Antonine University
Computer Science Linear Algebra (Exercises) zeina.hanna@ua.edu.lb
Chapter 3: Linear Systems
2 1 1 6 𝑥
Exercise 1: Consider the matrices 𝐴 = (1 1 0), 𝐵 = (3) and 𝑋 = (𝑦).
2 1 3 8 𝑧
1. Find 𝐴−1 if it exists.
2. Using question 1, solve in ℝ the linear system 𝐴𝑋 = 𝐵.
Exercise 2: Prove that the system (𝑆) admits a unique solution and solve it in ℝ using Cramer’s rule:
−2𝑎 + 3𝑏 − 𝑐 = 1
(𝑆): { 𝑎 + 2𝑏 − 𝑐 = 4
−2𝑎 − 𝑏 + 𝑐 = −3
Exercise 3: Let 𝑎, 𝑏, 𝑐 ∈ ℝ. Solve in ℝ the following linear systems using Gauss Elimination Method:
2𝑥1 + 2𝑥2 + 3𝑥3 = 𝑎 𝑥1 + 𝑥2 + 𝑥3 = 2
(𝑆1 ): { 3𝑥1 − 𝑥2 + 5𝑥3 = 𝑏 (𝑆2 ): {2𝑥1 + 3𝑥2 + 2𝑥3 = 5
𝑥1 − 3𝑥2 + 2𝑥3 = 𝑐 2𝑥1 + 3𝑥2 + (𝑎2 − 1)𝑥3 = 𝑎 + 1
𝑥1 + 𝑥2 − 𝑥3 = 2 𝑥1 − 𝑥2 + 𝑥3 = 0
(𝑆3 ): { 1 + 2𝑥2 + 𝑥3 = 3
𝑥 (𝑆4 ): { 𝑥1 − 𝑥2 + 𝑎𝑥3 = 0
𝑥1 + 𝑥2 + (𝑎2 − 5)𝑥3 = 𝑎 𝑎𝑥1 − 2𝑎𝑥2 + (1 + 𝑎)𝑥3 = 0
Homework:
𝑥1 + 𝑥2 + 𝑥3 = 0 𝑥1 + 𝑥2 + 𝑥3 = 1
(𝑆5 ): {𝑥1 + 𝑎𝑥2 − 𝑥3 = 0 (𝑆6 ): { 2𝑥1 + 3𝑥2 + 4𝑥3 = −1
2𝑥1 + 𝑥2 + 𝑥3 = 0 𝑥1 + 2𝑥2 + (𝑎2 − 2𝑎 + 3)𝑥3 = 𝑎
1 −1 𝑥+𝑦−𝑧 2𝑥 − 𝑦 + 𝑡
Exercise 4: (Homework) Let 𝐴 = ( ). Find 𝑥, 𝑦, 𝑧 and 𝑡 such that ( ) = 𝐴.
1 0 𝑥+𝑧−𝑡 2𝑦 − 𝑧 + 2𝑡
2 1
Exercise 5: Let 𝐴 = ( ). Find all square matrices 𝑋 such that 𝑋𝐴 = 𝐴𝑋 = 𝐴.
2 1
𝑥 + (𝛼 + 1)𝑦 + 2𝑧 = 𝑎
Exercise 6: Consider the system (𝑆): {(𝛼 + 1)𝑥 + 𝑦 + 2𝑧 = 𝑏 ; 𝛼, 𝑎, 𝑏, 𝑐 ∈ ℝ.
2𝑥 + 2𝑦 + 𝛼𝑧 = 𝑐
1. For which values of 𝛼 the system doesn’t admit a unique solution?
2. Solve in ℝ the system for each of the above values of 𝛼.
3. Solve in ℝ the system when it admits a unique solution using any method.
Exercise 7: Show that ∀𝑚 ∈ ℝ, the system (𝑆) doesn’t admit a unique solution, then solve (𝑆) in ℝ.
2𝑥 + 𝑚𝑦 + 𝑧 = 3𝑚
(𝑆): {𝑥 − (2𝑚 + 1)𝑦 + 2𝑧 = 4
5𝑥 − 𝑦 + 4𝑧 = 3𝑚 − 2