0% found this document useful (0 votes)
47 views26 pages

Calculus: MATH 206

The document covers Section 4.4 of James Stewart's Calculus textbook, focusing on indeterminate forms and l'Hospital's Rule. It provides multiple examples and exercises to illustrate the application of l'Hospital's Rule in evaluating limits that result in indeterminate forms. Key concepts such as indeterminate products, differences, and powers are also discussed.

Uploaded by

yr.alokran
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
47 views26 pages

Calculus: MATH 206

The document covers Section 4.4 of James Stewart's Calculus textbook, focusing on indeterminate forms and l'Hospital's Rule. It provides multiple examples and exercises to illustrate the application of l'Hospital's Rule in evaluating limits that result in indeterminate forms. Key concepts such as indeterminate products, differences, and powers are also discussed.

Uploaded by

yr.alokran
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 26

MATH 206 JAMES STEWART

CALCULUS
METRIC VERSION, 8 E
Early Transcendentals
SECTION 4.4
INDETERMINATE FORMS AND
l’HOSPITAL RULE

Examples: 1-7, 9, 10

Exercises: 10, 25, 27, 31, 32, 44, 47, 52,


57, 58, 63
P1
P3
P4
ex
Example 2 Find lim 2
x  x

Solution Since lim e x   and lim x 2  


x  x 


the limit is an indeterminate form of type ,so we can apply l'Hospital Rule:

e x
d
 ex 
lim 2  lim dx
x  x x  d

dx
 x 2

ex 
 lim again apply l'Hospital Rule
x  2x 
d
 ex 
 lim dx
x  d
 2x 
dx
ex
 lim 
x  2
P5
ln x
Example 3 Calculate lim
x  x

Solution Since lim ln x   and lim x 


x  x 


the limit is an indeterminate form of type ,so we can apply l'Hospital Rule:

d
ln x  ln x 
lim  lim dx
x  x x  d  12 
x 
dx  
1
 lim x
x  1
1 2
x
2
2
 lim 1
x   1
2
x
2
 lim
x  x
P6
0
tan x  x
Example 4 Find lim
x 0 x3

Solution Since lim  tan x  x   0 and lim x 3  0, the limit is


x 0 x 0

0
an indeterminate form of type , we can apply l'Hospital Rule
0
d
tan x  x  tan x  x 
lim  lim dx
x3 d
 x 3
x 0 x 0

dx
sec 2 x  1 0
 lim 2
again apply l'Hospital Rule:
x 0 3x 0
2sec 2 x tan x
 lim
x 0 6x
sec 2 x tan x 0
 lim again apply l'Hospital Rule:
x 0 3x 0

 lim
 2sec x .sec x tan x  tan x  sec 2 x .sec 2 x
x 0 3
2sec 2 x tan 2 x  sec 4 x
 lim
x 0 3
0 1 1
  P7
3 3
sin x
Example 5 Find lim
x  1  cos x

Solution Since lim  sin x  0 and lim  1  cos x   2


x  x 

sin x 0
lim  0
x  1  cos x 2

P8
Indeterminate Products

Indeterminate form of type 0 

If lim f  x   0 and lim g  x     or   


x a x a

then it is not clear what the value of lim f  x  g  x   if any, will be.
x a

We can deal with it by writing


   
 f x    g x  
lim f  x  g  x    lim   OR lim  
x a x a  1  x  a  1 
 g x    f x  
   

P9
Example 6 Evaluate lim x ln x
x 0

Solution Since lim  x  0 and lim  ln x   


x 0 x 0

the limit is an indeterminate form of type 0  ,


 
 ln x 
lim  x ln x  lim   
x 0 x 0 1
 
 x 
 d 
  ln x  
 lim   dx 
x 0
 d   
1
 dx  x  
   
 1 
 
 lim   x 
x 0 1
 2 
 x 
 lim    x   0
x 0

P10
Indeterminate Differences

If lim f  x    and lim g  x   , then the limit


x a x a

lim f  x   g  x   is called an indeterminate form of type  - 


x a

Product Rule:
d dv du
uv   u  v
dx dx dx

P11
 1 1 
Example 7 Evaluate lim   
x 1  ln x x 1 
1 1
Solution Since lim    and lim   , the limit is an indeterminate form of type   ,
x 1 ln x x 1 x  1

 1 1   x  1  ln x  0
lim    lim   we can apply l'Hospital Rule:
x 1  ln x x 1  x 1
  ln x  x  1  0

 d   1 
 dx  x  1  ln x    1 
x

= lim    xlim  
1   x  1 
x 1

d
 dx
  ln x  x  1  
   x    ln x 


  
 x 1 
 x 
 lim 
x 1 x  1  x ln x 
 
 x 
 x 1  0
 lim   agian apply l'Hospital Rule:
x 1  x  1  x ln x  0

 
 1 
 lim  
x 1   1 
 1   x x  ln x  
  
 1  1
 lim  
x 1  1  1  ln x  2
P12
Indeterminate Powers

Several indeterminate forms arise from the limit lim f  x  


g x 
x a

1.lim f  x   0 and lim g  x   0 type 0 0


x a x a

2.lim f  x    and lim g  x   0 type  0


x a x a

3.lim f  x   1 and lim g  x    type 1 


x a x a

Each of these three cases can be treated either by taking the natural logarithm
g x 
Let y  f  x   , then ln y  g  x  ln f  x 
or by writing the function as exponential
g x 
f  x  
g  x  ln f  x 
e

P13
Evaluate lim 1  sin 4x 
cot x
Example 9
x 0

Solution Since lim  1  sin 4x   1 and cot x   , thus the limit


x 0

is an indeterminate form of type 1 .


Let y  1  sin 4x 
cot x

ln y  ln 1  sin 4x  
cot x
 

lim  ln y  lim  ln 1  sin 4x  


cot x

x 0 x 0  
 lim  cot x ln 1  sin 4x   0
x 0

ln 1  sin 4x  0
 lim  we can apply l'Hospital Rule
x 0 tan x 0
 d   
 dx ln 1  sin 4x   
1
 cos  4 x  4   4
= lim    lim  1  sin 4x 2  
d
 tan x 
x 0 x 0 sec x
    1
 dx   
lim ln y  4
x 0
lim ln y
x  0
Note that y  e ln y
, thus lim y  e e 4
x 0

 lim 1  sin 4x  e 4
cot x

x 0 P14
x
Example 10 Find lim x
x 0

Solution Note that the limit is an indeterminate form of type 0 0 ,


Let y  x x

ln y  ln  x  
x

 

lim  ln y  lim  ln  x  
x

x 0 x 0  
 lim  x ln  x  0 
x 0

ln  x  
 lim  we can apply l'Hospital Rule:
x 0 1 
x
 1 
   1 x2 
 lim  x
1   xlim
 0
    xlim 
 x 
x 0
 2   x 1   0

 x 
lim ln y
x  0
lim ln y  0. Thus lim y  e e 0 1
x 0 x 0

 lim  x 
x
1
x 0 P15
x 3 8
Exercise 10 Find lim
x 2 x  2

0
Solution Note that the limit is an indeterminate form of type ,
0
so we can apply l'Hospital Rule

x 8
3
d
 x 3  8
3x 2
 lim dx  lim  3  2   12
2
lim
x 2 x  2 x 2 d
 x  2
x 2 1

dx

P16
1  2x  1  4x
Exercise 25 Find lim
x 0 x
0
Solution Note that the limit is an indeterminate form of type ,
0
so we can apply l'Hospital Rule:
d  
1 1
d
 1  2x    1  4x  2
1 1 2

lim
1  2x  2
 1  4x  2
 lim
dx   dx
x 0 x 0 d
x
x 
dx
1 1
1  1 
 lim 1  2x   2   1  4x  2  4 
2
x 0 2 2
1 1
 
 lim 1  2x  2
 1  4x  2
 2 
x 0

1 2
 lim   1 2  3
x 0 1  2x 1  4x
 1  2x  1  4x 
 lim  3
x 0 x
 

P17
e x 1 x
Exercise 27 Find lim
x 0 x2
0
Solution Note that the limit is an indeterminate form of type ,
0
so we can apply l'Hospital Rule

e 1 x
x
d
dx
 e x 1 x 
lim  lim
x2 d
 x 2
x 0 x 0

dx
e x 1 0
 lim , agian use I'Hospital Rule
x  0 2x 0

d
d
x
 e x  1
e x
1
 lim  lim 
x 0 d x 0 2
 2x  2
dx
e x 1 x 1
 lim 2
 .
x 0 x 2
P18
sin 1 x
Exercise 31 Find lim
x 0 x
0
Solution Note that the limit is an indeterminate form of type ,
0
so we can apply l'Hospital Rule

1
sin x
d
 sin 1 x 
lim  lim dx
x 0 x 0 d
x
x 
dx
1

 lim 1  x
2 1
 lim 1
x 0 1 x 0
1 x 2

sin 1 x
 lim 1
x 0 x

P19
 ln x 
2

Exercise 32 Calculate lim


x  x

Solution Note that the limit is an indeterminate form of type ,

so we can apply l'Hospital Rule
d
 
2
 ln x  ln x
2

lim  lim dx
x  x  d
x
x 
dx
1
 lim 2  ln x   
x 
x 
2  ln x  
 lim , use l'Hospital rule again
x  x 
1
2
 2 lim x  lim  0
x  1 x  x

 ln x 
2

 lim 0 P20
x  x
Exercise 44 Evaluate lim sin x ln x
x 0

Solution Note that lim  sin x  0 and lim  ln x  ,


x 0 x 0

the limit is an indeterminate product form,


 
 ln x  
lim  sin x ln x  lim  
1 
, so we can apply l'Hospital Rule
x 0 x 0
  
 sin x 
 d 
  ln x  
 lim   dx 
d
 csc x  
x 0

 dx 
 1   1 
 x   x 
 lim      1
 1 
lim
x 0
  cot x csc x 
x  0
  
   sin x tan x 
 sin x  tan x  0
  lim    , so we can apply l'Hospital Rule
x 0  x  0
 d 
 dx  sin x  tan x    cos x  tan x  sin x  sec 2 x 
  lim      lim  
d x  0
x   
x 0 1
 
 dx 
0 P21
3 x 2
Exercise 47 Find lim x e
x 

Solution
x x3  
 lim  x 2 
2
3
lim x e , so we can apply l'Hospital Rule
x  x 
e  
d
dx
 x 3
3x 2
 lim  lim x 2
x  d

dx
 
ex
2 x 
e 2x

3x 
 lim x 2 , again apply l'Hospital Rule
x 
e 2 
d
3x  3x 
 lim dx
2  lim
x  x  d
 
x
2e 2e x
2

dx
3 3
 lim x2
 lim x2
0
x  x 
2 e 2x 4x e
x
 lim x e  0.
2
3
x 
P22
Exercise 52 Evaluate lim  csc x  cot x 
x 0

Solution Note that the limit is an indeterminate form of type   ,


 1 cos x 
lim  csc x  cot x   lim   
x 0 x 0
 sin x sin x 
 1  cos x  0
 lim   , so we can apply l'Hospital Rule
x 0
 sin x  0
 sin x 
 lim  0
x 0
 cos x 
 lim  csc x  cot x   0
x 0

P23
x
Exercise 57 Find lim x
x 0

Solution Note that the limit is an indeterminate form of type 0 0 ,


 ln y  ln  x    ln y  x ln  x  
x
Let y  x x
 
 

lim  ln y  lim  x ln  x  0 
x 0 x 0

ln  x  
 lim  , so we can apply l'Hospital Rule
x 0 1 
x
   
 d ln  x   
1

= lim  dx   lim  x 
x 0  d     x  0
1 1
  1 x  2 1 
   
 dx 
x 2
  2 
   
 
 lim  
x 0 
2
 x 2
1
  lim 2 x
 x  0    lim  2
x  0
x 0
 
lim ln y
x  0
Thus, lim y  e  e 0 1
x 0

lim  x 
x
 1 P24
x 0
Exercise 58 Find lim  tan 2x 
x

x 0

Solution Note that the limit is an indeterminate form of type 0 0 ,


y   tan 2x   ln y  ln  tan 2x  
x x
Let
 

lim  ln y  lim  ln  tan 2x    lim  x ln  tan 2x 


x

x 0 x 0   x 0

ln  tan 2x  
 lim  , so we can apply l'Hospital Rule
x 0 1 
x
 1 d 
  tan 2x  dx  tan 2x 
 1 
  tan 2x  2sec 2x 
2

 lim    lim  
x 0  1  x 0  1
  
 x2   x 2

 
1
2x 2  2x 2
2
2x sec 2x 2
cos 2
2 x cos 2x 
  lim   lim   lim  2
 
x 0 tan 2x x 0 sin 2x x 0
 cos 2x sin 2x 
cos 2x
 2x 2 1  2x 2
  lim      xlim
 0
 sec 2x   xlim
 0 sin 2 x
x 0
 cos 2 x sin 2 x 
 
4x
  1 lim 0
 x  0 2cos 2x 
 
lim ln y
Note that lim y  e x  0
e0 1  lim  tan 2x  1
x

x 0 x 0 P25
1
x
Exercise 63 Find lim x
x 

Solution Note that the limit is an indeterminate form of type  0 ,


 
1 1
1
Let y  x x
 ln y  ln  x  x
  ln y  ln  x  
  x

ln  x  
lim ln y  lim , so we can apply l'Hospital Rule
x  x  x 
 d 
 dx ln  x   1 
= lim   x     0
 lim
x 

d
x   x 
 dx 
lim ln y
Thus lim y  e x 
e 0 1
x 
1
 lim  x  x 1
x 

P26

You might also like