Ch.
0 Basic Maths Integer(整數) Index notation
1. Expression All number: positive number, negative It is convenient to present the products.
2. Type of number number, 0 (except decimal number) The base must be a prime number.
3. Index Example:
4. L.C.M. & H.C.F Even number(雙數) Use index notation to express the following
5. Divisibility E.g. 0,2,4,6,8…. as a product of prime number.
42 x 6
Verb(and then) Noun(first) 中 Odd umber(單數) =2 ×3 ×7 × 2× 3 2 42
文 =22 ×32 ×7
3 21
+ a plus b Sum 和 Whole number(非負整數) 7
All integer excluding negative integer 2 ‘Two Cube’.
3
−
Prime number
a minus b difference 差 4 2’Four Square’.
Natural number(自然數)
subtract a by b Positive integer ONLY H.C.F & L.C.M
用短除搵
subtract a ¿ b Prime number(質數) HCF=2
The factors of the number are one and LCM=2x3x2x3x5x2
× a×b Product 積 itself. *1 is not prime number 2 18 20 24
3 9 10 12
multify a by b Composite number(合成數) 2 3 10 4
The number has more than 2 factors. 3 5 2
÷ divide a by b Quotient 商 prime factorization
Divisibility
尾數(1) Sum of all integers see whether 尾數(2) Mixed case
can be divisible by 3/9
2 3 5 6
最後一個尾數是否雙數 E.g. 最後的尾數是否 0 或 5 the number should be divisible by
E.g. 12348 E.g. both 2 and 3, so that the number can
4 1+2+3+4+8=18 100 be divisible by 6.
18 18 can be divisible by 3 175 E.g.
120 So, 12348 can be divisible by 3. 320 618
4 9 10 最後一個尾數是雙數
最後兩個尾數是否可被四整除 E.g. 976536 最後的尾數是否零 2
E.g. 9+7+6+5+3+6=36 E.g.
20 36 can be divisible by 9 140 6+1+8=15
116 So, 976536 can be divisible by 9. 1856390 15 can be divisible by 3
1524 25380 3
8
最後三個尾數是否可被 8 整除 ∵618 can be divisible by both 2 and 3
E.g. ∴618 can be divisible by 6.
120
2136
10152