CH 05
CH 05
   I-1 Instructor
         Push G1(s) to the left past the pickoff point.
H1
                       -
            +
                                                                            +
                                             G1                      G2                        G3
                                                                                +
                                                                      1
                                                                     G1
                           (            )(        )
                                                       ( G1 G 2 +1 ) G3
                                  G1           1
                T ( s )=                  G 2+    G3 =
        Thus,
                               1+ G 1 H 1      G1        ( 1+G1 H 1 )
I-2 INSTRUCTOR
a. Split G3 and combine with G2 and G4. Also use feedback formula on G6 loop.
Multiplying the blocks of the forward path and applying the feedback formula,
                                                                             Solutions to Problems   5-3
I-3 Instructor
     a. Push G7 to the left past the pickoff point. Add the parallel blocks, G3+G4.
Add the parallel feedback paths to get the single negative feedback,
H(s) = + - . Thus,
T(s) =
b.
     Program:
     G1=tf([0 1],[1 7]);       %G1=1/s+7 input transducer
     G2=tf([0 0 1],[1 2 3]);    %G2=1/s^2+2s+3
     G3=tf([0 1],[1 4]);       %G3=1/s+4
     G4=tf([0 1],[1 0]);       %G4=1/s
     G5=tf([0 5],[1 7]);       %G5=5/s+7
     G6=tf([0 0 1],[1 5 10]);    %G6=1/s^2+5s+10
     G7=tf([0 3],[1 2]);       %G7=3/s+2
     G8=tf([0 1],[1 6]);       %G8=1/s+6
     G9=tf([1],[1]);          %Add G9=1 transducer at the input
     T1=append(G1,G2,G3,G4,G5,G6,G7,G8,G9);
     Q=[1 -2 -5 9
     2180
     3180
     4180
     5 3 4 -6
     6700
     7 3 4 -6
     8 7 0 0];
     inputs=9;
     outputs=7;
     Ts=connect(T1,Q,inputs,outputs);
     T=tf(Ts)
      Computer response:
Transfer function:
-----------------------------------------------------------
I-4 Instructor
     Push G3 to the left past the pickoff point. Push G6 to the left past the pickoff point.
                                                                 Solutions to Problems   5-7
Hence,
                                                    =
I-5 Instructor
     Push G3(s) to the left past the pickoff point.
Collapsing the summing junctions and adding the feedback transfer functions,
                                                                                   4 s3 +2 s 2 +15 s +5 )
                                                                                 2
                                                                              Solutions to Problems   5-11
I-7 Instructor
    a.
                              ·
                             x 1=x 2
                              ·
                             x 2 =x3
                              ·
                             x 3 =- 2 x 1−4 x 2−6 x3 +r
                             y=x 1 + x2
                         1                           1           1    1
           r     1                     x                 x           x
                         s                  3        s       2   s   1    1          y
-6
                                       -4
                                                -2
    b.
                                   ·
                                  x 1=x 2
                                   ·
                                  x 2 =- 3 x 2 + x 3 +r
                                   ·
                                  x 3 =- 3 x 1−4 x 2 −5 x 3 +r
                                  y=x 1 + 2 x 2
                     1
    c.
                              ·
                             x 1=7 x 1 + x2 +r
                              ·
                             x 2 =- 3 x 1 +2 x2 −x 3 + 2r
                              ·
                             x 3 =- x 1 +2 x 3 +r
                             y=x 1 + 3 x 2 + 2 x 3
-3
I-8 Instructor
      Closed-loop gains: G2G4G6G7H3; G2G5G6G7H3; G3G4G6G7H3; G3G5G6G7H3; G6H1; G7H2
G1G3G5G6G7
1 = 2 = 3 = 4 = 1
T(s) =
    =
                                                                Solutions to Problems   5-13
I-9 Instructor
T(s) = =
I-10 Instructor
           Program:
           numg=8;
           deng=poly([0 -8 -10]);
           G=tf(numg,deng);
           T=feedback(G,1);
           [numt,dent]=tfdata(T,'v');
           [A,B,C,D]=tf2ss(numt,dent);             %Obtain controller canonical form
           '(a)';                                  %Display label
           A=rot90(A,2);                           %Convert to phase-variable form
           A=fliplr(A);                            %Convert to phase-variable form
           B=rot90(B,2);                           %Convert to phase-variable form
           C=fliplr(C);                            %Convert to phase-variable form
           '(b)';                                  %Display label
           [a,b,c,d]=canon(A,B,C,D);               %Convert to parallel form
Computer response:
           T=
                      8
-----------------------
s^3 + 18 s^2 + 80 s + 8
numt =
0 0 0 8
dent =
1 18 80 8
ans =
           (a)
           A=
      0       1     0
      1       0     0
 -18 -80             -8
B=
      0
      0
      1
C=
      8       0     0
ans =
(b)
a=
  -8          0     0
      0       1     0
      0       0    -1
b=
  0.0625
          0
          0
c=
          0       0.0442   0.0442
d=
      0
                                                            Solutions to Problems   5-15
I-11 Instructor
y1 = C1x1 (2)
                                      y2 = C2x2                                      (4)
    In vector-matrix form,
                             x1      A1 O x 1
                                =          -     + B1 r
                             x2       O A2 x 2     B2
                                                   x1
                             y = y1 + y 2 = C1 C2
                                                   x2
I-12 Instructor
 I-13 Instructor
       Eigenvalues are -1, -2, and -3 since,
or,
I-14 Instructor
       Program:
      numg1=-0.125*[1 0.435]
      deng1=conv([1 1.23],[1 0.226 0.0169])
      'G1'
      G1=tf(numg1,deng1)
      'G2'
      G2=tf(2,[1 2])
      G3=-1
      'H1'
      H1=tf([-1 0],1)
      'Inner Loop'
      Ge=feedback(G1*G2,H1)
      'Closed-Loop'
      T=feedback(G3*Ge,1)
      Computer response:
      numg1 =
-0.1250 -0.0544
deng1 =
ans =
G1
      Transfer function:
           -0.125 s - 0.05438
                                                   Solutions to Problems   5-17
------------------------------------
s^3 + 1.456 s^2 + 0.2949 s + 0.02079
ans =
G2
Transfer function:
  2
-----
s+2
G3 =
-1
ans =
H1
Transfer function:
-s
ans =
Inner Loop
Transfer function:
              -0.25 s - 0.1088
------------------------------------------------
s^4 + 3.456 s^3 + 3.457 s^2 + 0.7193 s + 0.04157
ans =
Closed-Loop
Transfer function:
              0.25 s + 0.1088
-----------------------------------------------
s^4 + 3.456 s^3 + 3.457 s^2 + 0.9693 s + 0.1503
I-15 Instructor
     a. Since VL(s) = Vg(s) – VR(s), the summing junction has Vg(s) as the positive input and VR(s) as the
     negative input, and VL(s) as the error. Since I(s) = VL(s) (1/(Ls)), G(s) = 1/(Ls). Also, since VR(s) =
     I(s)R, the feedback is H(s) = R. Summarizing, the circuit can be modeled as a negative feedback
     system, where G(s) = 1/(Ls), H(s) = R, input = Vg(s), output = I(s), and error = VL(s), where the
     negative input to the summing junction is VR(s).
                                                            1
                    I ( s)      G( s )                      Ls       1
          T ( s )=          =                 =                  =
                   V g ( s ) 1+G( s ) H ( s )                1     Ls + R                             1
                                                         1+    R                   I (s )=V g ( s )
     b.                                                     Ls            . Hence,                  Ls +R .
                                             V g( s )
                                  I ( s )=
     c. Using circuit analysis,              Ls+ R .
I-16 Instructor
      a. Adding currents at the op-amp’s inverting terminal, under ideal condition we get
      vi  v1 v1  vo
             
         Ri     Rf
                              which after some algebraic manipulations gives
                 Rf               Ri
      v 1=              vi+                 vo
              Rf + Ri         Rf + Ri
                                    v =−Av 1
      Also from the circuits diagram o
                                                 +
                vi                                                                      Vo
               vi
                                  Rf                 +
                                                                      -A
                                                                                        vo
                                                 ++ -
                           R f  Ri
                                                  v1
                                                                   Ri
                                                                R f  Ri
                                       Rf                        Ri                    Ri
                      T 1=− A                    L=− A                       L=− A
      We have that
                          Rf + Ri ;                           Ri + R f   ;
                                                                                     Ri + R f ;  1 1
                          Rf
                   −A
      v o T 1 Δ1        Ri + R f
         =       =
      vi    Δ              Ri
                   1+ A
                        Ri + R f
                                               Solutions to Problems   5-19
                      Rf           Rf
              −A              −
     vo            R i + Rf     R i + Rf R f
        =Lim                =           =
     v i A →∞          Ri         Ri      Ri
              1+ A
c.
                   Ri + R f    R i + Rf
        I-17 Instructor
Block Diagram:
       Solutions to Problems   5-21
Case
Structure Details:
                                                                                                              Solutions to Problems   5-23
   I-18 Instructor
          a.         There are three forward paths:
                                                    (
                                       M 1=K p 2 K p 1 +                  )
                                                                         Ki1     1
                                                                                   ^ s3
                                                                          s Lf C f C f
                                                M =( K                   )
                                                                      K   i11
                                                 2             p1   +                                   2
                                                                       s LC s               f       f
                                                                                      1
                                                M 3=( L^ f s + ^
                                                               Rf )                        2
                                                                                   Lf C f s
          The loops are:
                                                    (
                                           L1=−K p 2 K p1 +
                                                                           Ki1
                                                                              )  1
                                                                            s Lf C f s2
                                                L =−( K                       )
                                                                           K    1  i1
                                                  2                 p1   +
                                                                            s L s               f
                                                                     −Rf
                                                           L3 =
                                                                     Lf s
          There are no non-touching loops.
                                       (
                           ∆=1+ K p 2 K p 1 +
                                                     Ki1
                                                           )
                                                           1
                                                      s Lf C f s 2
                                                                   + K p1+
                                                                           K i1 1
                                                                                  + (
                                                                                    Rf
                                                                            s Lf s Lf s                        )
          and ∆ 1=∆ 2=∆ 3=1
          V Load M 1 ∆1 + M 2 ∆2+ M 3 ∆ 3
                =                         =
                                                       (
                                                 K p2 K p1+              )
                                                                         Ki1     1
                                                                                   ^
                                                                          s Lf C f C f s 3
                                                                                           + K p 1 +
                                                                                                     K i1  1
                                                                                                      s Lf C f s   (
                                                                                                                  + ^L s + ^
                                                                                                                 2 ( f       )
                                                                                                                           Rf )
                                                                                                                                   1
                                                                                                                                Lf C f s
                                                                                                                                        2
                                                                    1+ K ( K                                   )         (            )
           I Cf            ∆                                                                                Ki1   1             K    1  R
                                                                               p2               p1      +             2
                                                                                                                        + K p 1+ i 1   + f
                                                                                                             s Lf Cf s           s Lf s L f s
b. There are three forward paths:
                                           (
                                    M 1=K p 2 K p 1 +            )
                                                                Ki1     1
                                                                          ^ s3
                                                                 s Lf C f C f
                                       M =( K                   )
                                                             K     1i1
                                            2         p1   +                                    2
                                                              s LC s           f        f
                                                                            1
                                           M 3=( L^ f s + ^
                                                          Rf )                   2
                                                                         Lf C f s
   The loops are:
                                                        (
                                                 L1=−K p 2 K p1 +              )
                                                                               Ki1   1
                                                                                s Lf C f s2
                                                    L =−( K                    )
                                                                            K    1
                                                                                i1
                                                        2            p1   +
                                                                             s L s       f
                                                                          −Rf
                                                                 L3 =
                                                                          Lf s
       There are no non-touching loops.
                                             (
                            ∆=1+ K p 2 K p 1 +
                                                         Ki1   1
                                                                 )
                                                          s Lf C f s 2
                                                                       + K p1+   (
                                                                               K i1 1
                                                                                      +
                                                                                        Rf
                                                                                s Lf s Lf s        )
       and ∆ 1=∆ 2=∆ 3=1
V Load M 1 ∆1 + M 2 ∆2+ M 3 ∆ 3
      =                         =
                                         (
                                      K p2 K p1+        )
                                                        Ki1     1
                                                                  ^ s
                                                         s Lf C f C f
                                                                      3
                                                                        + K p1+
                                                                                K i1
                                                                                     (1
                                                                                 s Lf C f s 2          )
                                                                                              + ( ^Lf s + ^
                                                                                                          Rf )
                                                                                                                  1
                                                                                                               Lf C f s
                                                                                                                       2
                                                   1+ K ( K                      )                 (          )
 I Cf            ∆                                                            Ki1   1             K    1  R
                                                            p2       p1   +             2
                                                                                          + K p 1+ i 1   + f
                                                                               s Lf Cf s           s Lf s L f s
       The loops and      are the same as in part a. There is only one forward path
              −1
       M 1=        and ∆ 1=1
              Cf s
                                                              1
       V Load M 1 ∆1                                         Cf s
               =     =-
        I Dist   ∆
                                  (
                          1+ K p 2 K p 1+
                                                 Ki1
                                                    )  1
                                                  s Lf Cf s 2         (
                                                                      K
                                                              + K p 1+ i 1
                                                                           1  R
                                                                             + f
                                                                       s Lf s Lf s           )
      I-19 Instructor
                                                                                                 X 1 aV      1
                                                                                                    =
                                                                                                 δ    bh          g
                                                                                                           s2 −
              a. Following the procedure described in Chapter 3 we define                                         h   and
                        V                                  g      aV            V
              ϕ=(s +      ) X 1( s )                  ẍ 1− x 1 =    δ ϕ= ẋ 1 + x 1
                        A            . In time domain      h      bh .          a and we also define
              ẋ 1=x 2 . These equations give
                        [ ][ ] [ ]
                      0     1          0
              [ ]
               ẋ1
               ẋ 2
                    = g
                      h
                            0
                                 x1
                                 x2
                                    + aV δ
                                      bh
                                                                                               Solutions to Problems                    5-25
ϕ=
     [   V
         a
                 1
                     ][ ]
                      x1
                      x2
b.The eigenvalues can be obtained directly from the transfer function poles. Thus
                                                                                                                       λ 12=±
                                                                                                                                √   g
                                                                                                                                    h
Consider
             λ 1=
                      √   g
                          h , the first eigenvector is found from the solution of Ax1 =λ1 x 1 or
[ ][
 0       1
 g
 h
         0
                 x1
                 x2
                    =
                     ]√[ ]
                      g x1
                      h x2
                                         . This results in
                                                                x 2=
                                                                         √   g
                                                                               x
                                                                             h 1 . Arbitrarily let x 1=1               so the first
                              [√ ]
                                      1
                     v 1=              g
eigenvector is                         h .
                                                                 [ ][
                                                                   0     1
Similarly for
              λ 2=−
                    g
                                  √    g
                    h ; Ax2 =λ1 x 2 or h
                                                                         0
                                                                                 x1
                                                                                 x2  ] √[ ]
                                                                                    =−
                                                                                       g x1
                                                                                       h x2
                                                                                                           resulting in
                                                                                          [√ ]
                                                                                                               1
x 2 =−
             √   g
                   x
                 h 1 . Letting arbitrarily x 1=1                the second eigenvector is
                                                                                                v 2=            g
                                                                                                                h .
                                                                                     [√ √ ]
                                                                                    1              1
                                                        P= [ v 1             v 2 ]= g                  g
                                                                                               −
c. The similarity transformation matrix is                                          h                  h
             [ ] √
               g
             −            −1
               h
                 √
                                       [ ]         √
               g                        1      1       h
             −                1
 −1
               h                        2      2       g
P =                                   =
                 −2
                      √   g
                          h
                                        1
                                        2
                                              −
                                                1
                                                2   √   h
                                                        g
                          [              √
                                                  ][ ][ √                             ][   √
                                                                                                                   ]
             1                         1     h                                                 g
                                                   0        1       1            1                         0
             2                         2     g                                                 h
A d =P−1 AP=
             1
             2
                                      −
                                        1
                                        2 √   h
                                              g
                                                   g
                                                   h
                                                            0        g
                                                                     h
                                                                             −
                                                                                 √   g =
                                                                                     h   0         −
                                                                                                           √   g
                                                                                                               h
                              [ ][ ] [ ]       √
                    1  1                            h               1 aV
                                                               0
                    2  2                            g               2 b √ gh
         Bd =P−1 B=                                           aV =
                                                √
                    1   1                            h               1 aV
                      −                                       bh   −
                    2   2                            g               2 b √ gh
                                           [                  √][ √
                                               1              1
         C d =CP=
                  V
                  a       [        1       ]√   g
                                                h
                                                         −
                                                           h
                                                              V
                                                           g = +
                                                              a
                                                                 g
                                                                 h
                                                                                     V
                                                                                     a
                                                                                       −
                                                                                         g
                                                                                         h  √]
         The diagonalized representation is:
            √
                      [ ] [ ]
                      g                              1 aV
                                   0
[] ż1
              √ [
             ż 2 ]
                  =
                      h
                      0       −
                                       g
                                       h
                                                z1
                                                   +
                                                     2 b √ gh
                                                z 2 − 1 aV
                                                      2 b √ gh
                                                               δ
          [ √ √ ][ ]
         ϕ=
                 V
                 a
                   +
                     g
                     h
                                   V
                                   a
                                     −
                                       g
                                       h
                                                         z1
                                                         z2
        b.
              T(s) = ; from which, 2n = 1+25K2 and n = 5.
                                                % OS
                                   −ln (             )
                                                100                     −ln 0 .2
                          ζ=                                      =                      =0 . 456
              Hence,           √    2
                                   π + ln (
                                            % OS
                                            100
                                                2
                                                 )
                                                                      √ π 2 +ln 2 0. 2
                                                                 32
                                                                    =1. 28
              Also, Ts = = 0.25, Thus, n = 16; from which K2 = 25        and
I-21 Instructor
, where:
                                          N1                      N1                      N1
                            J eq = 1+ (             )2 D eq = (             )2 K eq = (             )2
                                               N2                      N2                      N2
                                                     ;                       ;                           .
or
                                                         1
                                              θ 1( s )   1+ n2
                                     G( s ) =          =
                                              T ( s)          n2        n2
                                                         s2 +       s +
                                                              1+ n2     1+ n2
                                  n2                      n2
                    ∴ 2 ςωn=                    ω 2n =
                                 1+n2                    1+n 2
                                          and                     . From Ts = 10 sec = 4/n, we find n = 2.
                                                     0.8                                    0.8
                                                2                                     2
                                               s + 0.8 s + 0.8                        s + 0.8 s + 1.6
        b.         In Figure P5.58, KG(s) =                            ; and T(s) =                          ,
This results in: n = 1.265 rad/sec &  = 0.32; % O.S. = 33% and Ts = 10 sec.
I-22 Instructor
        b.        The transfer function of GP(s) of the circuit representing the process may be derived as
                  shown in example 2.6. That yields (see equation 2.66):
                             V o(s)           1/ LC     106
                 G P (s )=           =                 = 2
                             V f (s)          R      1  s +10 R p s+ 106
                                         s 2 + p s+
                                               L    LC
     Hence:
              ω n =103 and for a critically damped process (ζ =1), we have:
                                               10 8
                                              104 ×
                                               1 .8 s 5 .556×107
     Z f =10 K Ω // 0. 022 μF ⇒ Z f (s )=             =
                                            4 10
                                                  8     ( s+5556 )
                                          10 +                      Z (s)=10 4
                                               1. 8 s              ; i
                                     V f ( s ) Z f ( s ) 5 .556×103
                        ∴ GF (s )=            =         =
                                     V c (s ) Z i ( s )     s+5556
                                          4
                                 T s=        =0 . 004 ⇒ ωn =2000
      Given that ς=0 . 5 and
                                         ςωn                     , the dominant poles
should be:
                 s1 , 2=− ςωn ± jωn √1− ς2 =−1000± j 1732 , which are the roots of
                                          s2 +2000 s+4×106 .
Thus, the third closed-loop pole may be found by dividing the characteristic polynomial
Given that its tolerance is ± 10%, I would set the controller potentiometer, RF, to: