0% found this document useful (0 votes)
29 views41 pages

SECTION 1: Differential Amplifiers (Q1-Q20)

The document contains 100 multiple-choice questions (MCQs) related to the syllabus of Analog Electronic Circuits - II, organized into five sections: Differential Amplifiers, Operational Amplifiers, Sinusoidal Oscillators, Waveform Shaping Circuits, and Output Stages and Power Amplifiers. Each question includes a correct answer, covering key concepts and principles in analog electronics. The content is designed for educational purposes, likely for students studying electrical engineering or related fields.

Uploaded by

sheikhnashid25
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
29 views41 pages

SECTION 1: Differential Amplifiers (Q1-Q20)

The document contains 100 multiple-choice questions (MCQs) related to the syllabus of Analog Electronic Circuits - II, organized into five sections: Differential Amplifiers, Operational Amplifiers, Sinusoidal Oscillators, Waveform Shaping Circuits, and Output Stages and Power Amplifiers. Each question includes a correct answer, covering key concepts and principles in analog electronics. The content is designed for educational purposes, likely for students studying electrical engineering or related fields.

Uploaded by

sheikhnashid25
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 41

Here are 100 theory-based multiple-choice questions (MCQs) with answers based on the

syllabus of Analog Electronic Circuits - II (PCCECE42), from the uploaded image. These are
divided according to the syllabus structure:

SECTION 1: Differential Amplifiers (Q1–Q20)

Q1. The main function of a differential amplifier is:​


A. Amplify AC signals​
B. Amplify the difference between two signals​
C. Block DC components​
D. Work as a switch​
Ans: B

Q2. A MOS differential pair operates based on:​


A. Collector current matching​
B. Gate-source voltage difference​
C. Threshold voltage mismatch​
D. Feedback loops​
Ans: B

Q3. Common mode rejection ratio (CMRR) is:​


A. Gain of the differential signal​
B. Ratio of differential gain to common-mode gain​
C. Output resistance​
D. Input offset​
Ans: B

Q4. BJT differential amplifier offers better performance for:​


A. High-frequency signals​
B. High-power signals​
C. Low-frequency small signals​
D. Noisy environments​
Ans: C

Q5. Common mode gain should ideally be:​


A. High​
B. Infinite​
C. Zero​
D. Unity​
Ans: C
Q6. DC offset in differential amplifiers refers to:​
A. Output resistance​
B. Gain mismatch​
C. Voltage difference when input is zero​
D. Power dissipation​
Ans: C

Q7. Differential amplifiers are primarily used in:​


A. Logic gates​
B. Oscillators​
C. Operational amplifiers​
D. Filters​
Ans: C

Q8. Large signal analysis in BJT differential amplifiers considers:​


A. Power rating​
B. Non-linear characteristics​
C. Noise figure​
D. Capacitance​
Ans: B

Q9. Active load in differential amplifier improves:​


A. Frequency response​
B. Input impedance​
C. Gain​
D. Output resistance​
Ans: C

Q10. Tail current in differential amplifier is provided by:​


A. Collector​
B. Constant current source​
C. Capacitor​
D. Ground​
Ans: B

Q11. Input resistance of a MOS differential amplifier is typically:​


A. High​
B. Low​
C. Zero​
D. Equal to output resistance​
Ans: A

Q12. A differential pair requires:​


A. Two independent supplies​
B. Matched transistors​
C. Positive feedback​
D. Bipolar input​
Ans: B

Q13. In differential amplifier, increasing tail current:​


A. Decreases gain​
B. Has no effect​
C. Increases transconductance​
D. Reduces bandwidth​
Ans: C

Q14. Output of differential amplifier is ideally:​


A. Half of input​
B. Equal to one input​
C. Proportional to voltage difference between inputs​
D. Always positive​
Ans: C

Q15. The gain of a differential amplifier with active load is:​


A. Unity​
B. Lower than passive load​
C. Higher than passive load​
D. Zero​
Ans: C

Q16. Slew rate of differential amplifier depends on:​


A. Input impedance​
B. Output resistance​
C. Bias current​
D. Gain bandwidth product​
Ans: C

Q17. Differential mode operation means:​


A. Same voltage applied to both inputs​
B. Inputs shorted​
C. One input is grounded​
D. Opposite voltages applied to inputs​
Ans: D

Q18. Common mode operation means:​


A. Same voltage applied to both inputs​
B. Different voltages applied to inputs​
C. Inputs shorted​
D. Input grounded​
Ans: A
Q19. Common mode rejection helps in:​
A. Increasing output impedance​
B. Amplifying noise​
C. Reducing power​
D. Eliminating noise in both inputs​
Ans: D

Q20. Differential pair amplifiers are insensitive to:​


A. Common-mode signals​
B. Supply variations​
C. Temperature​
D. Load resistance​
Ans: A

SECTION 2: Operational Amplifiers (Q21–Q40)

Q21. An ideal op-amp has:​


A. Infinite gain​
B. Zero input resistance​
C. Zero output impedance​
D. Both A and C​
Ans: D

Q22. Voltage follower configuration is also known as:​


A. Amplifier​
B. Unity gain buffer​
C. Inverter​
D. Comparator​
Ans: B

Q23. Open-loop gain of an ideal op-amp is:​


A. 1​
B. 10​
C. 0​
D. Infinite​
Ans: D

Q24. An op-amp integrator output is:​


A. Sum of input​
B. Integral of input​
C. Derivative of input​
D. Constant​
Ans: B
Q25. Instrumentation amplifier is designed for:​
A. Power amplification​
B. Audio processing​
C. Accurate low-level signal amplification​
D. Motor control​
Ans: C

Q26. Inverting amplifier provides:​


A. Unity gain​
B. Positive gain​
C. Negative gain​
D. Zero gain​
Ans: C

Q27. Closed loop gain in op-amp is set by:​


A. Input voltage​
B. Feedback resistor​
C. Power supply​
D. Load​
Ans: B

Q28. Slew rate defines:​


A. Max input voltage​
B. Max rate of change of output voltage​
C. Min gain​
D. Output current​
Ans: B

Q29. Differentiator circuit with op-amp gives:​


A. Time integral​
B. Constant output​
C. Sine wave​
D. Derivative of input​
Ans: D

Q30. Weighted summer op-amp circuit:​


A. Averages input​
B. Multiplies inputs​
C. Adds scaled inputs​
D. Filters signals​
Ans: C

Q31. Voltage follower has:​


A. Infinite gain​
B. Unity gain​
C. Zero gain​
D. Negative gain​
Ans: B

Q32. The input impedance of an ideal op-amp is:​


A. 0 Ω​
B. Infinite​
C. 1 MΩ​
D. 50 Ω​
Ans: B

Q33. An op-amp with negative feedback is:​


A. Stable​
B. Unstable​
C. Noisy​
D. Open loop​
Ans: A

Q34. Bandwidth of op-amp decreases with:​


A. Positive feedback​
B. Gain​
C. Load resistance​
D. Bias current​
Ans: B

Q35. Large signal behavior in op-amp is seen when:​


A. Operating near supply rails​
B. High frequency​
C. High impedance​
D. Low gain​
Ans: A

Q36. ADC using op-amp is based on:​


A. Integrator​
B. Comparator​
C. Summing amplifier​
D. Differential amplifier​
Ans: B

Q37. DAC using op-amp uses:​


A. Weighted resistors​
B. Capacitors​
C. Transistors​
D. Filters​
Ans: A
Q38. Offset voltage in op-amp is due to:​
A. Bias current​
B. Mismatch in transistors​
C. Supply ripple​
D. Noise​
Ans: B

Q39. Input bias current causes:​


A. Output resistance to rise​
B. Offset voltage​
C. Positive gain​
D. Current gain​
Ans: B

Q40. Effect of bandwidth on op-amp:​


A. Increases with gain​
B. Decreases with gain​
C. Remains constant​
D. Independent of configuration​
Ans: B

(Continued in next message...)

Continuing from Question 41 to 100, now covering:

●​ Section 3: Sinusoidal Oscillators​

●​ Section 4: Waveform Shaping Circuits (Multivibrators)​

●​ Section 5: Output Stages and Power Amplifiers​

SECTION 3: Sinusoidal Oscillators (Q41–Q60)

Q41. The Barkhausen criterion states:​


A. Loop gain < 1​
B. Loop gain = 1 and phase shift = 0° or 360°​
C. Negative feedback required​
D. Gain must be zero​
Ans: B
Q42. Sinusoidal oscillators generate:​
A. Square wave​
B. Triangular wave​
C. Sine wave​
D. Sawtooth wave​
Ans: C

Q43. In RC phase shift oscillator, the feedback network contains:​


A. Resistors and capacitors​
B. Inductors​
C. Transformers​
D. Op-amps​
Ans: A

Q44. Wien bridge oscillator uses:​


A. RLC network​
B. Twin-T network​
C. Bridge circuit with RC components​
D. Differentiator​
Ans: C

Q45. Oscillator using LC tank circuit is:​


A. Colpitts​
B. Schmitt trigger​
C. Integrator​
D. Bistable​
Ans: A

Q46. Crystal oscillators offer:​


A. Variable frequency​
B. High noise​
C. Poor stability​
D. Excellent frequency stability​
Ans: D

Q47. Oscillator without feedback cannot:​


A. Amplify​
B. Generate sine wave​
C. Start oscillation​
D. Provide gain​
Ans: C

Q48. Phase shift oscillator typically uses:​


A. Transformer​
B. Three RC stages​
C. Diode​
D. Square wave generator​
Ans: B

Q49. In LC oscillators, frequency depends on:​


A. Resistor value​
B. Capacitor leakage​
C. Inductance and capacitance​
D. Op-amp gain​
Ans: C

Q50. The main component for stability in a crystal oscillator is:​


A. Feedback loop​
B. Transformer​
C. Quartz crystal​
D. Varactor diode​
Ans: C

Q51. Oscillator output is:​


A. Zero​
B. Non-periodic​
C. Self-sustained periodic waveform​
D. Noise only​
Ans: C

Q52. Colpitts oscillator uses:​


A. Two capacitors and one inductor​
B. Two inductors and one capacitor​
C. Three resistors​
D. Op-amp only​
Ans: A

Q53. Hartley oscillator uses:​


A. RC feedback​
B. Two inductors and one capacitor​
C. Transistor bridge​
D. Op-amp with RC​
Ans: B

Q54. Phase shift of how many degrees is required for positive feedback in oscillators?​
A. 0° or 360°​
B. 90°​
C. 180°​
D. 270°​
Ans: A
Q55. Wein bridge oscillator provides:​
A. High distortion output​
B. Highly stable waveform​
C. Square waveform​
D. Triangle waveform​
Ans: B

Q56. Crystal oscillator operates on the principle of:​


A. Electrical resonance​
B. Magnetic field​
C. Piezoelectric effect​
D. Thermionic emission​
Ans: C

Q57. The gain condition in Barkhausen criterion must be:​


A. < 1​
B. = 1​
C. = 0​
D. > 1​
Ans: B

Q58. Wien bridge oscillator requires:​


A. Active and passive components​
B. Passive only​
C. Feedback capacitor​
D. External trigger​
Ans: A

Q59. Oscillator startup needs:​


A. DC offset​
B. Noise or disturbance​
C. Perfect balance​
D. Capacitor pre-charging​
Ans: B

Q60. Oscillators are different from amplifiers because they:​


A. Do not require power​
B. Need transformer​
C. Have positive feedback​
D. Always use op-amp​
Ans: C

SECTION 4: Waveform Shaping Circuits – Multivibrators (Q61–Q80)


Q61. A bistable multivibrator has:​
A. One stable state​
B. No stable state​
C. Two stable states​
D. Three states​
Ans: C

Q62. A monostable multivibrator has:​


A. One stable and one quasi-stable state​
B. No stable state​
C. Two unstable states​
D. One oscillating state​
Ans: A

Q63. Astable multivibrator generates:​


A. Single pulse​
B. Stable output​
C. Square wave continuously​
D. No output​
Ans: C

Q64. In 555 timer, the output frequency of astable mode depends on:​
A. Input voltage​
B. Feedback loop​
C. External resistors and capacitor​
D. Gain​
Ans: C

Q65. In a 555 monostable multivibrator, the pulse width depends on:​


A. Only capacitor​
B. R and C values​
C. Inductance​
D. Load​
Ans: B

Q66. A 555 timer in monostable mode is triggered by:​


A. Output voltage​
B. Control voltage​
C. Input pulse​
D. Supply change​
Ans: C

Q67. Bistable multivibrators are used as:​


A. Memory elements​
B. Oscillators​
C. Filters​
D. Integrators​
Ans: A

Q68. Transfer characteristic of bistable is:​


A. Linear​
B. Non-linear with hysteresis​
C. Constant​
D. Negative​
Ans: B

Q69. In astable multivibrator using 555, the waveform is:​


A. DC​
B. Constant​
C. Triangular​
D. Square wave​
Ans: D

Q70. Bistable multivibrator is also called:​


A. Schmitt trigger​
B. Flip-flop​
C. Timer​
D. Oscillator​
Ans: B

Q71. Application of monostable multivibrator:​


A. Memory​
B. Pulse width modulation​
C. Clock generation​
D. Signal filtering​
Ans: B

Q72. Multivibrators are examples of:​


A. Amplifiers​
B. Oscillators​
C. Switching circuits​
D. Attenuators​
Ans: C

Q73. In monostable 555 circuit, once triggered:​


A. Output stays HIGH for fixed time​
B. Oscillates continuously​
C. Output remains LOW​
D. Input changes​
Ans: A
Q74. 555 timer has how many comparators inside?​
A. One​
B. Two​
C. Three​
D. Four​
Ans: B

Q75. Application of astable multivibrator is:​


A. ADC​
B. DAC​
C. Clock generator​
D. Voltage amplifier​
Ans: C

Q76. In 555 IC, control voltage pin is:​


A. 4​
B. 5​
C. 2​
D. 3​
Ans: B

Q77. 555 timer output is available at pin:​


A. 2​
B. 3​
C. 5​
D. 6​
Ans: B

Q78. Triggering input of 555 timer is pin:​


A. 2​
B. 3​
C. 4​
D. 6​
Ans: A

Q79. 555 IC operates typically at:​


A. 1V​
B. 9V​
C. 18V​
D. Both B and C​
Ans: D

Q80. A free-running multivibrator is:​


A. Monostable​
B. Bistable​
C. Astable​
D. Inverter​
Ans: C

SECTION 5: Output Stages and Power Amplifiers (Q81–Q100)

Q81. Class A amplifier conducts for:​


A. 360° of input cycle​
B. 180°​
C. 90°​
D. 270°​
Ans: A

Q82. Class B amplifier conducts for:​


A. 360°​
B. 180°​
C. 90°​
D. 270°​
Ans: B

Q83. Class AB is a combination of:​


A. Class A and B​
B. Class B and C​
C. A and C​
D. A and D​
Ans: A

Q84. Class C amplifier conducts for:​


A. Less than 180°​
B. More than 270°​
C. Full cycle​
D. 90°​
Ans: A

Q85. Class D amplifiers are:​


A. Linear​
B. Switching type​
C. Analog​
D. Digital only​
Ans: B

Q86. Class A amplifiers have:​


A. Highest efficiency​
B. Lowest efficiency​
C. No distortion​
D. No power consumption​
Ans: B

Q87. Power efficiency of Class B is around:​


A. 10%​
B. 25%​
C. 78.5%​
D. 100%​
Ans: C

Q88. Crossover distortion occurs in:​


A. Class A​
B. Class B​
C. Class D​
D. Class C​
Ans: B

Q89. Class AB amplifiers reduce:​


A. Power​
B. Gain​
C. Crossover distortion​
D. Input voltage​
Ans: C

Q90. Power dissipation is lowest in:​


A. Class A​
B. Class AB​
C. Class D​
D. Class B​
Ans: C

Q91. Output stage is needed in amplifier to:​


A. Increase gain​
B. Match impedance and drive load​
C. Block noise​
D. Act as filter​
Ans: B

Q92. Power amplifier handles:​


A. Voltage only​
B. Small signals​
C. High current and power​
D. Logic levels​
Ans: C

Q93. Transfer characteristic of power amplifier is:​


A. Nonlinear​
B. Linear​
C. Constant​
D. Logarithmic​
Ans: B

Q94. IC regulators provide:​


A. Variable voltage​
B. Fixed voltage​
C. Oscillation​
D. Modulation​
Ans: B

Q95. Output power depends on:​


A. Input signal​
B. Load resistance​
C. Supply voltage​
D. All of the above​
Ans: D

Q96. Efficiency of amplifier is:​


A. Input/Output power​
B. Output/Input power​
C. Voltage gain​
D. Current gain​
Ans: B

Q97. Class D amplifiers use:​


A. Transistors in active region​
B. PWM technique​
C. Linear amplification​
D. RC filters​
Ans: B

Q98. Class C amplifiers are used for:​


A. Audio​
B. RF applications​
C. Power supplies​
D. Digital circuits​
Ans: B
Q99. Heat sink is required in power amplifier to:​
A. Amplify signal​
B. Regulate output​
C. Dissipate heat​
D. Improve gain​
Ans: C

Q100. Power conversion efficiency improves with:​


A. Class A​
B. Class B​
C. Class AB​
D. Class D​
Ans: D

Let me know if you want 100 numerical-based MCQs next.

You might also like