fnteconnect*on neuront cotled
“newton netuwowks
Veuron 2
Neuve celle colled neurons
Obs ecttver Of Neuron Networks 7
‘The acquired new environment ~New
tlustton- new cats when expose +o such
ind tf new sftuatton- new dats how i+
adf uss i derafts GLsetL and hous St res ponsestn ges destved result
   
   
 
KThe neuen network 4 Stimtlated by
Cnvinonment +
#4 experfences changer fa TH Poramete|
Sndimal Stouctwer ot a result of Bul
LIL ccesponce ina new way +o the
environment SHmulaton py Changer
because: Of these changes rohich have
ocemed SH SH Paramedus ow Intunad
Shu clues.
| Dendaoier !
Smoll nuves usheeh connected Fo Colthed
£40 ap ses Ps
Small bulb Uke organ eis
      
  
 
Aston + rtradre
; )
Fogle a Connection blw One'neveon
andthu neuron, ac SUA?
anon
oO sy ell body
neuhon £19 Fs
gamete
2 “Jendiots fonneetian :i Hebb's Rule 3
Hebbian leamtng wule te one Df the ‘aailvest
£ Simple leaning ow nun netusork’
Hebb Sn
the Yeou Of 1445
Rules:
OS} 2. Antuconnectéd:: neutone. on ef ther
cide of a fymope ate both on fixed (or)
activated at -He Same —Eme.(c ache onour)
sthen —the Sunaple way _bleo ~them. Should
be inceased. , 4 :
Sy naps foe Cater
4) anon yf Y
ON 2 newton: on ethan stile of Synapse
On we fired (or) activoted ditteren
Himes ( Asynekronousl \ then wetaht of
.i the, Synoplte Connection %&
Neteare .
$e }
Io wy degea
Wh Ooton’
ats
ra| Mpaeees
° les
Meclelloch - Pi ts Rul
nn Mahollos ~ Petts NeULON LUdars the
Mest neuron > network DL 4 USterlf,
eactr C ;
catled as M- P MO dof
Si was Afscovued In 1943
a uwns &n. MP model ue Connect),
@ We
by dicected Wetghted "paths. |
the weight associated Can he of 2 type
Lencttatouy ( posttt ve)
de Inhtbt tomy (Megacttve)
TL uses tnouy activat son function for
each nenion.
ea ; ° X%< 0
   
\ x >o
rohue 8 = thevthold Value.” :
>The thucholg placer an Smportant sole in|”
H-p Model ,
=? The MP newon has no PALE cul ye
leaurtng (or) Trotatng
atabettim .
bey are
leateat poy Ud toe tn plement
‘ NaSk “0
96) a
, pie FO
7 = —>
dn > fa) ye AG
oe
=n /
i A
7 ntm>(Aosm
Ly: M-P model
Desian a leaning System
To. get. a suceettul Lesunin System 5t should
be destaned fora pre pes isletian for, thot
We follow 5. steps . + In order +p Ulew Some
Of the battle dectan Gssues and APproachkes +o
machine Jeanine let us tonsida a design,
Program ~lo lean ~tn play Chechens dame
Lotth the, goat, of World tournament. we
adopt “the! pufamance Measure $2 the
Putent | of game bo usin thie world
tovunament
Choosing the tManing ex peifence ’
I
2 ON the target fencHon |
3B. MW cthe Tepresentorli on tow the “heag et he
4
8.
Me a tuyd Np per oagmact ion gern. i
- the Lino, Detiga iie Panee
x leatotng Ent per? ane:
° He sna -
Choosing he “Le
the fintt detign chodee w9e face to of,
AL may, U *
the type Of dwatntng expertance from ‘hte
hou he sys vofll Tecun,
    
   
     
   
 
r
the type oY “Aeratin’n Tot perParnce 1 Vor' (orb),
tan have a gtantteeant fm pact On tuces,
On failure Of “He leaning.
= A Second
Femportand otter bute Ob the
paar CApetiance OL tre “Degre eto
USlE ch Hho leoun ex tonteols the Sequenc,
of Arafning erompler. eo
=A 3Y4 imp atte bicté ay the: tok ning ox
fs AoW neell ob
examples
Pheimanee \
peta
Vepererenti the Helihut, f
over Uh veh Hee fad ays
Fthe erect ype oy brousle dae 0 be tensa
ay “Eprtsentatton fo th tage, knowledge
* A taunting Mechanisum, eit cil all
8) choosing tine cbouget funelion ¢
The nent Jettan Chodee be seo eB Rg |
detamine exactly whet “type 8L ‘Enouole. a
vo be lea, | And Kow ~yhe Wr be used
by ~the Performance Prrog aroun, Reade vay[ioe ut beater with ao oheahket playing
Pangvam sth Coan yerreeadl 0 otha leew eb mover
ion and board chate “Me Program rytede
only to leam how clo choose “he peg
moves fiom among thete Corqel mover.
eo hts [eave toh ose we puetendtively lone
class tate sto pokteh thy le gad man
BS thot define Lome loge feouch Cpocar
AL RMowN att. Prfore Cimportant) bul fo
whieh the berl Search tholeay fenot
_ known, '
The Pun’ choose move 4 ute the notelton
"Bey" to Indtente thet tht fun acee ptt
as Slp any board from the sel of tego {
booud. Foam the » set o| leg at board elate
“B And produces as dlp game move from
He Set df Lega mover "py"
> LE us daliine the ~Couget value web):
for an on bil ouy bood, State. bin ©”
As follows ey
#94 ob fs the [nal boou
than vb) 2100
e DE b 8s sthe 4tnal board chate
se lorcet the vb) =~tv0 :
* MY b %s nthe {inal board Ctobo he!
drawn then V(b) FO 6s print
gq torte fe Won
thal |' ° GE
#OL b ts a not ajinal ftote fnin 7
game then veb)e v (bb)
Bo where b ts the not best Store t
can be achilved fom b and Play ing
optim ally vind i! eke game wn,
    
  
   
   
 
 
 
3) chooting the vepretentation fox the baa,
functions nit
reer t
Now that we have epecttted What -Laseel
function “v'. we mutt “choose a rv epreten tatty
that the leaning problem vstll uce to detath
she functton *U' wet 8+ ws Pt) leon fo
any given board. State the funetton® Y coll
be caleutoted ge leeunes. Combination of 4h
folloustng. board features: 1 = Laadd
x5 The now ob “black plecer on ~the booud
Hs sthe 90. of wed pteces’ On-the boand
fy othe no. of black Lings onthe board
Xu 3 The no. Of red> peece” on the board
Yet The np, Of black piece tyooted by ved.
1h {the M0. bed Precet’ treated by black.
Portals idestan’ Of, checkere leainfng calgort tha '
be Pero Qrrarn » 1 : j hey |
D Tash ner.
Playing checkersa oe a ee elt eas, Cee sear eee
pyelermoner Meats LA;
qecertogs Of game . yoon 2n the world
Loysnonmert.
Ls
B)grperince (Et):
BD Erput Aer
Gomes played agatnd FAselh
vanael funclfon ty)
_s—————___
goud on &
OLD FV 4s 1, 29.45 AWG g HAY Ly AVGIA WA ¢
| To-raet dunction Re ntation +
| a ences BEA O i:
 
UB) 2 VOGLVIT,AVIZTs LW ots, Ey Ay 4VOgUs tg Ay
4) thossing a-tunclion approstmation Maorthet
0 odes tp Leann the -Loraet funy) we -
eager 9 20k of trainin example each
Auuibes a Specttte board Stote (yy)4 she
rere Yolus' Vigatn hy’ tor b
J othe wordy
tach Laointing @
rermple $1 an Ord eres.
Pole. Of the form: biVasatn (897 tor that
# bono a} she
 
Gnhetd Sn timate,
tht teobuta thy tng -Ladirting
wwhues fy,’ intumelote booud State, one
Zip o approach has been found +o be.
Laces hl ,
Visa, (ty (fuceese ())bia ae ' UE
re + Nd furting the usefahl fs .
Ae tommon approach fs-lo lef foe othe how |.
nypothertt on cet dl uref ht at (hat Loh,
d St a ae
minor ttet fhe cco E> blu she: -bratntn Vedi,
fake predicted values by the ‘by pol hetral 9) 2
Ohi
E> = (vy ~ Voy”.
Nas
(bs Vacainchy) “sath
$0, rast mean Squates
oatthm . :
sythe {rnal? sed Detfan ft
JS one such. |e
Expatent = os 9)
4 to
/ aes
? Rn ance
= Siem
  
Travel ing
solutvon ees
tage’
Ha! Feed aesiqn pf) checker Leaintng Hy sh ;
7 Foal satan of checker Lemintng  tys cant
Po nat clesatbed by 4 att? Srodule/! |:
Paoatam moduler that represents the conte!
component on macy leouning System,
>the Expusimental genevoctor gives the net
Problem to a leaining syttem.one utetul puspectrye ® ML t4 thet it
tvolvet cessching a vay loge Spoce A posetble
nyptness +o detumine pne ‘thot Let tebe A
the obtuved date # any Hel, Enowoledge. hell
by the teoune. la
FA tontida the space of-the h Potheris that
woud In puinciples ~the olp ba the absve chick
VWosntt- ,
the “LMSC teat mean tquase) Poy Hing
Wergyt achieves these go alt by @ncevreattvel
hints the weight, addin , Gach’ weight 1 God,
Lirne “the  hyportherized eVolutton function
Pre dich 4 Qalue that Anttor fom dhe”
Evolutwn value. ee 5 fe
' a 1 Pot ’ ia DThetr algorthm tonks vwoll vshen the Iyroul
evepwosentatfon tonsfelored by the Veasnertgy,
aconttnucoutly. paametettre a Space of "e
hypothests ~tha meant the {@aintn
Problem oth Contdence We can
hypothest s Conssctent ushth
| Deeues $19 “Machine Leaintn te
Nhekat leaning ali 07H ny
D How Much 4 vatnin clatte 2 Sutttetent
3) shen 4 How tra’
' brovol ean gufder
leainin Process. “4 a :
4) rShat Ae the best steroct ay fot Choong
next trainin eAPerfence.
achat fs the best way to reduce, the. ||
leaaning task to, One wx moe 'Lunctfon |
AP Peroxnimation Problems.» a {
6) How can the leone. automate ally
545 Tepwesentotton’ +5 Fropmowe. 5 Ieauntg
fs Usted.
abtlity,
Concept Wath 2
—_-s
Pnfuin @ boolean Valued fun. fom dearly
txamoler “of $44 ‘pd vop
Ext The genera! Concepts ane Cokegarties such
Os bind, GA situations in ushich 4" ghoutd
“More in’ order’ to pax she etam oe
£ach “such lonapk Can be ~ Viewed | a4 describing
Some Subset of Objects ate event defined
Os Nodcie,: Cob gb ge A We ee| paeora ANN apitnals wha folie AS dee
‘fon Wik OA fake Yor ots duu -
rule (andes sys padbors ai WDM IBA
angering She reps dle th ture Cone,
nan UNO SOSA a4 tenth Oe ¥N5U8
Rives 6 thok cortege.
(onagh Jsgsuiog Aor +
 
MH ohne Inehoion 7 Losin ths OSs Yo
Concho Ho ther) 4 Cobinay, ¥Y th go Ave
oyonsne fg Thos ety An Gersnod Ors
tren Jsowing sy (on be AuetbA” ey
ws Nh lardiddls . upton. Conrido de
wy Jsony od ths ca 4, Snpiving evade
—7 tr WAU HA AYE Long eossing
cra es :
)-Any Hose 2 Becepboble od tis Gvibale
44 ic! indicated by “y
o) Zpeity 0 ingle ead dolue fot on
ribet om ny value i acuphed So
A “aMto | chy j hiskermp towing vind ~ woke
1 gorny 01D MorroS | Ateohg Worn
2 Gerry wiortien | High Bheorg i000)
nL | high ; inkrong ont
DSI ids0, j vig . ateorg Lovt..
' {. +4 i od
7
he
' ‘ { ] | ¢
(Arlo FO Lrtyone post - es
be | Gare de Yep tote ort :
o- | Gomme’ Yo, an (eer
But orgy sty
4, i chorge Yousrr
whetict py not enjey “the
- gpk for an asthilow , dow" baed © or vote,
~ Vector Of og  Conttaink athey Ate Skyy iy
~ Temp 5 Humidity, 5 asind , watuy 3 forecart ,
“The | +typetherts enjoys his “Spork OnLy, an
ted days with high humide - is Heprerink,
“Ha ave’ exowipte is sépresented ‘by
ave § -Ve ‘trammii example y the ks 5 aE
Concept sport atbte arjeyipice windicaten te j
  
    
   
 
    
  
   
 
  
enjo
ik ether atbeibuter . acts “hypothuit be.o
fy ete Uuepeention :. Menon
The most genvral “Pegpothesis that tveuy day
Reo ea oe oped
jhe mort Specitic ve typethesis that y,
js AVE etamyle iS otépresented by (0.6.6, 6403
the enjoy sport Concept doatning fart ouquit
Jeostring the Sek Of dasp qo which “thjeysrat|
~Yo. igs fate
— the ste of} items, Over, eshich,,, the Concept
Is defined “is” Called, the, $0 of rutaree
indecotd buy * x” Se Hee
= AN posible’ days in he “x 7 qtbiibuults our
Sky, aittemp + Humidity, 4". ¢@n''Be any
bootean valurd function aletined overt the
instanad ¥ . cry as Got peared. 4
— dn Out Cuvunt ample the: target
Contept Corresponds ko the, valu of
| ettraiathe Soieyener ee Oe)= h ckh enjoy’
) pove ts = 1) Ys and eCx)=0 No.-
LiLovsy
ja Sotlones  ¢! gemith Aan tats Aonwerd
j wre Bete, ,
 
lash gnyrtte tote: Baars a Ker |
4)
| fester faite ynithe dete yyser. ata)
|
 
: 4
| gisat Lobes . 4 dence , tig ,
’ LEAD, « sige)
* = Bosra « Save *
He eh Aad 4 Hexgeed |
[4 9 Conyttn uM ” Coratschihe OF the alias
(EF Me, UNL EC He Cortiden ay be tf
ery Grn 6: Gripy teat
|
 
" Y
 
- Bop phe tie!
i
 
x
A
oy
ean Ame, Deny, Gd —«
(Art 4A Oe Agi,
af , 2 2 Ls.
Lidenone : A tapitent Win 8 iach Ree
4
Wip~ Cr) Yn oa TF in?
f, 2
inductee Leoontag Hupotherte:
sae | tag thetis oond
aaa tun 19 sun o tuhibetont €
ath U1 Audirtyg ar origra Zé obts appetmes
Aha Agsast boy viel Cyn Othucbessved
oder [iontreny
Z {O09
COs yt _ Ctomning
 
 
taveldes Aztumtatn a
mogying From, 0 t4h OL Bip Voisto theal ty
9 Woleon volue auch method: a6 bnewn ay
andyshtys Meosning methods
dBentaligation
 
,SE a dun tan he -found whith Maps
4 ‘ag dats +0 Connect Chats ?Beoctions
thon §t whl
HES Proceal %s
 
also Well +8 Unser Lat,
 
 
'
kro as genealtratten
rncept Jenimeng oe Seouth +
! i
Nlept [gounin
can be viewed a6 the
totk Bf fepaching ph oa laxge Space
at hupot herds Sep] Seftt
hu potherices
othe
defined by dhe
Yepresentatton,
ook OF thE genich fe tp Pind Me
hypothesis that bert fits the trotnt
tromnples.
4
Generel to Spectre gra of
Hupotherts +
=F Wign
abaoni ms Low concept leeinieg
Ox ganiee the Seoroh Huo ay ae
Space oy velaying (depen ding’) On Hm
vey uUselul Shueduce hat entet te ang
concept lecunin problem. Fe genera +
Spectre Ordering of hypotherte
—ee
Advante ens
e
2 Voturally Beau se Shiuctue OVE the
hgpotheris Space,
Infinite
hYpothesrs Spaces.
Example
tonii der. 2 hypotherts,
hi = $sunny., 2,2, Strong 2,0 3
ho = 3 sunny, 2.2 ,2,292
det “hy @hy be the got Ok Instances
classiHed dyer becaute hs have onl
fewer Constiatnt In H. clacettfer more
Fastonces ab -+Ve Fn “hs” Snfact an
inthance class?fied ave by hy weit alto
be classified yue by hi. That mean: we
ee Say Hot he $s more generat. thah
i : ae
One leoun?n method 9f +o detemine the
Mot Specttre hy potherte that matcher ott
athe sgrioing Sdicctia.. j
“Howe - Genetal -than (or) Equal-to relation’
Wit hs hatiobe 3 boolean value -+tun defined
OVU "HK" +hon he fs most general Han
(0) equal to he(ho= hi) wotden GH
eXPeressionm ; om
EH ond only ff any expresifon that gad)
J
h, alio godistier bh,
=> h, fs More genial shan ho
(hizhs) S44only tt hi Yh 45 tue
and hy ah fs falte we alto soy
FS mome Speci He +han h,
tonartion? hy she Her eX hk Oe
hj (a =1
 
Y, -[ounny, Warm kegh 1 Strong , 400), Some]
 
eS = [Lonny wow, high ight jWoum some]
hy =F sunny 9,9, Strong, 9,93 i
a
Wy 2 = sunny 99,9, coo) 9 2
~ ~ mew“7 ae Hess
[ fending a maniealla Cpeci fie Heigens
(find - $)
the bed Property fe the pothesis 2pace
aise’ bed bi Conjuctons of atlyi bute
Constains . Fead-c % waranted +o olp
he most Specite b pothetis with in
eve Contistnt uwitth ~the +ve trainin
examples. Tt's frat h Pother?s wftl alte be
consistent wth the —ve examples Provided
the tourget doncept. £5 Contain en H and
Provided -the teaaint exam let OL€ correct.
The Find-s algon?thm stort from most”
Speci tte hypotherts and genetatioed t4
pone sa only
othe: alder then Canoes —Ve examples. of
Len as thehypottetts phate contain a
hapotherts that, ecitbes the bove toeget
concepts. And the training data Contoins
NO everort , D genio ve exramples doetnot
Caute an Problem.
+ Find-# algontthen finds the mort Speci fe
yeas with in H 4.8 consltdent with
HL Ave te atn?, exomples othe fat
hypothests  cottt alto be” coniditent with
“Ve Example $f. the eomeept connect
ave exarnpler.ee eee tr eee ee ee
po Lov a toncept
example! oe toanert.
: Ngoa'dhen
Step (0
Gridtaltee “h “Lo -the most tpeci fic
hypo bete On H"
v ¢
oe Oy bb ty 63
pO.
“Lov each sve. tratntn sdb apae aie
for cach attitbute concteath ay) fn h
ait the constrain ae ee ee bya
then co. nothin i
eee “a2” are by cep hid
nee -qenual tontterain “that 29 satistted
by x
yO wie
ster) ce br
Edom pie s ; o
 
 
Baiaeey Me ap wel Wind | uoater |Forecatl at
 
: ORAL
1 Cunny Waam | Normal Baw Wax m Same | YO.
 
+~
2 Sunn Warren | high | slong toaarm | game ye
hi fail
ar al  sAcong] Was Waren G ey
chtab Veapnal copy: | ckansdl ”Sole
Step 0
Pottaline “h> -to the most Specitte
hypo thers s in “HH”
ho =$ pid, ¢, 6,9,ph
pier ©.
dow each +Vve trainin
for cath atletbute constaatn “az” inth”
ot -+he Lonstrain a? $s Satithed by X Her
do nothing ,» else aeplace “ar* 2A ph”
the next most generol tonttratn that
& calsehe'd bao a
Ain stance ae
 
        
      
 
* 2 2 <8u ny Ben Dorel Brenged Batcni sg denep! | |
3
Ftevationly 3
 
fy 2 army Ban, Noval, Steong, War
1 ih
lg ere Te
Wyre 
Jf a geth
Ttevation Ws
Brereton
lhe = |
 
 
ey feet Psy
   
Xe = ean 1 Warm Wi igh: Strong y swarm , gamng>|
pt4
wy
au
Thevation TY:
pee
 
Bu c]
Sep@ '
Olp hy potheris he
[ba = < Suen, vownan, 2, Beong, $1 2 >|
VS Sea get of alt hypothesis that one
consistent ustth the taamnin
vs Aenoted Vou with respect to
hypothete Spats yi ig pt sacs
‘pb’ ts the subset tom SH! c
the taining example on ‘pt
 
4 examples.
4 example
oncistent wifi
PR VS ft hiner chteal vepretentatton Df
knowledge that ‘enabler’ you Lo keep
terack of all the useful intow Supplied
bya tequence’ Bf [eauntng examples
worthout Tememben’ng any of the.
Crmynples .
Ve i . 3 hen | consts tent (hid)f
4Lacthe veetion Space method 's 4 concep
{ PAUTAD Proce eg
a
eto pliched hy managing
mulliple models wold try '
¢
a Vetlon Space.
Ms Mod oe Maou tt bw ¢
re Flod- © olpe a In polhecre -f,
} nyt ght fet =the élaito equally well,
ee the hey Vdea fn the Caneltela le alaontlera
te -to ofp alfsctpltion Ofthe eet 0 Cut
hypotherte condslent wlth othe
examples:
Repretentat
Definition ;
A hypotherre “h-- 88. gone tent worth a set of
perio g examples est a5 | and only Mf Koen)
for each example (o%60) &m Pp [ihts “ot, Fs,
inslancet , cto) Se “the abou et]
Norotiton es
|
i
“Ltmtlat fone Say
worm HE thal
sby atin a
cLratnt
van of
‘
on, Ol. Vattlon ¢ paces
conttelent(h,p) > (ule, cooyep),
hOO's ¢ (x)
  
PLIST -THED - Eltminate ot
Be! - TrtE) - Eltm
PH Dlg eatthm s
[To vepretent ~the Version space etmply
to ltst = alt Of Fs members .~rhe Mid Han
Feltmtnate ahaon’ thm pack wnttialloe the
Vuston space to contain all ~the hy pot hec‘e
 
On “HH, cthan eleminate any hy po th erts foundip saetetent of th any Lvotaing Champa,
nd
ai List tthen. stiminale
ae
alauatthon Cn, ,
(
uehen ever -the ee eee Spar,
(
tle
   
sfon Space <= a Cet containing every
otkests fo “H
 
a. fon each rata example, (4, co)
owemove foom Vettton Space . any hat pother
“h fow shih’ hea) 4 CGO
3. Dutput -the list of hyportheris an Veutes
Space
Candidate Elimination Algoatthm :
A mone compact Vepresentation of Vettfontpace:
oO
els nation Alagrithm works on
Se Ust-than - eliminate.
> 34 employes much more Compact
representation Of Ver tfon Space.
May Gn the previout Rind-t ~ lp of the
pees te < Sunny, warm, 2, ¢toongs 27 7
®nthet 6 att hy pothests foam bh thet
ae Consistent ustih thete -leratntng exam
go consisiite the vis alativer to thele
Of data % ~thore hy pothec te.
A Candidate
game oo ithm
  
eeCo-phe possible veprerentotfone are G48.
E
B aie general boundaces “@ woth crespect to
| of hypetherts Space +H 4 Lealaing clata D
g othe get Of a ernest general membeut
qi coneistent wth io
Erie Speech tte boundary "S' wlth vetpecl to
>
dhe nypotherts Space Ht taaining tata
Y
p +he . Set Bf mint tmally general
member. 91 H Consistent. wotth p.
ose Elimination Algont thm :
alge computes the! vie Containing olf
rypothetts fom Ro that are constttent wth
EY observed Sequence Of trainin exampler.
qhe Eee Att blu ctonsfetent £ &neonsfetent
of the data satisfter héxdee (x)
fer example ‘a’ Ss gafd to Soctisty
hy pothesss ho nohen H(A sl. When ever n%
@ eve (on) ~Ve example. &} the touget
concept phoweve such an exomple consichnt
with "pl depends on the tacget concept
fn particulor + rahe thee hedec Cx) -
Algontthm ‘
>the candidate climnatl fon Algontthm
Glee tare tel Weeouel ce
Sena se ¢, 8, 4, et, o>Ry
» step,
Gnttioliae G -to the Set Bf martimatly
: generat mapeael on UY
_ e®
Treolire
cto the Set of oe
0
specite injpo tert Sia. AE
Cow, each pteotaing example Xo, do
= See elon q any hy pothects Sneontih,
bie hypotheses $ tm S teat fe not
consistent with 0
= Remove. 4. tom: S
=> pid to S wl minimol geneal?raton,
h of § - Such that bfz' toast int wll
a and gome membeu Of G 8s mon
general Han hb
>Remove fom ¢ an potherte ~that t
om general thon . anothe hypotherts in
Thod' ts - ves
= Pernove from ¢
with J
= 4 each hypothest s g '9 G@ that fs not
bontistent volth df
ee g tmom q
anu hy potherts gneonsisteada to 9 all minimal Specraltantion
hh of 4° euch Hat
Shits conststent with 4, * Some membec
| df Sis mor Cpecife than h.
L> eemove -feom a a7 hy pothes?s that is
| Jess generat than any othe hypothests Pn
1k
| amy
Hnew Dirtiminank - PU ceptwons
 
 
 
 
 
 
Limit ations of the Mcculloch - prits ccule
= Wewons doen't actubdly vefponte as
stucthold deutcer but produces 2 jrated
olp tn Contineoul wo,
Us the Neuron! ove oot updated aot
acmding to o Compute clock «
vesthe weight: can be te (or)-Ve within the
broin but wath the meculloch — pith
cule Newmont the weight Can Changefrom tve to -Ve urice Vuln,
| Pucepleon ;
| the Slp toa ve al newton out ook Ne cess
gumed Enea athey mad be online,
fumattfons.
Howeve ~the mott notfeable Ath te the
oxeat neutont cdo not output a gin leo}
sresponse . {pvrthat to make oa Neudn le,
change the wetgtts 4 -threrhol ds of the
Aewuons wuting Une disultm nant. That
meant the newons due Aisuiminated linen
sin Haale acuis and sfngle ofp.
Perceptwon :
+The perceptron Ss nothing more than a collecty
a Meculloch 4 ptt nemtons toge thee woth
aA. Sot of input and some voetahts tofaste
oe opus’ Ho Hier meuron fn!P °
phe neutone G-the perceptron ave compl etly
4
nalependent Be each olhei the ab. of ‘oputs
Be the Same at wthe ow Sf mewtons fn ~the
above diagqaam.
1 But this doetnol have to berthe case ,2n
| general thee ustll be “m' Snputt £'5" newtont
jhe puceptwon Eo lenin bp meproduce a
porticutor tar et %.e, a pattern of firing 4
conliring neuont tow the given Fopucts
othe Mcculloch 4 pitts neuron the usetgtts
WUL Labelld at" W5 = 8 emdicalet tthe
ander luneing over —the ov Of Pnputt.
C
Avie =~ Cyy-de) xo]
« For a Neuron that 22 comvect , we ol happy
doernot Use Perceptaon cute. But an
newton —that {fred ushen should not Shave
clone are failed tofive neohen Ct Shoutd
Needt -+bo have ¢t changed —the wefghtt,
Fow ~thoct
| Awe -Cy, 4+) x} 00 0
hoheres
PAS oe Producet —the oefalett thot owe
Smtesected 8m Wey
2 pohewe *8) runs
trom lem
80, WITON at kes .
dh-te— Gk computer “the dlittecence blo the
out put “Ya! volich f¢ nehat the newon
ata ond the Louget Pow that newon,
“by whieh % pghat cthe neuen should
have done .~This?s a post sble error tun olton”= The lenuntng vuler need to be finishe | hui
We need o
ah mi 4 Ko Vd ‘4 & “yf
a 20 [_ 0 ' Zvi Ot <0
 
4 = cence pene
ae vor of palit tnatntvally uw
fev 44 vecodl
 
 
 
me rorryy le the gcliuetton of each newton 's’
sh
tag
  
 
   
(ae ym >0
n 4 P
aa (A ya): /» oil Wbyjats 0Evonple — ee J
ec _¥ 6 \o 5
ring “pp aart ali
L io \4
' Ltd
* 4)
pf :
 
the tom plenty of puceplwon %¢ biz O(n)”
Laomple 3
NAR OOF WO ceop2, Wartd.070
those ous the inputs » Both Snputs We
fowyio and —the input wetght ‘f -|
46 -e MUI weather [0.05 xt} 4fo.mxgt aor)
= p.os (01P)
The Off oroduaes in (. 8?rce ~the input!
Goin Ay above ‘D, g.6 the meuson fie He!
fn the ardivadton function.
  
|r socas] wing
90 0105 <0. CLapdeel = cy ayy
et 9-02 + 0-45 C0) KO &