Module-8: Neural Networks, Computer Vision and Deep Learning
Deep Learning:Neural Networks.
   • History of Neural networks and Deep Learning.                     25 mins
   • How Biological Neurons work?                                      8 mins
   • Growth of biological neural networks                              17 mins
   • Diagrammatic representation: Logistic Regression and Perceptron   17 mins
   • Multi-Layered Perceptron (MLP).                                   23 mins
   • Notation                                                          18 mins
   • Training a single-neuron model.                                   28 mins
   • Training an MLP: Chain Rule                                       40 mins
   • Training an MLP:Memoization                                       14 mins
   • Backpropagation.                                                  26 mins
   • Activation functions                                              17 mins
   • Vanishing Gradient problem.                                       23 mins
   • Bias-Variance tradeoff.                                           10 mins
   • Decision surfaces: Playground                                     15 mins
Deep Learning: Deep Multi-layer perceptrons
   • Deep Multi-layer perceptrons:1980s to 2010s                       16 mins
   • Dropout layers & Regularization.                                  21 mins
   • Rectified Linear Units (ReLU).                                    28 mins
   • Weight initialization.                                            24 mins
   • Batch Normalization.                                              21 mins
   • Optimizers:Hill-descent analogy in 2D                             19 mins
   • Optimizers:Hill descent in 3D and contours.                       13 mins
   • SGD Recap                                                         18 mins
   • Batch SGD with momentum.                                          25 mins
   • Nesterov Accelerated Gradient (NAG)                               8 mins
   • Optimizers:AdaGrad                                                15 mins
   • Optimizers : Adadelta andRMSProp                                  10 mins
   • Adam                                                              11 mins
   • Which algorithm to choose when?                                   5 mins
   • Gradient Checking and clipping                                    10 mins
   • Softmax and Cross-entropy for multi-class classification.         25 mins
   • How to train a Deep MLP?                                          8 mins
   • Auto Encoders.                                                    27 mins
   • Word2Vec :CBOW                                                    19 mins
   • Word2Vec: Skip-gram                                               14 mins
   • Word2Vec :Algorithmic Optimizations.                              12mins
Deep Learning: Tensorflow and Keras.
   • Tensorflow and Keras overview                                     23 mins
   • GPU vs CPU for Deep Learning.                                     23 mins
   • Google Colaboratory.                                              5 mins
   • Install TensorFlow                                                6 mins
   • Online documentation and tutorials                                6 mins
   • Softmax Classifier on MNIST dataset                               32 mins
   • MLP: Initialization                                               11 mins
   • Model 1: Sigmoid activation                                       22 mins
   • Model 2: ReLU activation.                                         6 mins
   • Model 3: Batch Normalization.                                     8 mins
   •   Model 4 : Dropout.                                           5mins
   •   MNIST classification in Keras.                               18mins
   •   Hyperparameter tuning in Keras.                              11 mins
Deep Learning: Convolutional Neural Nets.
   • Biological inspiration: Visual Cortex                          18 mins
   • Convolution:Edge Detection on images.                          28 mins
   • Convolution:Padding and strides                                19 mins
   • Convolution over RGB images.                                   11 mins
   • Convolutional layer.                                           23 mins
   • Max-pooling.                                                   12 mins
   • CNN Training: Optimization                                     9 mins
   • Receptive Fields and Effective Receptive Fields                8 mins
   • Example CNN: LeNet [1998]                                      10 mins
   • ImageNet dataset.                                              6 mins
   • Data Augmentation.                                             8 mins
   • Convolution Layers in Keras                                    17 mins
   • AlexNet                                                        13 mins
   • VGGNet                                                         11 mins
   • Residual Network.                                              22 mins
   • Inception Network.                                             19 mins
   • What is Transfer learning.                                     23 mins
   • Code example: Cats vs Dogs.                                    15 mins
   • Code Example: MNIST dataset.                                   6 mins
   • [Interview Question] How to build a face recognition system?   1 mins
Deep Learning: Long Short-term memory (LSTMs)
   • Why RNNs?                                                      23 mins
   • Recurrent Neural Network.                                      29 mins
   • Training RNNs: Backprop.                                       16 mins
   • Types of RNNs.                                                 14 mins
   • Need for LSTM/GRU.                                             10 mins
   • LSTM.                                                          35 mins
   • GRUs.                                                          7 mins
   • Deep RNN.                                                      7 mins
   • Bidirectional RNN.                                             12 mins
   • Code example : IMDB Sentiment classification                   33 mins
Deep Learning: Generative Adversarial Networks (GANs)
   • Live session on Generative Adversarial Networks (GAN)          124 mins
Encoder-Decoder Models
   • LIVE: Encoder-Decoder Models                                   82 mins
Attention Models in Deep Learning
   • Attention Models in Deep Learning                              84 mins
Deep Learning: Transformers and BERT
   • Transformers and BERT                                          112 mins
Deep Learning: Image Segmentation
   • Live session on Image Segmentation                             95 mins
Interview Questions on Deep Learning
   • Questions and Answers             30 mins
Deep Learning: Object Detection
   • Object Detection                  123 mins
   • Object Detection YOLO V3          103 mins
Module 8: Live Sessions