電學9解答
電學9解答
Assessment Problems
.· . I = 10/−70◦ A.
9–1
9–2 CHAPTER 9. Sinusoidal Steady State Analysis
125/−60◦ 125
AP 9.6 [a] I = = /(−60 − θZ )◦ ;
|Z|/θz |Z|
Z = 90 + j160 + jXC ;
1
.·. XC = −70 Ω; XC = − = −70;
ωC
1
.· . C = = 2.86 µF.
(70)(5000)
Vs 125/−60◦
[b] I = = = 0.982/−105◦ A; .·. |I| = 0.982 A.
Z (90 + j90)
AP 9.7 [a]
ω = 2000 rad/s;
−1
ωL = 10 Ω, = −20 Ω;
ωC
Problems 9–3
20(j10)
Zxy = 20kj10 + 5 + j20 = + 5 − j20;
(20 + j10)
= 4 + j8 + 5 − j20 = (9 − j12) Ω.
−1
[b] ωL = 40 Ω, = −5 Ω;
ωC
" #
(20)(j40)
Zxy = 5 − j5 + 20kj40 = 5 − j5 +
20 + j40
= 5 − j5 + 16 + j8 = (21 + j3) Ω.
j106
" # !
20(jωL)
[c] Zxy = + 5−
20 + jωL 25ω
20ω 2 L2 j400ωL j106
= + + 5 − .
400 + ω 2 L2 400 + ω 2 L2 25ω
The impedance will be purely resistive when the j terms cancel, i.e.,
400ωL 106
= .
400 + ω 2 L2 25ω
Solving for ω yields ω = 4000 rad/s.
20ω 2 L2
[d] Zxy = + 5 = 10 + 5 = 15 Ω.
400 + ω 2 L2
AP 9.8 The frequency 4000 rad/s was found to give Zxy = 15 Ω in Assessment
Problem 9.7. Thus,
V 150/0◦
V = 150/0◦ , Is = = = 10/0◦ A.
Zxy 15
Using current division,
20
IL = (10) = 5 − j5 = 7.07/−45◦ A;
20 + j20
AP 9.9 After replacing the wye made up of the j40 Ω, 50 Ω, and 40 Ω impedances with
its equivalent delta, the circuit becomes
9–4 CHAPTER 9. Sinusoidal Steady State Analysis
where
j40(50) + 50(40) + 40(j40)
Za = = 90 − j50 Ω;
j40
136/0◦
Therefore I = = 4/28.07◦ A.
14 + 16 − j16
AP 9.10
V1 = 240/53.13◦ = 144 + j192 V;
V2 = 96/−90◦ = −j96 V;
1 6 × 106
= −j = −j60 Ω.
jωC (4000)(25)
V2 96
= −j = −j4.8 A.
20 20
1 1 1 1 j5 1
Y = + + + = = ;
j60 30 −j60 20 j60 12
Problems 9–5
1
Z= = 12 Ω.
Y
vo = 48 cos(4000t + 36.87◦ ) V.
AP 9.11 Use the lower node as the reference node. Let V1 = node voltage across the
20 Ω resistor and VTh = node voltage across the capacitor. Writing the node
voltage equations gives us
V1 V1 − 10Ix −j10
− 2/45◦ + = 0 and VTh = (10Ix ).
20 j10 10 − j10
We also have
V1
Ix = .
20
Solving these equations for VTh gives VTh = 10/45◦ V. To find the Thévenin
impedance, we remove the independent current source and apply a test
voltage source at the terminals a, b. Thus
Therefore
VT VT
Ix = 0 and IT = +
−j10 10.
VT
ZTh = , therefore ZTh = (5 − j5) Ω.
IT
9–6 CHAPTER 9. Sinusoidal Steady State Analysis
V V V V − 100/−90◦
−10 + + + + = 0;
5 −j(20/9) j5 20
AP 9.13 Let Ia , Ib , and Ic be the three clockwise mesh currents going from left to
right. Summing the voltages around meshes a and b gives
and
0 = (3 − j5)(Ib − Ia ) + 2(Ib − Ic ).
But
Vx = −j5(Ia − Ib ),
therefore
Ic = −0.75[−j5(Ia − Ib )].
245.20
[b] I1 = = 0.50/ − 53.13◦ A;
184 + 100 + j400 + Zτ
i1 = 0.5 cos(800t − 53.13◦ ) A.
jωM j80
[c] I2 = I1 = (0.5/ − 53.13◦ ) = 0.08/0◦ A;
Z22 500/36.87◦
i2 = 80 cos 800t mA.
AP 9.15
Vs 25 × 103 /0◦
I1 = =
Z1 + 2s2 Z2 1500 + j6000 + (25)2 (4 − j14.4)
= 4 + j3 = 5/36.87◦ A;
= 37,000 − j28,500;
1
V2 = − V1 = −1480 + j1140 = 1868.15/142.39◦ V;
25
V2 1868.15/142.39◦
I2 = = = 125/216.87◦ A.
Z2 4 − j14.4
9–8 CHAPTER 9. Sinusoidal Steady State Analysis
Problems
ω
P 9.1 [a] ω = 2πf = 600 rad/s, f= = 95.54 Hz
2π
[b] T = 1/f = 10.47 ms
[c] Im = 100 mA
[d] i(0) = 100 cos(45◦ ) = 70.72 mA
π
[e] φ = 45◦ ; = 0.7857 rad
4
[f ] i = 0 when 600t + 45◦ = 90◦
45◦
(600 rad/s)t = 45 ⇒ t = = 0.785 rad
57.3◦ /rad
i.e. 600t = 0.7853 ⇒ t = 1.308 m sec
P 9.2
P 9.3 [a] 25 V
[b] 2πf = 400π; f = 200 Hz
[c] ω = 400π = 1256.64 rad/s
Problems 9–9
π π
[d] θ(rad) = 60◦ = = 1.0472 rad
180◦ 3
[e] θ = 60◦
1 1
[f ] T = = = 5 ms
f 200
π π π
[g] 400πt + = ; .·. 400πt =
3 2 6
1
.· . t= = 416.67 µs
2400
0.005 π
[h] v = 25 cos 400π t − +
6 3
= 25 cos[400πt − (π/3) + (π/3)]
= 25 cos 400πt V
[i] 400π(t + to ) + (π/3) = 400πt + (3π/2)
7π 7
.·. 400πto = ; to = = 2.92 ms
6 2400
P 9.4 W = 2πf = 6.25 × 108 rad/sec
Then
q
vmax = Imax R2 + (1/W C)2
√
= 62 + 242 = 24.74 V
T
P 9.5 [a] = 25 − 5 = 20 ms; T = 40 ms
2
1 1
f= = = 25 Hz
T 40 × 10−3
[b] i = Im sin(ωt + θ)
s
1 Z T /2 2 2 2π
P 9.7 Vrms = Vm sin t dt;
T 0 T
Z T /2
2π V 2 Z T /2 4π V 2T
Vm2 sin2 t dt = m 1 − cos t dt = m ;
0 T 2 0 T 4
s
1 Vm2 T Vm
Therefore Vrms = = .
T 4 2
Z to +T Z to +T
1 1
P 9.8 Vm2 2
cos (ωt + φ) dt = Vm2 + cos(2ωt + 2φ) dt
to t
(o
2 2
Vm2 Z to +T )
R to +T
= to dt + cos(2ωt + 2φ) dt
2 to
Vm2 1 h
i
= sin(2ωt + 2φ) |ttoo +T
T+
2 2ω
Vm2 1
= T+ [sin(2ωto + 4π + 2φ) − sin(2ωto + 2φ)]
2 2ω
2 T 1 2 T
= Vm + (0) = Vm .
2 2ω 2
P 9.9 [a] The numerical values of the terms in Eq. 9.8 are
Vm = 75, R/L = 5333.33, ωL = 300
√
R2 + ω 2 L2 = 500
" #
di R cos(ωt + φ − θ) − ωL sin(ωt + φ − θ)
L + Ri = Vm √ .
dt R2 + ω 2 L2
But
R ωL
√ = cos θ and √ = sin θ.
R + ω 2 L2
2 R2 + ω 2 L2
Therefore the right-hand side reduces to
Vm cos(ωt + φ).
At t = 0, Eq. 9.7 reduces to
−Vm cos(φ − θ) Vm cos(φ − θ)
i(0) = √ + √ 2 = 0.
R 2 + ω 2 L2 R + ω 2 L2
Vm
[b] iss = √ 2 cos(ωt + φ − θ).
R + ω 2 L2
Therefore
diss −ωLVm
L =√ 2 sin(ωt + φ − θ)
dt R + ω 2 L2
and
Vm R
Riss = √ 2 cos(ωt + φ − θ).
R + ω 2 L2
" #
diss R cos(ωt + φ − θ) − ωL sin(ωt + φ − θ)
L + Riss = Vm √
dt R 2 + ω 2 L2
= Vm cos(ωt + φ).
y=0
25/ − 60◦
[b] I = = 554.7/ − 3.69◦ mA
25 + j25 − j62.5
Problems 9–13
1 j
P 9.19 [a] Y2 = − ;
R2 ωL2
1 R1 − jωL1
Y1 = = 2 .
R1 + jωL1 R1 + ω 2 L21
Therefore Y2 = Y1 when
R12 + ω 2 L21 R12 + ω 2 L21
R2 = and L2 = .
R1 ω 2 L1
80002 + 10002 (4)2
[b] R2 = = 10 kΩ;
8000
80002 + 10002 (4)2
L2 = = 20 H.
10002 (4)
1
P 9.20 [a] Z1 = R1 − j ;
ωC1
R2 /jωC2 R2 R2 − jωR22 C2
Z2 = = = ;
R2 + (1/jωC2 ) 1 + jωR2 C2 1 + ω 2 R22 C22
R2
Z1 = Z2 when R1 = and
1 + ω 2 R22 C22
1 ωR22 C2 1 + ω 2 R22 C22
= or C1 = .
ωC1 1 + ω 2 R22 C22 ω 2 R22 C2
1000
[b] R1 = = 200 Ω;
1 + (40 × 103 )2 (1000)2 (50 × 10−4 )2
1 + (40 × 103 )2 (1000)2 (50 × 10−9 )2
C1 = = 62.5 nF.
(40 × 103 )2 (1000)2 (50 × 10−9 )
1
P 9.21 [a] Y2 = + jωC2 ;
R2
1 jωC1 ω 2 R1 C12 + jωC1
Y1 = = = ;
R1 + (1/jωC1 ) 1 + jωR1 C1 1 + ω 2 R12 C12
Therefore Y1 = Y2 when
1 + ω R12 C12
2
C1
R2 = and C2 = .
ω 2 R1 C12 1 + ω 2 R12 C12
Problems 9–15
40 × 10−9
C2 = = 8 nF.
1 + (50 × 103 )2 (1000)2 (40 × 10−9 )2
1 1 1 1
Yp = + + + = (0.213 − 0.132j) S;
12 − j4 8 + j12 10 j10
1 1
Zp = = = (3.37 + 2.10j) Ω;
Yp 0.213 − j0.132
1 1
Yab = = = (0.042 + j0.0265) S
Zab (16.97 − j10.69)
1 1 jωRL
P 9.24 [a] + RkjωL = +
jωC jωC jωL + R
jωL + R − ω 2 RLC
=
jωC(jωL + R)
−ω 2 L2 − R2 + ω 2 R2 LC = 0
2 R2 2002
ω = 2 = = 250,000
R LC − L2 2002 (0.4)(20 × 10−6 ) − (0.4)2
.· . ω = 500 rad/s
9–16 CHAPTER 9. Sinusoidal Steady State Analysis
(200)(j200)
[b] Zab (500) = −j100 + = 100 Ω
200 + j200
P 9.25 [a] R = 300 Ω = 120 Ω + 180 Ω;
1 1
ωL − = −400 so 10,000L − = −400.
ωC 10,000C
Choose L = 10 mH. Then,
1 1
= 100 + 400 so C = = 0.2 µF.
10,000C 10,000(500)
We can achieve the desired capacitance by combining two 0.1 µF
capacitors in parallel. The final circuit is shown here:
1 1
[b] 0.01ω = so ω 2 = = 5 × 108 ;
ω(0.2 × 10−6 ) −6
0.01(0.2 × 10 )
.·. ω = 22,360.7 rad/s.
P 9.26 [a] Using the notation and results from Problem 9.19:
20
RkL = 40 + j20 so R1 = 40, L1 = = 4 mH;
5000
402 + 50002 (0.004)2
R2 = = 50 Ω;
40
402 + 50002 (0.004)2
L2 = = 20 mH;
50002 (0.004)
R2 kjωL2 = 50kj100 = 40 + j20 Ω. (checks)
V 80/0◦
Io = = = 9.6 + j12.8 = 16/53.13◦ mA
Z 3000 − j4000
1 1
P 9.29 = −6
= −j25 Ω
jωC j(5 × 10 )(8000)
Vg = 60/ − 90◦ V
60/ − 90◦
Ig = = −j2.4 − j4.8 A
10 + j5
1
= −j40 Ω;
jωC
jωL = j10 Ω.
Vo 256 −90◦
Io = = = −0.88 − j1.278 = 1.556 −124.82◦
Zeq 13.18 + j9.17
1
P 9.31 [a] = −j2.5 Ω;
jωC
jωL = j20 Ω;
Ig = 0.0256 0◦ ;
P 9.32
V1 = j5(−j2) = 10 V;
15
−25 + 10 + (4 − j3)I1 = 0; .· . I1 = = 2.4 + j1.8 A;
4 − j3
VZ −1 − j12
Z= = = 1.42 − j1.88 Ω.
IZ 3.8 − j3.4
P 9.33
Solving,
Va = 40 + j30 V;
Solving,
IZ = −30 − j10 A;
−j
ZC = = −j50 Ω
(10,000)(2 × 10−6 )
(50 + j100)
I= (0.06) = 30 + j30 mA
50 + j100 + 100 − j50
Vo = 100I = 3 + j3 = 4.24/45◦
Vg
Z= = 1000/53.13◦ Ω = 600 + j800 Ω
Ig
9–22 CHAPTER 9. Sinusoidal Steady State Analysis
0.4 × 106
!
Z = 600 + j 3.2ω −
ω
0.4 × 106
.·. 3.2ω − = 800
ω
Solving,
ω = 500 rad/s
P 9.36 [a]
P 9.37 [a] In order for vg and ig to be in phase, the impedance to the right of the
500 Ω resistor must be purely real:
jωL(R + 1/jωC)
Zeq = jωLk(R + 1/ωC) =
jωL + R + 1/jωC
jωL(jωRC + 1)
=
jωLRC − ω 2 LC + 1
Problems 9–23
106
P 9.40 [a] Z1 = 400 − j = 400 − j800 Ω;
500(2.5)
j106 L
Z2 = 2000kj500L = ;
2000 + j500L
j106 L
ZT = Z1 + Z2 = 400 − j800 +
2000 + j500L
500 × 106 L2 2 × 109 L
= 400 − − j800 + j .
20002 + 5002 L2 20002 + 5002 L2
ZT is resistive when
2 × 109 L
2 2 2
= 800 or 5002 L2 − 25 × 105 L + 20002 = 0.
2000 + 500 L
Solving, L1 = 8 H and L2 = 2 H.
[b] When L = 8 H:
500 × 106 (8)2
ZT = 400 + = 2000 Ω;
20002 + 5002 (8)2
200/0◦
Ig = = 100/0◦ mA;
2000
ig = 100 cos 500t mA.
When L = 2 H:
500 × 106 (2)2
ZT = 400 + = 800 Ω;
20002 + 500(2)2
200/0◦
Ig = = 250/0◦ mA;
800
ig = 250 cos 500t mA.
R
jωC R
P 9.41 [a] Zp = =
R + (1/jωC) 1 + jωRC
10,000 10,000
= =
1 + j(5000)(10,000)C 1 + j50 × 106 C
10,000(1 − j50 × 106 C)
=
1 + 25 × 1014 C 2
10,000 5 × 1011 C
= − j
1 + 25 × 1014 C 2 1 + 25 × 1014 C 2
jωL = j5000(0.8) = j4000
9–26 CHAPTER 9. Sinusoidal Steady State Analysis
5 × 1011 C
.·. 4000 =
1 + 25 × 1014 C 2
.·. 1014 C 2 − 125 × 106 C + 1 = 0
Solving,
C1 = 40 nF C2 = 10 nF
10,000
[b] Re =
1 + 25 × 1014 C 2
When C = 40 nF Re = 2000 Ω;
80/0◦
Ig = = 40/0◦ mA; ig = 40 cos 5000t mA
2000
When C = 10 nF Re = 8000 Ω;
80/0◦
Ig = = 10/0◦ mA; ig = 10 cos 5000t mA
8000
P 9.42 Simplify the top triangle using series and parallel combinations:
(1 + j1)k(1 − j1) = 1 Ω.
(j1)(1)
Z1 = = j1 Ω;
1 + j1 − j1
(−j1)(1)
Z2 = = −j1 Ω;
1 + j1 − j1
(j1)(−j1)
Z3 = = 1 Ω.
1 + j1 − j1
(−j1)(1)
Z4 = = −j1 Ω;
1 + j1 − j1
(−j1)(j1)
Z5 = = 1 Ω;
1 + j1 − j1
(j1)(1)
Z6 = = j1 Ω.
1 + j1 − j1
Simplify the middle portion of the circuit by making series and parallel
combinations:
[b] Remove the voltage source and combine impedances in parallel to find
ZTh = Zab :
ZTh = Zab = 320k − j80kj160 = 64 − j128 Ω.
[c]
180/90◦
= 6/0◦ A
j30
Step 2 to Step 3:
Step 3 to Step 4:
72 + j36
ZN = 12 + j6 − j30 = 12 − j24 Ω; IN = = j3 A
12 − j24
Step 2 to Step 3:
30/0◦
250 − j400 + j150 = 250 − j250 Ω; = 60 − j60 mA
250 − j250
Problems 9–29
Step 3 to Step 4:
Solving,
20(0.4 + j0.2)
Ia = = 0.1 + j0.1 A;
60 − j20
Solving,
P 9.47
5 − j15
VTh = + (1 − j3) mA, ZN in kΩ.
ZN
−18 − j13.5
IN = + +4.5 − j6 mA, ZN in kΩ;
ZN
Problems 9–31
23 − j15
= 3.5 − j3 .· . ZN = 4 + j3 kΩ;
ZN
5 − j15
IN = + 1 − j3 = −j6 mA.
4 + j3
−2Vx − j20(Isc − I1 ) = 0;
Vx = 20I1 .
Solving,
IrmN = Isc = −2 + j2 A.
−40 + j40
I= = −2 A;
20 − j20
Vx = 20I = −40 V;
−80 + j40V
ZrmN = = 30 + j10 Ω.
−2 + j2
V1 − 250 V1
− 0.03Vo + = 0;
20 + j10 50 − j100
−j100
. · . Vo = V1 .
50 − j100
V1 j3V1 V1 250
+ + = ;
20 + j10 50 − j100 50 − j100 20 + j10
250/0◦
Isc = = 3.5 − j0.5 A;
70 + j10
V2 V2 − 51 V2
+ 88Iφ + = 0;
10 −j50
5 − (V2 /5)
Iφ = .
200
Solving,
VT 0.8VT
IT = + 88Iφ + ;
10 −j50
−VT /5
Iφ = ;
200
!
1 1/5 0.8
IT = VT − 88 + ;
10 200 −j50
VT
.· . ZN = = 30 − j40.
IT
VTh −66 + j88
IN = = = −2.2 + j0 A.
ZN 30 − j40
The Norton equivalent circuit:
P 9.51 [a]
VT VT − αVT
IT = + ;
1000 −j1000
IT 1 (1 − α) j−1+α
= − =
VT 1000 j1000 j1000;
VT j1000
.·. ZTh = = .
IT α−1+j
ZTh is real when α = 1.
Problems 9–35
Thus, α = 0.
1000 1000(α − 1)
[d] ZTh = 2
+j .
(α − 1) + 1 (α − 1)2 + 1
For Im(ZTh ) > 0, α must be greater than 1. So ZTh is inductive for
1 < α ≤ 10.
P 9.52 jωL = j100 × 103 (1.2 × 10−3 ) = j120 Ω;
1 −j
= = −j12.5 Ω.
jωC (100 × 10 )(0.8 × 10−6 )
3
−j120
I∆ = IT ;
60 + j120
j120
VT = −j12.5IT + 55 IT ;
60 + j120
VT
= Zab = 44 + j9.5 = 45.016 12.18
IT
9–36 CHAPTER 9. Sinusoidal Steady State Analysis
1 109
P 9.53 = = 8 kΩ
ωC1 50,000(2.5)
1 109
= = 4 kΩ
ωC2 50,000(5)
VT
ZTh = = 6000 − j8000 Ω
IT
P 9.54
V1 − 240 V1 V1
+ + = 0.
j20 50 60 + j10
V1 = 154.7 − j106.26
= 187.6896 −34.85◦
60
Vo = (V1 ) = 137.46 − 103.38j = 172.06 − 36.94
60 + j10
Vo = 4 + j4 = 5.66/45◦ V;
1 − Vo /8
Io = = −25 − j25 mA = 35.36/ − 135◦ mA.
j20
1 −j
= = −j4 Ω;
jωCtop (2500)(100 × 10−6 )
1 −j
= = −j16 Ω;
jωCmid (2500)(25 × 10−6 )
Ig = 56 0◦ A; Vg = 206 90◦ V.
V1 − V2 V1 − j20
−5 + + = 0;
−j16 −j4
V2 − V1 V2 V2 − j20
+ + = 0.
−j16 j4 24
Solving,
V2
V2 = +3.64 + j0.868 Io = = 0.217 + j(−0.911) = 0.9366 −76.6
j4
1 −j
= = −j100 Ω;
jωC (400)(25 × 10−6 )
10
Vg2 = 6.016 33.69◦ = 5 + j V.
3
Vo − (12 + j16) Vo Vo − 5 + j 10
3
+ + = 0.
−j100 300 j40
Solving,
P 9.58 Transform the circuit to the phasor domain; the sources are
Vb = 25/90◦ = j25 V.
1 −j
= = −j10 Ω.
jωC (10 )(0.1 × 10−6 )
6
Solving,
P 9.59
Vo Vo
+ + 20Io = 0
50 −j25
9–40 CHAPTER 9. Sinusoidal Steady State Analysis
(2 + j4)Vo = −2000Io
Vo = (−200 + j400)Io
V1 − (Vo /10)
Io =
j25
V1
0.006 + j0.013 = + Io = (−0.4 + j1.3)Io + Io = (0.6 + j1.3)Io
50
P 9.60
Solving,
Ig = 4 − j2 = 4.47/ − 26.57◦ A
P 9.61
Problems 9–41
Solving,
P 9.62
1 = j1I1 − j1I2 + I3 .
9–42 CHAPTER 9. Sinusoidal Steady State Analysis
Solving,
I1 = 11 + j10 A; I2 = 11 + j5 A; I3 = 6 A;
Ia = I3 − 1 = 5 A;
Ib = I1 − I3 = 5 + j10 A;
Ic = I2 − I3 = 5 + j5 A;
Id = I1 − I2 = j5 A.
P 9.63
Solving,
1 −j
= = −j50 Ω
jωC (5000)(4 × 10−6 )
Solving,
Ia = j2.5 A
Zo 200 − j1000
P 9.65 Vo = Vg = (1006 0◦ ) = 199.46 −0.229 V;
ZT 300 + j1600 + 500 − j1000
1 −j
P 9.66 = = −j400 Ω;
jωC (20,000)(125 × 10−9 )
Ig = 4006 0◦ mA;
P 9.67 [a] Superposition must be used because the frequencies of the two sources are
different.
[b] For ω = 2000 rad/s:
0.588 − j2.35
so Vo1 = (206 36.87◦ ) = 70.76 −81.8 V.
0.588 − j2.35 + j2
For ω = 5000 rad/s:
j10k10 = 5 + j5 Ω;
5 + j5
Vo2 = (106 10.26◦ ) = 11.046 22.60 V.
5 + j5 − j2
Thus,
vo (t) = [70.7 cos(2000t − 81.8) + 11.04 cos(5000t + 22.6)] V.
P 9.68 [a] Superposition must be used because the frequencies of the two sources are
different.
[b] For ω = 16,000 rad/s:
V0o − 10 V0o V0
+ + o = 0;
−j100 j400 400
!
1 1 1 10
V0o + + = ;
−j100 j400 400 −j100
20
V00o (j − j4 + 1) = 20 so V00o = = 2 + j6 = 6.32/71.565◦ V.
1 − j3
Thus,
vo (t) = [12.65 cos(16,000t + 18.435◦ ) + 6.32 cos(4000t + 71.565◦ )] V.
1
P 9.69 Vg = 20/0◦ V; = −j400 Ω
jωC
Let Va = voltage across the capacitor, positive at upper terminal
Then:
Va − 20/0◦ Va Va
+ + = 0; .·. Va = (8 − j4) V
400 −j400 400
0 − V a 0 − Vo Va
+ = 0; Vo = −
400 200 2
.·. Vo = −4 + j2 = 4.47/153.43◦ V
P 9.70 [a]
Va − 20/0◦ Va
+ jωCo Va + =0
400 400
20
Va =
2 + j400ωCo
Va
Vo = −
2
−10 10/180◦
Vo = =
2 + j2 × 106 Co 2 + j2 × 106 Co
.·. denominator angle = 45◦
so 2 × 106 Co = 2 .·. C = 1 µF
9–46 CHAPTER 9. Sinusoidal Steady State Analysis
10/180◦
[b] Vo = = 3.54/135◦ V
2 + j2
vo = 3.54 cos(5000t + 135◦ ) V
1
= −j100 kΩ.
jωC2
Va − 2 Va Va Va − Vo
+ + + = 0;
5000 −j10,000 20,000 100,000
Problems 9–47
0 − Va 0 − Vo
+ = 0;
20,000 −j100,000
j5Va − Vo = 0.
Solving,
1 −j109
P 9.73 [a] = = −j100 Ω
jωC (106 )(10)
Vg = 30/0◦ V
Vg (1/jωCo ) 30/0◦
Vp = = = Vn
25 + (1/jωCo ) 1 + j25ωCo
Vn Vn − Vo
+ =0
100 −j100
1 + j1 30(1 − j1)
Vo = Vn = (1 − j1)Vn =
j 1 + j25ωCo
√
30 2
|Vo | = q =6
1 + 625ω 2 Co2
Solving,
Co = 280 nF
30(1 − j1)
[b] Vo = = 6/ − 126.87◦
1 + j7
vo = 6 cos(106 t − 126.87◦ ) V
jωL2 = j64 Ω;
1
= −j40 Ω;
jωC
9–48 CHAPTER 9. Sinusoidal Steady State Analysis
q
jωM = j(4 × 103 )k (25)(16) × 10−3 = j80k Ω;
Solving,
Ig = 1.2 − j0.9 A; IL = −0.3 A
.·. Z22
∗
= 300 − j400 Ω.
q
M = k L1 L2 = 2k × 10−3 ;
d|Zin |
= 0 when
dk
768k(200 + 192k 2 ) − 1024k(200 − 256k 2 ) = 0.
√
.·. k 2 = 0.125; .·. k = 0.125 = 0.3536.
560/0◦
I1 (max) = = 2/ − 36.87◦ A;
224 + j168
.·. i1 (peak) = 2 A.
Note — You can test that the k value obtained from setting d|Zin |/dt = 0
leads to a minimum by noting 0 ≤ k ≤ 1. If k = 1,
Zin = 392 − j56 = 395.98/ − 8.13◦ Ω.
Thus,
|Zin |k=1 > |Zin |k=√0.125 .
If k = 0,
Zin = 200 + j200 = 282.84/45◦ Ω.
Thus,
|Zin |k=0 > |Zin |k=√0.125 .
jωL2 = j500 Ω
ωM = 270 Ω
2
270
Zr = [800 − j600] = 58.32 − j43.74 Ω
1000
Problems 9–51
k 2 ω 2 L1 L2 (ωL2 + ωLL )
Xab = ωL1 − 2
R22 + (ωL2 + ωLL )2
k 2 ωL2 (ωL2 + ωLL )
(
= ωL1 1 − 2
}
R22 + (ωL2 + ωLL )2
2
R22 + (ωL2 + ωLL )2 < k 2 ωL2 (ωL2 + ωLL ),
or
2
R22 + (ωL2 + ωLL )2 − k 2 ωL2 (ωL2 + ωLL ) < 0,
which reduces to
2
R22 + ω 2 L22 (1 − k 2 ) + ωL2 ωLL (2 − k 2 ) + ω 2 L2L < 0.
P 9.80 [a]
Vab V1 + V 2
Zab = = ;
I1 I1
V1 V2 N2
= , V2 = V1 ;
N1 N2 N1
N1
N1 I1 = N2 I2 , I2 = I1 ;
N2
N1
V2 = (I1 + I2 )ZL = I1 1+ ZL ;
N2
9–52 CHAPTER 9. Sinusoidal Steady State Analysis
2
N1 N1
V1 + V2 = + 1 V2 = 1 + ZL I1 ;
N2 N2
(1 + N1 /N2 )2 ZL I1
.·. Zab = .
I1
2
N1
Zab = 1 + ZL .
N2
[b] Assume dot on N2 is moved to the lower terminal, then
V1 −V2 −N1
= , V1 = V2 ;
N1 N2 N2
−N1
N1 I1 = −N2 I2 , I2 = I1 .
N2
As in part [a]
V 1 + V2
V2 = (I2 + I1 )ZL and Zab = ;
I1
(1 − N1 /N2 )V2 (1 − N1 /N2 )(1 − N1 /N2 )ZL I1
Zab = = ;
I1 I1
Zab = [1 − (N1 /N2 )]2 ZL .
P 9.81 [a]
N1
N1 I1 = N2 I2 , I2 = I1 ;
N2
Vab V2 V2
Zab = = = ;
I1 + I2 I1 + I2 (1 + N1 /N2 )I1
V1 N1 N1
= , V1 = V2 ;
V2 N2 N2
N1
V1 + V2 = ZL I1 = + 1 V2 ;
N2
I1 ZL
Zab = ;
(N1 /N2 + 1)(1 + N1 /N2 )I1
Problems 9–53
ZL
.·. Zab = .
[1 + (N1 /N2 )]2
[b] Assume dot on the N2 coil is moved to the lower terminal. Then
N1 N1
V1 = − V2 and I2 = − I1 .
N2 N2
As before
V2
Zab = and V1 + V2 = ZL I1 ;
I1 + I2
V2 ZL I1
.·. Zab = = .
(1 − N1 /N2 )I1 [1 − (N1 /N2 )]2 I1
ZL
Zab = .
[1 − (N1 /N2 )]2
P 9.82
V3
ZL = ;
I3
V2 −V3
= ; 1I2 = −20I3 ;
1 20
V1 V2
= ; 50I1 = 1I2 ;
50 1
V1
Zab = .
I1
Substituting,
V1 50V2 502 V2
Zab = = =
I1 I2 /50 I2
Vm Vm
Vo = − IRx ; I= .
2 Rx − jXC
240 240
P 9.84 [a] I = + = (10 − j7.5) A
24 j32
Vs = 240/0◦ + (0.1 + j0.8)(10 − j7.5) = 247 + j7.25 = 247.11/1.68◦ V
[b] Use the capacitor to eliminate the j component of I, therefore
240
Ic = j7.5 A, Zc = = −j32 Ω
j7.5
Vs = 240 + (0.1 + j0.8)10 = 241 + j8 = 241.13/1.90◦ V
[c] Let Ic denote the magnitude of the current in the capacitor branch. Then
I = (10 − j7.5 + jIc ) = 10 + j(Ic − 7.5) A
It follows that
240 cos α = (247 − 0.8Ic ) and 240 sin α = (7.25 + 0.1Ic )
Now square each term and then add to generate the quadratic equation
Ic2 − 605.77Ic + 5325.48 = 0; Ic = 302.88 ± 293.96
Problems 9–55
Therefore
Ic = 8.92 A (smallest value) and Zc = 240/j8.92 = −j26.90 Ω.
Therefore, the capacitive reactance is −26.90 Ω.
P 9.85 [a]
120 120
I` = + = 16 − j10 A;
7.5 j12
V` = (0.15 + j6)(16 − j10) = 62.4 + j94.5 = 113.24/56.52◦ V(rms);
Vs = 120/0◦ + V` = 205.43/27.39◦ V.
[b]
120 120
[c] I` = + = 48 − j30 A;
2.5 j4
V` = (0.15 + j6)(48 − j30) = 339.73/56.56◦ ;
Vs = 120 + V` = 418.02/42.7◦ .
Vs = 120 + V` = 297.23/100.23◦ .
P 9.86 [a] Let N1 = primary winding turns and 2N2 = secondary winding turns.
Then
14,000 250 N2 1
= ; .· . = = a.
N1 2N2 N1 112
In part c),
IP = 2aIa ;
2N2 Ia 1
.·. IP = = Ia
N1 56
1
= (31.656 − j0.16);
56
In part d),
IP N1 = I1 N2 + I2 N2 ;
N2
.·. IP = (I1 + I2 )
N1
1
= (34.19 − j0.182 + 31.396 − j0.164)
112
1
= (65.586 − j0.346);
112
[b] Yes, because the neutral conductor carries non-zero current whenever the
load is not balanced.
Solving,
Ia = 24/0◦ A; Ib = 21.96/0◦ A; Ic = 19.40/0◦ A.
The branch currents are:
I1 = Ia = 24/0◦ A;
I2 = Ib − Ia = 2.04/180◦ A;
I3 = Ib = 21.96/0◦ A;
I4 = Ic = 19.40/0◦ A;
I5 = Ia − Ic = 4.6/0◦ A;
I6 = Ib − Ic = 2.55/0◦ A.
[b] Let N1 be the number of turns on the primary winding; because the
secondary winding is center-tapped, let 2N2 be the total turns on the
secondary. Therefore,
13,200 240 N2 1
= or = .
N1 2N2 N1 110
The ampere turn balance requires
N1 IP = N2 I1 + N2 I3 .
Therefore,
N2 1
IP = (I1 + I3 ) = (24 + 21.96) = 0.42/0◦ A.
N1 110
9–58 CHAPTER 9. Sinusoidal Steady State Analysis
P 9.88 [a]
Solving,
Ia = 24/0◦ A; Ib = 24/0◦ A; Ic = 19.2/0◦ A;
.·. I2 = Ib − Ia = 0 A.
N2 N2
[b] IP = (I1 + I3 ) = (Ia + Ib )
N1 N1
1
= (24 + 24) = 0.436/0◦ A.
110
[c] Yes; when the two 120 V loads are equal, there is no current in the
“neutral” line, so no power is lost to this line. Since you pay for power,
the cost is lower when the loads are equal.
P 9.89 [a]
.·. I1 = I2 so In = I2 − I1 = 0 A.
[c]
0 = −440Ia + 448Ib .
Solving,
Ia = 31.656207 − j0.160343 A;
Ib = 31.090917 − j0.157479 A;
I = Ia − Ib = 0.56529 − j0.002864 A;
[d]
Solving,
Ix = 34.19 − j0.182 A;
Iy = 31.396 − j0.164 A;
Iz = 31.085 − j0.163 A;
[e] Because an open neutral can result in severely unbalanced voltages across
the 125 V loads.
P 9.90 No, the motor current drops to 5 A, well below its normal running value of
22.86 A.