0% found this document useful (0 votes)
45 views11 pages

Wildt 2018

The document outlines the problems for the József Wildt International Mathematical Competition, Edition XXVIII, held in 2018. It includes a series of mathematical problems ranging from matrix theory to inequalities and sequences, each requiring detailed proofs or calculations. The problems are attributed to various authors and cover a wide range of mathematical topics and techniques.

Uploaded by

Tumpa Mitra
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
45 views11 pages

Wildt 2018

The document outlines the problems for the József Wildt International Mathematical Competition, Edition XXVIII, held in 2018. It includes a series of mathematical problems ranging from matrix theory to inequalities and sequences, each requiring detailed proofs or calculations. The problems are attributed to various authors and cover a wide range of mathematical topics and techniques.

Uploaded by

Tumpa Mitra
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 11

József Wildt International Mathematical Competition

The Edition XXVIIIth , 2018 1

The solution of the problems W.1 - W.60 must be mailed before 26. October 2018, to Mihály Bencze,
str. Hărmanului 6, 505600 Săcele - Négyfalu, Jud. Braşov, Romania, E-mail: benczemihaly@gmail.com;
benczemihaly@yahoo.com

W1. We consider a prime number n ≥ 3, two matrices A, B ∈ Mn−1 (Q) , AB = BA, and

2 (n − 1) π 2 (n − 1) π
ε = cos + i sin
n n
such that

a). det (A − εB) = 0


b).
n−1
X
εn−ki det(1 − ε−k ) det(εk B − A) ≥ 0
k=0

for all i ∈ {0, 1, ..., n − 2}


c).

det B > 0
Show that whatever m ≥ 1 is the natural number and whatever the rational numbers b0 , b1 , ..., bm ,
Pm
white bk Ak B m−k 6= On then
k=0
m
!
X
det bk Ak B m−k 6= 0
k=0

Florin Stănescu

W2. Determine the biggest real number α, with the propoerty that for any function f : [0, 1] → [0, ∞)
which meets the requirements:
i). f it’s convex and f (0) = 0
ii). exist ε ∈ (0, 1) such that f it’s differentiable on [0, ε) and f ′ (0) 6= 0; inequality holds
   
Z1 Z1  
 x2   f (x) 
  dx ≥ (x + α) ·    dx
 Rx   R
1 2 
0 f (t) dt 0 f (t) dt
0
0

Florin Stănescu

W3. Consider the complex numbers a, b, c, d, white module one, which have the following properties:
a).

arg a < arg b < arg c < arg d

2000 Mathematics Subject Classification. 11-06.


Key words and phrases. Contest.
b).
s
p 2
[(a − c) (b − d)]
2 |(b + ai) (c + bi) (d + i) (a + di)| − =4
abcd
Show that:
 
i + 4a2 i + 4b2 4
max 1− ; ≥√
i + 8a (b − d) i + 4b (a − c) 17
Note. If a = r (cos t + i sin t) , t ∈ [0, 2π) , then t = arg z.

Florin Stănescu

W4. Let (Fn )n≥0 and (Ln )n≥0 be the Fibonacci and the Lucas sequence, respectively. Compute the
following limits:
a).
 p p √
lim 2n+2 (2n + 1)!!Fn+1 − 2n (2n − 1)!!Fn n
n→∞

b).
 p p √
2n+2 2n
lim (2n + 1)!!Ln+1 − (2n − 1)!!Ln n
n→∞

D.M. Bătineţu-Giurgiu and Neculai Stanciu

W5. Show that in any triangle ABC (with usual notations) holds the following inequalites:
a).
2 
s2 + r2 + 4Rr ≥ 8r (4R + r) s2 − r2 − 4Rr
b).
2  
s2 + r2 − 8Rr ≥ 8 8R2 + r2 − s2 s2 − 4R (R + r)

D.M. Bătineţu-Giurgiu and Neculai Stanciu


P
n P
n
W6. For n ∈ N ∗ − {1} , xk ∈ R+

, (∀) k = 1, n, Xn (t) = xtk , t ∈ R, Xn (1) = x k = Xn ,
k=1 k=1
m ∈ [1, ∞) show that
n
X  (n − 1) nm
xk Xn (−m) − x−m
k ≥
k=1
Xnm−1

D.M. Bătineţu-Giurgiu and Neculai Stanciu

W7. Find the sum


+∞
X n!
n=0
1 × 3 × ... × (2n + 1)

Moubinool Omarjee

W8. Consider the real √


sequence a0 = 0, a1 = 1, a2n = an , a2n+1 = an + an+1 . Prove that ∀n ∈ N,
an n 1+ 5
2 ≤ ϕ where ϕ = 2 .

Moubinool Omarjee
W9. Find an example of field K, an integer d ≥ 1, a infinite subgroup G of GLd (K) such that there
exist N ≥ 1, that verify ∀g ∈ G, g N = Id .

Moubinool Omarjee
W10. Let a > 0 be a real number. Find the value of the sum
X n3 an
(n − 1)!
n≥1

(Here, 0! = 1! = 1).

José Luis Díaz-Barrero


W11. Let a ≥ 1 be an integer. Calculate
s   s  !
(n + 1)a + 1 na + 1
lim n+1
Γ n
− Γ ,
n→∞ a a

where Γ is the Euler gamma function.

José Luis Díaz-Barrero


W12. Let A1 , A2 , · · · , An ∈ M2 (C), (n ≥ 2) be the solutions of the equation
 
n 2 3
X = .
4 6
n
X
Prove that T r(Ak ) = 0.
k=1

José Luis Díaz-Barrero


W13. Find in closed form the value of
X∞ ∞ ∞ X∞
(−1)n X (−1)k X (−1)n
+
n=3
2n − 3 2k − 3 n=0 (2k − 1)(2n + 2k + 1)
k=n+1 k=1

Paolo Perfetti
W14. Let a, b, c ≥ 0 and a + b + c = 1. Prove that
p p p  
3 3 3 1
4 + 17a2 b + 4 + 17b2 c + 4 + 17c2 a + 10 − abc ≥5
27
Paolo Perfetti
W15. Evaluate

X Γ( k2 + 1)
(−1)k
k=0
Γ( k+3
2 )

Paolo Perfetti
W16. Let n ∈ N, n ≥ 2 and the numbers ai , bi ∈ R, bi > 0 where i ∈ {1, 2, ..., n} . Prove that
 2 
2 a1 a22 a2n 2
(b1 + b2 + ... + bn ) + 2 + ... + 2 ≥ (a1 + a2 + ... + an ) +
b21 b2 bn
q
2
+n2 (n − 1)
n
(a1 a2 ...an )

Ovidiu T. Pop

W17. Prove that

z z
+a· ≤ 2, ∀z ∈ C ∗
z z
where a ∈ {−1, 1}.

Ovidiu T. Pop

W18. Let a, b, c be nonnegative real numbers such that ab + bc + ca = 3α2 , α ≥ 0. Find the minimum of

(1 + a2 )(1 + b2 )(1 + c2 )

and the values (a, b, c) where the minimum is attained.

Paolo Perfetti

W19. 1). Prove that the function f : (0, +∞) → R, where

f (x) = ex + ln x
is injective
2). Solve the equation

2x √
e2x + ex ln = e
1 − 2x

Ionel Tudor

W20. Let f : [0, 1] → [0, ∞) be a convex and integrable function, with f (0) = 0. Show that
a).

Z1 Z1
2n 1
x f (x)dx ≥ f (x)dx
n+1
0 0

b).

Z1
1
x2018 ln(1 + x2 )dx >
4040
0

Mihaela Berindeanu

W21. Let G (n, m) be the 1-graphs with n vertices and m edges. Draw these graphs and describe them
about their planarity and convexity, if they have the next characteristic polynomial:

P (λ) = λ4 − 3λ2 + 1.
Find Spec (G) and study if these graphs are cospectral.

Laurenţiu Modan
W22. Let (xn )n be the recurrent sequence:
xn 1
xn+1 = 1 + , n ≥ 0, x0 =
2 2
If we consider the recurent sequece yn = 2 − xn , n ≥ n0 , study the convergence of the series:
X
yn
n≥0

and in the convergence case, compute its sum.

Laurenţiu Modan
   
3 = 4 in (Zn , ·) and ord b
W23. Find the smallest natural number n ≥ 2, so that ord b 3 = 5 in
(Zn , +) . Let P ∈ Zn [x] be the polynomial:

P (x) = b
4x4 − x3 + b
6x2 − b
9
Find the decompsition of P in irreductible factors.

Laurenţiu Modan
W24. Prove that the inequality

L61 L62
√ + 4 √ + ···
(L41+ + L2 )( 2L1 + L2 ) (L2 + L2 L3 + L43 )( 2L2 + L3 )
L21 L22 4 2 2

L6n−1 L6n
+ 4 √ + √
(Ln−1 + L2n−1 L2n + L4n )( 2Ln−1 + Ln ) (L4n + L2n L21 + L41 )( 2Ln + L1 )

2−1
≥ (Ln+2 − 1) .
3
Ángel Plaza
W25. Let a, b, c be non negative integer numbers such that a + b = c. Prove that

 a n  n X[ n2 ]      i
b n−i n−i−1 ab
+ = + − 2 .
c c i=0
i i−1 c

Ángel Plaza
W26. Let x, y, z be positive real numbers, and n and m integers. Find the maximal value of the
expression
x + ny y + nz
+ +
(m + 1)x + (n + m)y + mz (m + 1)y + (n + m)z + mx
z + nx
+ .
(m + 1)z + (n + m)x + my

Ángel Plaza
W27. If a1 , a2 , ..., an ≥ e, with the notations:
v
n u n
1X uY n
An := ak , Gn := t
n
ak , Hn := P
n
n 1
k=1 k=1
ak
k=1

prove that:
AnGn Hn ≤ GnAn Hn ≤ HnAn Gn

Dorin Mărghidanu
W28. If a1 , a2 , ..., an > 0, with the notations:
n
1X
An [a1 , a2 , ..., an ] := ak , Gn [a1 , a2 , ..., an ] :=
n
k=1
v
u n
uY n
= t
n
ak , Hn [a1 , a2 , ..., an ] := P
n
1
k=1
ak
k=1

prove that:
a).
An [a1 ,a2 ,...,an ]
(An [a1 , a2 , ..., an ]) ≤ Gn [aa1 1 , aa2 2 , ..., aann ] ;
b).
h i 1
1/a 1/a
Gn a1 1 , a2 2 , ..., a1/a
n
n
≤ (Hn [a1 , a2 , ..., an ]) H[a1 ,a2 ,...,an ]

Dorin Mărghidanu
W29. Let u : R → R be a continuos function and f : (0, ∞) → (0, ∞) be a solution of differential
R x
equation y ′ (x) − y (x) − u (x) = 0 for any x ∈ (0, ∞). Find (exe+fu(x)
(x))2
dx.

D.M. Bătineţu-Giurgiu and Neculai Stanciu


W30. If xk > 0, k = 1, 2, ..., n, then
v
n n n u n
X X X uX
3t
x2k x4k ≤ x n
k x6 k
k=1 k=1 k=1 k=1

Li Yin
W31. For all n ∈ N, then
 n
ln n
Wn ∼ 1− (2.1)
2n
where Wn := (2n−1)!!
(2n)!! is Wallis product. First of all, we prove the following Lemma.
Lemma. Let an > 0, an → 0 and
 
an
lim n −1 =α (2.2)
n→∞ an+1
Then
√ n
lim (1 − n
an ) =α (2.3)
n→∞ ln n
Li Yin
W32. If x0 = 1 and

x3n+1 + 1 = (xn + 1)3


for all n ≥ 0, then [xn ] = n for all n ≥ 1, when [·] denote the integer part.

Tibor Jakab

W33. Prove that if m, n ∈ N ∗ then:


 π  π 
Z2 Z2  n+m
 n  m  2
 sin xdx  cos xdx  ≥
π
0 0

Daniel Sitaru

W34. Let be
2kπ 2kπ
εk = cos + i sin ; k ∈ 1, 2n; n ∈ N ∗ .
2n + 1 2n + 1
Prove that if |x| < 1; |y| < 1 then:
2n
Y
(x − εi ) (y − εi ) < 4n (n + 1)
i=1

Daniel Sitaru

W35. Compute

n Z1
1X x sin πx
L = lim dx
n→∞ n x + (1 − x) k 1−2x
k=1 0

Daniel Sitaru

W36. Prove that if a, b, c ∈ R; a2 + b2 + c2 6= 0 then:


2 2 2 2
(ab + bc + ca) (b − a) (c − a) (c − b) 
6 6 6
≤ 2 a 4 + b4 + c 4 − a 2 b2 − b 2 c 2 − a 2 c 2
a +b +c
Daniel Sitaru

W37. If ABCD its an inscriptible quadrilateral: AB = a, BC = b, CD = c, DA = d, then


 
a+b+c+d 1 1
√ >2 √ +√
abcd ab + cd ad + bc
Daniel Sitaru
W38. Let x, y, z > 0, k > 0 such that

x2 + y 2 + z 2 + xyz = 4
Then
1 1 1 k
k + k + k < 2−k + 21− 2
(x + 2) 2
(y + 2) 2
(z + 2) 2

Marius Drăgan
W39. Compute
n−1
X  
2kπ
cos3 x + , n ∈ N∗
n
k=0

Liviu Bordianu

W40. Let x1 , x2 , y1 , y2 , z1 , z2 > 0. Then


2  
(x1 + x2 ) x21 x2
≤ max , 2
(y1 + y2 ) (z1 + z2 ) y 1 z1 y 2 z2

Marius Drăgan and Sorin Rădulescu

W41. Let A, B be two square matrices from C, a, b, c, d integers such that a < b, q the quotient of
dividing b by a, such that cq 6= d and Aa B c = Ab B d = In . Then there is a strictly integer number û
such that B u = In .

Mihály Bencze and Marius Drăgan

W42. Let be n ≥ 2, n ∈ N and x1 , x2 , ..., xn > 0. Then


 n
1 x1 + x2 + ... + xn

x1 x2 ...xn n
 
1 xi1 + xi2 + ...xik
≥ max
1≤i1 <i2 <...<ik ≤n xi1 xi2 ...xik k

Mihály Bencze and Marius Drăgan



W43. Letqp1 , p2 , p3 be positive real numbers and the functions f, g : [0, +∞) → R, f (x) = [ x] ,
2
g (x) = x − [x] . Then is true the inequality:

g (p1 ) · f (p2 ) f (p3 ) + f (p1 ) g (p2 ) f (p3 ) + f (p2 ) f (p1 ) g (p3 ) ≤

≤ f (p1 p2 p3 ) + g (p1 ) g (p2 ) g (p3 )

Mihály Bencze and Marius Drăgan

W44. Let x, y, z > 0 and α > 9 such that


 
1 1 1
(x + y + z) + + =α
x y z
Then
 
5 5 5
 1 1 1
x +y +z + 5+ 5 ≥
x5 y z
1 
≥ α5 − 25α4 + 230α3 − 950α2 + 1705α − 945
16
Marian Cucoaneş and Marius Drăgan

W45. Let O an interior point of ABC triangle and {M } = AO ∩ BC, {N } = BO ∩ AC,


{P } = CO ∩ AB. We denote S1 = σ [BOM ] , S2 = σ [M OC] , S3 = σ [N OC] , S4 = σ [AON ] ,
S5 = σ [AOP ] , S6 = σ [BOP ] such that S5 ≤ S3 . Then
2S1 + 2S5 ≤ 3 |S1 − S5 | + S2 + S3 + S4 + S6

Marian Cucoaneş and Marius Drăgan

W46. Compute
π    
2π 4π
cotn + cotn + cotn , n∈N
7 7 7

Marian Cucoaneş and Marius Drăgan

W47. Let ABC be an acute triangle, denote A1 , B1 , C1 the midpoints of sides BC, CA, AB. The lines
OA1 , OB1 , OC1 intersect the circumcircle in points A2 , B2 , C2 . Denote x = A1 A2 , y = B1 B2 , z = C1 C2 .
prove that
1).

x + y + z ≥ 3r
2).

(R − x)(R − y)(R − z) = R3 cos A cos B cos C

Nicuşor Minculete

W48. Let be f : [0, 1] → (0, +∞) a continuously function. Prove that if exist α > 0 for which

Z1 Z1
α n 1
x f (x)dx ≥ ≥ f n+1 (x)dx
(n + 1)α + 1
0 0

where n ∈ N then α is unique.

Mihály Bencze

W49. If xk > 0 (k = 1, 2, ..., n), then


v
n u n
X uY X √ √
xk − n t
n
xk ≤ ( x i − x j )2
k=1 k=1 1≤i<j≤n

Mihály Bencze

W50. Compute
π
Z2
(x3 sin x + λ cos x)dx
√ √
5 + x3 cos x + 5 + x6 cos2 x
−π
2

Mihály Bencze

W51. Prove that


" n
#
X 1
√ √ =n
k=1
k 4 + 2k 3 + 2k 2 + k + 1 − k 4 + 2k 3 − k + 1
where [·] denote the integer part.

Mihály Bencze
W52. Let A1 , A2 , ..., An be a convex polygon. Prove that
n
X X n
1 1
≥ π+A
sin Ak sin n−1k
k=1 k=1

Mihály Bencze
W53. Let a, b ∈ {2, 3, 4, 5, 6, 7, 8, 9} and m ∈ N . Prove that exist n ∈ N such that the first digit of an
are bm .

Mihály Bencze
W54. For all invertable matrices A, B ∈ M2 (C) holds
1).

2T r(AB) + T r(A−1 B)detA + T r(B −1 A)detB = 2T r(A)T r(B)


2).

T r(ABA) + T r(BAB) + T r(A)detB + T r(B)detA = (T r(A) + T r(B))T r(AB)

Mihály Bencze
W55. If a ∈ N ∗ , (a, p) = 1 where p is a prime, then
n 
Y 
k−1
ap (p−1)
−1
k=1
n(n+1)
is divisible by p 2 .

Mihály Bencze
W56. In all tetrahedron ABCD holds:
1).
1 2 1 1 2 1 1
+ + + + + ≤ 2
ha hb ha hc ha hd hb hc hb hd hc hd 2r
2).
1 2 1 1 2 1 2
+ + + + + ≤ 2
ra rb ra rc ra rd rb rc rb rd rc rd r
Mihály Bencze
W57. Prove that
π
Z2 Y
n
 π
sin2k+1 x + cos2k+1 x dx ≥ √  ; n ∈ N∗
2 2 n2
0 k=1

Daniel Sitaru
W58. Let fn be n − th Fibonacci number defined by recurrence

fn+1 − fn − fn−1 = 0, n ∈ N
and initial conditions f0 =
 0, f1 = 1.
Prove that 5n2 + 3n − 2 fn − 6nfn+1 is divisible by 50 for any n ∈ N

Arkady Alt
W59. Let E be a Inner Product Space with dot product − · − and F be proper nonzero
subspace. Let P : E −→ E be orthogonal projection E on F.
a). Prove that for any x, y ∈ E, holds inequality

|x · y − x·P (y) − y·P (x)| ≤ kxk kyk


b). Determine all cases when equality occurs.

Arkady Alt

W60. Let x, a, h be arbitrary real numbers such that x > 0, a ≥ −1 , h > 0 and let sequence (xn )
n+a
defined recursively by x1 = x, xn+1 = xn , n ∈ N ∪ {0} .
n+a+h
P∞
Explore for which h the infinite sum xn converges and find it in the case of convergence.
n=1

Arkady Alt

You might also like