EXPERIMENT: 1
EXPERIMENT 1
clc
clear all
inputs = [0.5 0.5 0.5; 0.8 0.8 0.8; 0.6 0.7 0.8; 0.5 0.2 0.3; 0.2 0.3 0.4];
I=rand(3,500);
Y=3*I(1,:)+5*I(2,:).^2+2*I(3,:);
N=newff(I,Y,[3 2 1],{'logsig','tansig','purelin'},'trainlm');
N=init(N);
N.trainParam.epochs=500;
N.trainParam.goal=1e-10;
N.trainParam.show=1;
N=train(N,I,Y);
for a = 1:length(inputs)
Actual(a,1) = 3*inputs(a,1)+5*inputs(a,2).^2+2*inputs(a,3); %actual
ANN(a,1) = sim(N,[inputs(a,1);inputs(a,2);inputs(a,3)]); %ann
Error(a,1) = (Actual(a,1) - ANN(a,1))*100/Actual(a,1);
end
plot(Actual(:,1),ANN(:,1));
legend(['Actual v/s ANN']);
xlabel('Actual');
ylabel('ANN');
output = table(Actual,ANN,Error)
output =
Actual ANN Error
3.75 3.7481 0.050161
7.2 7.2022 -0.030795
5.85 5.8508 -0.014032
2.3 2.3016 -0.071527
1.85 1.8509 -0.050353