MA 2O2 MATH£MATIcS- 1
UNIT T.
vomk ot aA matrix, System of linean
LInvese amd vane
Skew smmetrie and
esuahons, Symmetie,
orhogo nal matries, figen values amd Eigen
a eal matrin, chanacteeohe yuah m,
Veetws of
valueo, Cayly - Hamilton Theoren
Fro penfes of Eig2n matries]
(statment only), Diegonaliaton of
Ranle t a matix,
Invese and
transpose ot ta poduet (A8)
herem: he
te product
Dt te matrices A &BB is enal to
taken in rewwse
Brden.
sqhane matvix hem t
A io any given
2f
matin (Aji), stieu Aj ka oofaetr ot aij
in tha detrminamt IAl,
and denstal by ady. A.
ScGnned with CaMScanner
Shesronm.
matrix chen
(ady A) A
A (aj A) = |AL=
matrix
ten a matriy B is called
matrix
ovided uch
nverse ot A Àf AB- A =I
I ,
B rist. nonsingula
invse.
matix Cam hve
Note. D Bnly square
ànvese.
mabrix Can ot have
2) No- 89uau
Remank.
Lnvese of A = [wing atalve
theorm.
Rropenhas ot zh invese mahix
3
) She imverse of a mahix is wnighe y povided
it eist.
2Jhe meesy and sufient Conditim fr a
squane matrix A do Poses thi nvee io
3) Ae imvee o4 ta invee a mon-ingudan
squae mabin o thi mahis itey.
i fA]= A, povidd
19)40.
Scanned with CaMSanner
4) 2f A & B -Aingulan matris
Sroler t n AB i albo
alo nom ingular
and CAB)=k'A-!
Bperatioms f tranAposing k dnvnting
5)
5 Ahe D4
ar Commutative
iy (a) (a)
Rxampls:
O Find IA1 md adj A f A= -3
3
= I(6-3) -1 (3 +b) +i(-} -4)
= 3 -4-5 = 3-l4 -|
A2 A13
adj A = A23
A32 A33
-5)T
3
1 3
-5
3
-5
Scanned with CGMSCaNner
3 Find A
A=
-S
5 -2 2 A(aij)
Aij ofactor of
.
ttuemut
-5
To[-6+s]=
3 = 18-1s =3
Ai3 = 3 (2)+(-9(5)+ i(6) = 1
T 2
Scanned with CaMScGnner
Horne wre. Find nvese maìx.
3
A =
2
3
B= 2 3
2
-2
3
-2