CEDC606: Digital Signal Processing
Lecture Notes 2: The z-transform
Ramez Koudsieh, Ph.D.
Faculty of Engineering
Department of Robotics and Intelligent Systems
Manara University
https://manara.edu.sy/
The Z-Transform https://manara.edu.sy/ 2024-2025 1/32
Chapter 2
The z-transform
1. Introduction
2. The z-transform
3. Transfer function of LTI systems
4. Linear constant-coefficient difference equations
5. Connections between pole-zero locations and time-domain behavior
6. The one-sided z-transform
https://manara.edu.sy/
The Z-Transform https://manara.edu.sy/ 2024-2025 2/32
1. Introduction
▪ The z-transform plays the same role in the analysis of DTLTI systems as the
Laplace transform does in the analysis of CTLTI systems.
▪ The z-transform is an extension of the DTFT to address two problems:
• First, there are many useful signals in practice, such as nu[n], for which the
DT Fourier transform does not exist.
• Second, the transient response of a system due to initial conditions or due
to changing inputs cannot be computed using the DTFT approach.
▪ The decomposition of an arbitrary sequence into a linear combination
k =− x [k ] [n − k ] shows that every LTI
of scaled and shifted impulses, x [n ] =
system can be represented by the convolution sum:
https://manara.edu.sy/
The Z-Transform https://manara.edu.sy/ 2024-2025 3/32
k =− x [k ]h[n − k ] = k =− h[k ]x [n − k ]
y[n ] =
▪ The impulse response sequence h[n] specifies completely the behavior and
the properties of the associated LTI system.
▪ In general, any sequence that passes through a LTI system changes shape.
We now ask: is there any sequence that retains its shape when it passes
through an LTI system?
Let us consider the complex exponential sequence: x[n] = zn, for all n
where z is a complex variable defined everywhere on the complex plane
y[n ] = k =− h[k ]z
n −k
= ( k =−
h [k ]z −k
z n
)=H (z )z n
, for all n
▪ Thus, the output sequence is the same complex exponential as the input
sequence, multiplied by a constant H(z) that depends on the value of z.
https://manara.edu.sy/
The Z-Transform https://manara.edu.sy/ 2024-2025 4/32
▪ The quantity H(z), as a function the complex variable z, is known as the
system function or transfer function of the system.
▪ The complex exponential sequences are eigenfunctions of LTI systems.
▪ The constant H(z), for a specified value of the complex variable z, is the
eigenvalue associated with the eigenfunction zn.
2. The z-transform
X (z ) = Z{x [n ]} = x [n ]z −n two-sided or bilateral z-transform
n =−
▪ Since the z-transform is an infinite power series, it exists only for those values
of z for which this series converges.
▪ The region of convergence (ROC) of X(z) is the set of all values of z for which
X(z) attains a finite value.
https://manara.edu.sy/
The Z-Transform https://manara.edu.sy/ 2024-2025 5/32
Let us express the complex variable z in polar form as: z = rej
n =−
−n − j n
X (z ) z =re j = x [n ]r e
X (z ) = x [n ]r e−n − j n
x [n ]r e− n − j n
= x [n ]r −n
n =− n =− n =−
−1
x [n ] x [n ]
X (z ) x [n ]r −n
+ r n
= x [ − n ]r + n
n
n =− n =0 n =1 n =0 r
n =1
n
x [ − n ]r converges for all points inside a circle of radius r1
x [n ]
r n
converges for all points outside a circle of radius r2
n =0
https://manara.edu.sy/
The Z-Transform https://manara.edu.sy/ 2024-2025 6/32
X(z) converges for all points within an annular region of the form r2 r r1
▪ Note: The ROC depends only on r and not on .
n =−
j − j n
X (z ) z =e j = X (e ) = x [n ]e = F {x [n ]}
▪ Note: The discrete-time Fourier transform X(ej) may be
viewed as a special case of the z-transform X(z).
▪ The values of z for which X(z) = 0 are called zeros of X(z), and
the values of z for which X(z) is infinite are known as poles.
▪ Note: The ROC cannot include any poles.
▪ For finite duration sequences the ROC is the entire z-plane, with the possible
exception of z = 0 or z = ∞.
https://manara.edu.sy/
The Z-Transform https://manara.edu.sy/ 2024-2025 7/32
▪ For infinite duration sequences the ROC have one of the following shapes:
• Right-sided (x[n] = 0, n n0) ⇒ ROC: |z| r.
• Left-sided (x[n] = 0, n n0) ⇒ ROC: |z| r.
• Two-sided ⇒ ROC: r2 |z| r1.
▪ Example 1: z-Transform of the unit-impulse
n =−
−n
Z{ [n ]} = x [n ]z = x [ 0]z 0
= 1 Converges at every point in the z-plane
▪ Example 2: z-Transform of a causal exponential signal x[n] = an u[n]
1 z
X (z ) = a u[n ]z = a z = (az ) =
n −n n −n −1 n
−1
=
n =− n =0 n =0 1 − az z −a
converge if: |az−1| 1 ⇒ |z| |a|
https://manara.edu.sy/
The Z-Transform https://manara.edu.sy/ 2024-2025 8/32
▪ Note: The z-Transform of an anticausal exponential signal x[n] = −an u[−n − ] is
−1
1
X (z ) = −a u[ − n − 1]z = −a z = − (a z ) =
n −n n −n −1 n
−1
, |z| |a|
n =− n =− n =1 1 − az
n n 1
Z{a u[n ]} = Z{ − a u[ − n − 1]} = −1
ROC must be specified with X(z)
1 − az
The inverse z-transform
▪ The recovery of a sequence x[n] from its z-transform (X(z) and ROC) can be
done using the formula (inverse z-transform ):
x [n ] = Z −1 {X (z )} = 1
2 j C X (z )z n −1dz
where C is a counterclockwise closed circular contour centered at the origin
and with radius r such that is in the ROC of X.
https://manara.edu.sy/
The Z-Transform https://manara.edu.sy/ 2024-2025 9/32
1
▪ Example 3: Finding the inverse z-transform of −1
n
1 − az
z
x [n ] = 21 j dz C is a circle at radius greater than |a|. f(z) = zn.
C z −a
If n ≥ 0, f(z) has no poles inside C. The only is z = a ⇒ x[n] = f(a) = an, n ≥ 0.
If n 0, f(z) = zn has an nth-order pole at z = 0, which is also inside C. Thus
there are contributions from both poles. For n = −1 we have
1 1 1
x [ − 1] = 2 j
1
dz = + =0
C z (z − a ) z − a z = 0 z z =a
1 d 1 1
For n = −2 we have x [ − 2] = 1
2 j C 2
z (z − a )
dz = + 2
dz z − a z = 0 z z =a
=0
Continuing in the same way we can show that x[n] = 0, n 0 ⇒ x[n] = anu[n].
https://manara.edu.sy/
The Z-Transform https://manara.edu.sy/ 2024-2025 10/32
▪ For rational functions, the inverse z-transform can be more easily computed
using partial fraction expansions (PFE).
▪ Example 4: Finding the inverse z-transform using partial fractions
1 + z −1
X (z ) =
(1 − z −1 )(1 − 0.5z −1 )
4 3
X (z ) = −1
−
1−z 1 − 0.5z −1
ROC: |z| 1, both fractions are the z-transform of causal sequences. Hence
x [n ] = 4u[n ] − 3 ( )
n
1
2
u[n ]
x [n ] = −4u[ − n − 1] + 3 ( ) u[ − n − 1]
n
ROC: |z| ½, 1
2
anticausal
x [n ] = −4u[ − n − 1] − 3 ( 2 ) u[n ]
n
ROC: ½ |z| 1, 1 noncausal
https://manara.edu.sy/
The Z-Transform https://manara.edu.sy/ 2024-2025 11/32
Properties of z-Transform
Property x[n] X(z) ROC
Linearity ax1[n] + bx2[n] aX1(z) + bX2(z) ⊃ (R 1 ∩ R 2)
Time shifting x[n − k] X(z)z −k R ± {0 or ∞}
Time reversal x[−n] X(z−1) R −1
Multiply by exp. an x[n] X(z/a) |a|R
Differentiate in z nx[n] − z dX(z)/dz R
Convolution x1[n] x2[n] X1(z) X2(z) ⊃ (R 1 ∩ R 2)
Correlation rx1x2[l] = x1[l] x2[−l] X1(z) X2(z−1) ⊃ (R 1 ∩ R 2)
z
k =− x [k ]
n
Summation X (z ) ⊃ (R ∩ (z 1))
z −1
https://manara.edu.sy/
The Z-Transform https://manara.edu.sy/ 2024-2025 12/32
▪ Example 5: z-Transform of a cosine signal x [n ] = cos(0n )u[n ]
cos(0n )u[n ] = 21 e j 0n u[n ] + 21 e − j 0n u[n ]
Z{cos(0n )u[n ]} = 21 Z{e j 0n u[n ]} + 21 Z{e − j 0n u[n ]}
1/2 1/2 1 − cos(0 )z −1
= j 0 −1
+ − j 0 −1
= ROC is |z| 1
1 −e z 1 −e z 1 − 2cos(0 )z −1 + z −2
▪ Example 6: z-Transform of a sine signal x [n ] = sin(0n )u[n ]
sin(0n )u[n ] = 1
2j
e j 0n u[n ] − 1
2j
e − j 0n u[n ]
Z{sin(0n )u[n ]} = 1
2j
Z{e j 0n u[n ]} − 1
2j
Z{e − j 0n u[n ]}
1/2 j 1/2 j sin(0 )z −1
= j 0 −1
− − j 0 −1
= ROC is |z| 1
1 −e z 1 −e z 1 − 2cos(0 )z −1 + z −2
https://manara.edu.sy/
The Z-Transform https://manara.edu.sy/ 2024-2025 13/32
▪ Example 7: autocorrelation sequence of the signal x[n] = anu[n], −1 a 1
Rxx (z ) = Z{rxx [n ]} = X (z )X (z −1 )
1 −1 1
X (z ) = −1
, |z| |a| X (z ) = , |z| 1/|a|
1 − az 1 − az
1 1 1 1
Rxx (z ) = = , a z
1 − az −1 1 − az 1 − a (z + z −1 ) + a 2 a
1 n
rxx [n ] = 2
a , −n Since the ROC of Rxx(z) is a ring,
1−a
rxx[n] is a two-sided signal, even if x[n] is causal.
▪ Initial and final value properties of the z-transform applies to causal signals
only. Initial value: x [0] = lim X (z ) Final value: lim x [n ] = lim (z − 1)X (z )
z → n → z →1
https://manara.edu.sy/
The Z-Transform https://manara.edu.sy/ 2024-2025 14/32
3. Transfer function of LTI systems
For relaxed LTI system
k =− x [k ]h[n − k ]
x[n] h[n] y[n] y[n ] = x [n ] h[n ] =
X(z) H(z) Y(z) Y (z ) = X (z )H (z )
▪ Example 8: Determine the response of a system with impulse response
h[n] = anu[n], |a| 1 to the input x[n] = u[n] using the convolution theorem.
1 1
H (z ) = a n −n
z =
1 − az −1
, z a and X (z ) = z −n
=
1−z −1
, z 1
n =0 n =0
1
Y (z ) = −1 −1
, z max{ a , 1} = 1
(1 − az )(1 − z )
https://manara.edu.sy/
The Z-Transform https://manara.edu.sy/ 2024-2025 15/32
1 1 a
Y (z ) = −1
− −1
, z 1
1 −a 1 − z 1 − az
n +1
1 1 − a
y[n ] = (1 − a n +1)u[n ] = u[n ]
1−a 1−a
Causality and stability
▪ A TF H(z) with the ROC that is the exterior of a circle, including ∞, is a
necessary and sufficient condition for DTLTI system to be causal.
▪ An LTI system with transfer function H(z) = N(z)/D(z) is causal if and only if:
1. the ROC is |z| |p|, where p is the outermost pole and 2. deg N deg D.
▪ An LTI system is stable if and only if the ROC of H(z) includes the unit circle
|z| = 1.
https://manara.edu.sy/
The Z-Transform https://manara.edu.sy/ 2024-2025 16/32
▪ A causal LTI system with rational transfer function H(z) is stable if and only if
all poles of H(z) are inside the unit circle.
▪ The conditions for causality and stability are different and that one does not
imply the other.
▪ For example, a causal system may be stable or unstable, just as a noncausal
system may be stable or unstable.
▪ Similarly, an unstable system may be either causal or noncausal, just as a
stable system may be causal or noncausal.
▪ Example 9: A linear time-invariant system is characterized by the transfer
function: 1 z z
H (z ) = −
2 z − 23 z + 21
https://manara.edu.sy/
The Z-Transform https://manara.edu.sy/ 2024-2025 17/32
If ROC: |z| 3/2, the system is causal and unstable
h [n ] = 2 ( 2 ) u [n ] − 2 ( − 2 ) u [n ]
1 3 n 1 1 n
If ROC: 1/2 |z| 3/2, the system is noncausal and stable
h [n ] = ( )
1 3 n
−2 2 u [ − n − 1] − 1
2 ( )
1 n
−2 u [n ]
If ROC: |z| 1/2, the system is anticausal and unstable
h [n ] = − 21 ( 23 ) u [ − n − 1] + ( − 21 ) u[ − n − 1]
n 1 n
2
Interconnection of two LTI systems
parallel h[n ] = h1[n ] + h2[n ]
interconnection H (z ) = H 1(z ) + H 2 (z )
https://manara.edu.sy/
The Z-Transform https://manara.edu.sy/ 2024-2025 18/32
cascade h[n ] = h1[n ] h2[n ]
interconnection H (z ) = H 1(z )H 2 (z )
4. Linear constant-coefficient difference equations
y[n ] + k =1 aky[n − k ] = k = 0 bkx[n − k ] Y (z ) + k =1akz Y (z ) = k = 0 k X (z )
N M N −k M −k
b z
k = 0 k
M
Y (z ) b z −k
B (z ) b0z −M (z M + + bbM0 )
H (z ) = = = = −N N
X (z ) 1 +
k = 1 k A(z )
N
a z −k z (z + + aN )
k =1 (z − zk ) k = 1
M M −1
(1 − z k z )
H (z ) = b0z N − M = b0
k =1 (p − pk ) k = 1
N N −1
(1 − pk z )
where zk’s are the system zeros and pk’s are the system poles, and b0 is a
constant gain term.
https://manara.edu.sy/
The Z-Transform https://manara.edu.sy/ 2024-2025 19/32
Impulse response
▪ The transfer function H(z) with distinct poles can be expressed in the form:
M −N N
Ak
H (z ) = C k z −k +
1 − p z −1
where Ak = (1 − pk z −1) X (z ) z = p
k
k =0 k =1 k
and Ck = 0 when M N, that is, when the rational function H(z) is proper.
If we assume that the system is causal, then the ROC is the exterior of a circle
starting at the outermost pole, and h[n ] = k = 0 C k [n − k ] + k =1 Ak (pk )nu[n ]
M −N N
▪ LTI systems can be classified into different classes based on:
1. Length of impulse response
• h[n] has infinite duration and the system is called an Infinite Impulse
Response (IIR) system.
https://manara.edu.sy/
The Z-Transform https://manara.edu.sy/ 2024-2025 20/32
• If N = 0, H(z) becomes a polynomial. The impulse response is given by:
h[n ] = k = 0 bk [n − k ] =
M bk , 0 n M
0, otherwise
the corresponding system is called Finite Impulse Response (FIR) system.
2. Feedback in implementation
• If N ≥ 1 the system is known as a recursive system.
• If N = 0 the output is a linear combination of the present and previous
inputs, only. Such a system is called nonrecursive system.
3. Poles and zeros
• If ak = 0, for k = 1, ..., N, the system has M zeros (all-zero systems).
• If bk = 0, for k = 1, ..., M, the system has N poles (all-pole systems).
https://manara.edu.sy/
The Z-Transform https://manara.edu.sy/ 2024-2025 21/32
5. Connections between pole-zero locations and time-domain behavior
M −N N
Ak
The TF H(z) with distinct poles: H (z ) = C kz −k
+
1 − p z −1
k =0 k =1 k
where the first summation is included only if M ≥ N
▪ The roots of a polynomial with real coefficients either must be real or must
occur in complex conjugate pairs.
M −N
Ak K2 K1
bk 0 + bk1z −1
H (z ) = C k z −k +
1 − p z −1
+
1 + a z −1
+ a z −2
k =0 k =1 k k =1 k1 k2
▪ Therefore, the behavior of a system with a rational transfer function can be
understood in terms of the behavior of a first-order system with a real pole and
a second-order system with complex conjugate poles.
https://manara.edu.sy/
The Z-Transform https://manara.edu.sy/ 2024-2025 22/32
First-order systems b
H (z ) = −1
, a , b real
1 − az
Assuming a causal system, the impulse response is given by the following
real exponential sequence: h[n ] = ba nu[n ]
Second-order systems
b0 + b1z −1 z (b0z + b1)
H (z ) = −1 −2
= 2
1 + a1z + a2z z + a1z + a2
There are three possible cases for poles: 1. Real and distinct, 2. Real and
equal, 3. Complex conjugate.
The impulse response of a causal system with a pair of complex conjugate
poles: h[n ] = 2 A r n cos(0n + )u[n ] , where A is the PFE coefficient
https://manara.edu.sy/
The Z-Transform https://manara.edu.sy/ 2024-2025 23/32
Impulse responses associated with real poles in the z-plane
https://manara.edu.sy/
The Z-Transform https://manara.edu.sy/ 2024-2025 24/32
Impulse responses associated with a pair of complex conjugate poles in the z-plane
https://manara.edu.sy/
The Z-Transform https://manara.edu.sy/ 2024-2025 25/32
z +1
▪ Example 10: Given that causal system: H (z ) = , find
z − 0.9z + 0.81
2
a. its difference equation representation, and
b. its impulse response representation.
Y (z ) z +1 z −1 + z −2
a. H (z ) = = =
X (z ) z 2 − 0.9z + 0.81 1 − 0.9z −1 + 0.81z −2
Y (z ) − 0.9z −1Y (z ) + 0.81z −2Y (z ) = z −1X (z ) + z −2X (z )
y[n ] − 0.9y[n − 1] + 0.81y[n − 2] = x[n − 1] + x[n − 2]
y[n ] = 0.9y[n − 1] − 0.81y[n − 2] + x[n − 1] + x[n − 2]
−0.6173 + j 0.9979 −0.6173 − j 0.9979
b. H (z ) = 1.2346 + − j / 3 −1
+ j / 3 −1
, z 0.9
1 − 0.9e z 1 − 0.9e z
From z-transform table:
https://manara.edu.sy/
The Z-Transform https://manara.edu.sy/ 2024-2025 26/32
h[n ] = 1.2346 [n ] + [( − 0.6173 + j 0.9979)0.9ne − j n / 3
+ ( − 0.6173 − j 0.9979)0.9ne j n / 3 ]u[n ]
h[n ] = 1.2346 [n ] + 0.9n [ − 1.2346cos( n /3) + 1.9958sin( n /3)]u[n ]
h[0] = 0 h[n ] = 0.9n [ − 1.2346cos( n /3) + 1.9958sin( n /3)]u[n − 1]
6. The one-sided z-transform
one-sided or
n = 0 x [n ]z
+ + −n
X (z ) = Z {x [n ]} = Z{x [n ]u[n ]} = unilateral z-transform
▪ Almost all properties we have studied for the two-sided z-transform carry over
to the one-sided z-transform with the exception of the time shifting property.
Z + {x [n − 1]} = x [ − 1] + x [0]z −1 + x [1]z −2 + = x [ − 1] + z −1 (x [0] + x [1]z −1 + )
= x [ − 1] + z −1X + (z )
https://manara.edu.sy/
The Z-Transform https://manara.edu.sy/ 2024-2025 27/32
Z + {x [n − 2]} = x [ − 2] + x [ − 1]z −1 + z −2X + (z )
In general, for any k 0, we can show that
Case 1: Time delay: Z {x [n − k ]} = z X (z ) + m =1 x [ − m ]z m −k
+ −k + k
In case x[n] is causal, then Z + {x [n − k ]} = z −k X + (z )
▪ This property makes possible the solution of linear constant-coefficient
difference equations with nonzero initial conditions.
Case 2: Time advance: Z {x [n + k ]} = z X (z ) − m = 0 x [m ]z k −m ,
+ k + k −1
k 0
▪ Example 11: Determine the one-sided z-transform of the signals
x[n] = anu[n] x1[n] = x[n − 2] x2[n] = x[n + 2]
−2 2
1 z z
X + (z ) = −1
, X +
1 (z ) = −1
+ a −1 −1
z + a −2
, X +
2 (z ) = −1
− z 2
− az
1 − az 1 − az
https://manara.edu.sy/
1 − az
The Z-Transform https://manara.edu.sy/ 2024-2025 28/32
▪ Example 12: A linear time-invariant system
y[n ] = ay[n − 1] + x [n ], n 0 with y[−1] ≠ 0
ay[ − 1] 1
Y + (z ) = ay[ − 1] + az −1Y + (z ) + X + (z ) Y + (z ) = −1
+ −1
X +
(z )
1 − az 1 − az
zero input zero −state
If the input x[n] = 0 for all n, then: yzi[n] = ay[−1]an = y[−1]an+1, n ≥ −1
If the initial condition is zero then the system is at rest or at zero-state:
+ + 1 n
Y (z ) = H (z )X (z ), H (z ) = −1
or h [n ] = a u[n ]
1 − az
and hence the second term can be identified as the zero-state response yzs[n].
+ k = 0 h[k ]x[n − k ], n −1
n +1 n
The complete response is given by: y[n ] = y[ − 1]a
If we set x[n] = u[n]
https://manara.edu.sy/
The Z-Transform https://manara.edu.sy/ 2024-2025 29/32
ay[ − 1] 1 1 ay[ − 1] 1/(1 − a ) a /(1 − a )
Y + (z ) = −1
+ −1 −1
= −1
+ −1
−
1 − az 1 − az 1 − z 1 − az 1−z 1 − az −1
n +1 1
y[n ] = y[ − 1]a + (1 − a n +1) , n −1
1−a
yzi
yzs
▪ Example 13: Determine an expression for the nth term of the Fibonacci
sequence with initial conditions y[0] = 1 and y[1] = 1.
y[n] = y[n − 1] + y[n − 2]
y[1] = y[0] + y[−1] = 1 ⇒ y[−1] = 0
y[0] = y[−1] + y[−2] = 1 ⇒ y[−2] = 1
Y + (z ) = [z −1Y + (z ) + y[ − 1]] + [z −2Y + (z ) + y[ − 2] + y[ − 1]z −1 ]
https://manara.edu.sy/
The Z-Transform https://manara.edu.sy/ 2024-2025 30/32
1+ 5 1− 5 p1 p2
p1 = , p2 = , A1 = , A2 =
2 2 5 5
n n
1 + 5 1 + 5 1 − 5 1 − 5
y[n ] = 2 − 2 , n0
2 5 2 5
n +1
1 1
y[n ] = 2 (1 + 5 )n +1 − (1 − 5 )n +1 , n0
5
▪ Example 15: Determine the unit step response of the system described by the
DE y[n] = 0.9y[n − 1] − 0.81y[n − 2] + x[n] with the ICs y[−1] = y[−2] = 1.
1 1
H (z ) = −1 −2
, X (z ) =
1 − 0.9z + 0.81z 1 − z −1
j / 3
H(z) has two complex-conjugate poles at p1 = 0.9e , p2 = 0.9e − j / 3
https://manara.edu.sy/
The Z-Transform https://manara.edu.sy/ 2024-2025 31/32
1
Yzs (z ) =
(1 − 0.9e j / 3z −1 )(1 − 0.9e − j / 3z −1 )(1 − z −1 )
0.0496 − j 0.542 0.0496 + j 0.542 1.099
Yzs (z ) = j / 3 −1
+ − j / 3 −1
+
1 − 0.9e z 1 − 0.9e z 1 − z −1
yzs [n ] = 1.099 + 1.088 (0.9)n cos( 3 n − 5.2 ), n0
0.09 − 0.81z −1 0.045 + j 0.4936 0.045 − j 0.4936
Yzs (z ) = j / 3 −1 − j / 3 −1
= j / 3 −1
+
(1 − 0.9e z )(1 − 0.9e z ) 1 − 0.9e z 1 − 0.9e − j / 3z −1
yzi [n ] = 0.988 ( 0.9)n cos( 3 n + 87 ), n0
0.568 + j 0.445 0.568 − j 0.445 1.099
Y (z ) = Yzs (z )Yzi (z ) = j / 3 −1
+ − j / 3 −1
+
1 − 0.9e z 1 − 0.9e z 1 − z −1
yzs [n ] = 1.099 + 1.44 (0.9)n cos( 3 n + 38 ), n 0
https://manara.edu.sy/
The Z-Transform https://manara.edu.sy/ 2024-2025 32/32