Wildt 2018
Wildt 2018
The solution of the problems W.1 - W.60 must be mailed before 26. October 2018, to Mihály Bencze,
str. Hărmanului 6, 505600 Săcele - Négyfalu, Jud. Braşov, Romania, E-mail: benczemihaly@gmail.com;
benczemihaly@yahoo.com
W1. We consider a prime number n ≥ 3, two matrices A, B ∈ Mn−1 (Q) , AB = BA, and
2 (n − 1) π 2 (n − 1) π
ε = cos + i sin
n n
such that
det B > 0
Show that whatever m ≥ 1 is the natural number and whatever the rational numbers b0 , b1 , ..., bm ,
Pm
white bk Ak B m−k 6= On then
k=0
m
!
X
det bk Ak B m−k 6= 0
k=0
Florin Stănescu
W2. Determine the biggest real number α, with the propoerty that for any function f : [0, 1] → [0, ∞)
which meets the requirements:
i). f it’s convex and f (0) = 0
ii). exist ε ∈ (0, 1) such that f it’s differentiable on [0, ε) and f ′ (0) 6= 0; inequality holds
Z1 Z1
x2 f (x)
dx ≥ (x + α) · dx
Rx R
1 2
0 f (t) dt 0 f (t) dt
0
0
Florin Stănescu
W3. Consider the complex numbers a, b, c, d, white module one, which have the following properties:
a).
Florin Stănescu
W4. Let (Fn )n≥0 and (Ln )n≥0 be the Fibonacci and the Lucas sequence, respectively. Compute the
following limits:
a).
p p √
lim 2n+2 (2n + 1)!!Fn+1 − 2n (2n − 1)!!Fn n
n→∞
b).
p p √
2n+2 2n
lim (2n + 1)!!Ln+1 − (2n − 1)!!Ln n
n→∞
W5. Show that in any triangle ABC (with usual notations) holds the following inequalites:
a).
2
s2 + r2 + 4Rr ≥ 8r (4R + r) s2 − r2 − 4Rr
b).
2
s2 + r2 − 8Rr ≥ 8 8R2 + r2 − s2 s2 − 4R (R + r)
Moubinool Omarjee
Moubinool Omarjee
W9. Find an example of field K, an integer d ≥ 1, a infinite subgroup G of GLd (K) such that there
exist N ≥ 1, that verify ∀g ∈ G, g N = Id .
Moubinool Omarjee
W10. Let a > 0 be a real number. Find the value of the sum
X n3 an
(n − 1)!
n≥1
(Here, 0! = 1! = 1).
Paolo Perfetti
W14. Let a, b, c ≥ 0 and a + b + c = 1. Prove that
p p p
3 3 3 1
4 + 17a2 b + 4 + 17b2 c + 4 + 17c2 a + 10 − abc ≥5
27
Paolo Perfetti
W15. Evaluate
∞
X Γ( k2 + 1)
(−1)k
k=0
Γ( k+3
2 )
Paolo Perfetti
W16. Let n ∈ N, n ≥ 2 and the numbers ai , bi ∈ R, bi > 0 where i ∈ {1, 2, ..., n} . Prove that
2
2 a1 a22 a2n 2
(b1 + b2 + ... + bn ) + 2 + ... + 2 ≥ (a1 + a2 + ... + an ) +
b21 b2 bn
q
2
+n2 (n − 1)
n
(a1 a2 ...an )
Ovidiu T. Pop
z z
+a· ≤ 2, ∀z ∈ C ∗
z z
where a ∈ {−1, 1}.
Ovidiu T. Pop
W18. Let a, b, c be nonnegative real numbers such that ab + bc + ca = 3α2 , α ≥ 0. Find the minimum of
(1 + a2 )(1 + b2 )(1 + c2 )
Paolo Perfetti
f (x) = ex + ln x
is injective
2). Solve the equation
2x √
e2x + ex ln = e
1 − 2x
Ionel Tudor
W20. Let f : [0, 1] → [0, ∞) be a convex and integrable function, with f (0) = 0. Show that
a).
Z1 Z1
2n 1
x f (x)dx ≥ f (x)dx
n+1
0 0
b).
Z1
1
x2018 ln(1 + x2 )dx >
4040
0
Mihaela Berindeanu
W21. Let G (n, m) be the 1-graphs with n vertices and m edges. Draw these graphs and describe them
about their planarity and convexity, if they have the next characteristic polynomial:
P (λ) = λ4 − 3λ2 + 1.
Find Spec (G) and study if these graphs are cospectral.
Laurenţiu Modan
W22. Let (xn )n be the recurrent sequence:
xn 1
xn+1 = 1 + , n ≥ 0, x0 =
2 2
If we consider the recurent sequece yn = 2 − xn , n ≥ n0 , study the convergence of the series:
X
yn
n≥0
Laurenţiu Modan
3 = 4 in (Zn , ·) and ord b
W23. Find the smallest natural number n ≥ 2, so that ord b 3 = 5 in
(Zn , +) . Let P ∈ Zn [x] be the polynomial:
P (x) = b
4x4 − x3 + b
6x2 − b
9
Find the decompsition of P in irreductible factors.
Laurenţiu Modan
W24. Prove that the inequality
L61 L62
√ + 4 √ + ···
(L41+ + L2 )( 2L1 + L2 ) (L2 + L2 L3 + L43 )( 2L2 + L3 )
L21 L22 4 2 2
L6n−1 L6n
+ 4 √ + √
(Ln−1 + L2n−1 L2n + L4n )( 2Ln−1 + Ln ) (L4n + L2n L21 + L41 )( 2Ln + L1 )
√
2−1
≥ (Ln+2 − 1) .
3
Ángel Plaza
W25. Let a, b, c be non negative integer numbers such that a + b = c. Prove that
a n n X[ n2 ] i
b n−i n−i−1 ab
+ = + − 2 .
c c i=0
i i−1 c
Ángel Plaza
W26. Let x, y, z be positive real numbers, and n and m integers. Find the maximal value of the
expression
x + ny y + nz
+ +
(m + 1)x + (n + m)y + mz (m + 1)y + (n + m)z + mx
z + nx
+ .
(m + 1)z + (n + m)x + my
Ángel Plaza
W27. If a1 , a2 , ..., an ≥ e, with the notations:
v
n u n
1X uY n
An := ak , Gn := t
n
ak , Hn := P
n
n 1
k=1 k=1
ak
k=1
prove that:
AnGn Hn ≤ GnAn Hn ≤ HnAn Gn
Dorin Mărghidanu
W28. If a1 , a2 , ..., an > 0, with the notations:
n
1X
An [a1 , a2 , ..., an ] := ak , Gn [a1 , a2 , ..., an ] :=
n
k=1
v
u n
uY n
= t
n
ak , Hn [a1 , a2 , ..., an ] := P
n
1
k=1
ak
k=1
prove that:
a).
An [a1 ,a2 ,...,an ]
(An [a1 , a2 , ..., an ]) ≤ Gn [aa1 1 , aa2 2 , ..., aann ] ;
b).
h i 1
1/a 1/a
Gn a1 1 , a2 2 , ..., a1/a
n
n
≤ (Hn [a1 , a2 , ..., an ]) H[a1 ,a2 ,...,an ]
Dorin Mărghidanu
W29. Let u : R → R be a continuos function and f : (0, ∞) → (0, ∞) be a solution of differential
R x
equation y ′ (x) − y (x) − u (x) = 0 for any x ∈ (0, ∞). Find (exe+fu(x)
(x))2
dx.
Li Yin
W31. For all n ∈ N, then
n
ln n
Wn ∼ 1− (2.1)
2n
where Wn := (2n−1)!!
(2n)!! is Wallis product. First of all, we prove the following Lemma.
Lemma. Let an > 0, an → 0 and
an
lim n −1 =α (2.2)
n→∞ an+1
Then
√ n
lim (1 − n
an ) =α (2.3)
n→∞ ln n
Li Yin
W32. If x0 = 1 and
Tibor Jakab
Daniel Sitaru
W34. Let be
2kπ 2kπ
εk = cos + i sin ; k ∈ 1, 2n; n ∈ N ∗ .
2n + 1 2n + 1
Prove that if |x| < 1; |y| < 1 then:
2n
Y
(x − εi ) (y − εi ) < 4n (n + 1)
i=1
Daniel Sitaru
W35. Compute
n Z1
1X x sin πx
L = lim dx
n→∞ n x + (1 − x) k 1−2x
k=1 0
Daniel Sitaru
x2 + y 2 + z 2 + xyz = 4
Then
1 1 1 k
k + k + k < 2−k + 21− 2
(x + 2) 2
(y + 2) 2
(z + 2) 2
Marius Drăgan
W39. Compute
n−1
X
2kπ
cos3 x + , n ∈ N∗
n
k=0
Liviu Bordianu
W41. Let A, B be two square matrices from C, a, b, c, d integers such that a < b, q the quotient of
dividing b by a, such that cq 6= d and Aa B c = Ab B d = In . Then there is a strictly integer number û
such that B u = In .
W46. Compute
π
2π 4π
cotn + cotn + cotn , n∈N
7 7 7
W47. Let ABC be an acute triangle, denote A1 , B1 , C1 the midpoints of sides BC, CA, AB. The lines
OA1 , OB1 , OC1 intersect the circumcircle in points A2 , B2 , C2 . Denote x = A1 A2 , y = B1 B2 , z = C1 C2 .
prove that
1).
x + y + z ≥ 3r
2).
Nicuşor Minculete
W48. Let be f : [0, 1] → (0, +∞) a continuously function. Prove that if exist α > 0 for which
Z1 Z1
α n 1
x f (x)dx ≥ ≥ f n+1 (x)dx
(n + 1)α + 1
0 0
Mihály Bencze
Mihály Bencze
W50. Compute
π
Z2
(x3 sin x + λ cos x)dx
√ √
5 + x3 cos x + 5 + x6 cos2 x
−π
2
Mihály Bencze
Mihály Bencze
W52. Let A1 , A2 , ..., An be a convex polygon. Prove that
n
X X n
1 1
≥ π+A
sin Ak sin n−1k
k=1 k=1
Mihály Bencze
W53. Let a, b ∈ {2, 3, 4, 5, 6, 7, 8, 9} and m ∈ N . Prove that exist n ∈ N such that the first digit of an
are bm .
Mihály Bencze
W54. For all invertable matrices A, B ∈ M2 (C) holds
1).
Mihály Bencze
W55. If a ∈ N ∗ , (a, p) = 1 where p is a prime, then
n
Y
k−1
ap (p−1)
−1
k=1
n(n+1)
is divisible by p 2 .
Mihály Bencze
W56. In all tetrahedron ABCD holds:
1).
1 2 1 1 2 1 1
+ + + + + ≤ 2
ha hb ha hc ha hd hb hc hb hd hc hd 2r
2).
1 2 1 1 2 1 2
+ + + + + ≤ 2
ra rb ra rc ra rd rb rc rb rd rc rd r
Mihály Bencze
W57. Prove that
π
Z2 Y
n
π
sin2k+1 x + cos2k+1 x dx ≥ √ ; n ∈ N∗
2 2 n2
0 k=1
Daniel Sitaru
W58. Let fn be n − th Fibonacci number defined by recurrence
fn+1 − fn − fn−1 = 0, n ∈ N
and initial conditions f0 =
0, f1 = 1.
Prove that 5n2 + 3n − 2 fn − 6nfn+1 is divisible by 50 for any n ∈ N
Arkady Alt
W59. Let E be a Inner Product Space with dot product − · − and F be proper nonzero
subspace. Let P : E −→ E be orthogonal projection E on F.
a). Prove that for any x, y ∈ E, holds inequality
Arkady Alt
W60. Let x, a, h be arbitrary real numbers such that x > 0, a ≥ −1 , h > 0 and let sequence (xn )
n+a
defined recursively by x1 = x, xn+1 = xn , n ∈ N ∪ {0} .
n+a+h
P∞
Explore for which h the infinite sum xn converges and find it in the case of convergence.
n=1
Arkady Alt