Itf Mcqs 2025
Itf Mcqs 2025
(b) - ~
3 1[
(a) - 11: (c) 3rr (d) 10
5 10 5
1
2. If sin- x > cos-1 x, then x should lie in the interval [CBSE 2021-22 (Term-1))
(a) ./1+?- X 1
(c) - (d)
/1-x2
x (b) /1 + x2 X X
. 1 [ cos ( -337!:
9. The value o f sm- - )] 1s
.
5
1[
(a) 3n: (b) -7rr (c) 10 (d) - TI
5 5 10
·
16. Simples t form of tan-1 (Ji+
J /+
cos x h- cos x )
, 1t < x < T37t 1s.
1 + cos x- 1- cosx
[CBSE Sample Paper 2021-22 (Te
Tnz-1)]
(a) E.. - .:!.
4 2 (b) 3; -½. (c) -2
X
(d) n-½
l7. The number of real solutions of the equation h + cos 2.x = fi. cos-I (cos x) in [ ~ , 1t] is
(a) 0 (b) 1 (c) 2 (d) oo
18. The value of cos-1 (2x2-1), Q ~ x ~ 1 is equal to
(a) 2 cos-1 x (b) 2 sin-1 x (c) 1t -2 cos-
1
x (d) 1t + 2 cos- 1 x
19. If cos ( sin-1 ; + cos-1 x) = O, then x is equal to
(a) .!_
5
(b) ~ (c) 0 (d) 1
5
20. Which of the followin g is the principal value branch of cosec- x? 1
(a) (-;,;) (b) (0, 1t) -g} (c) {- ; ,; } (d) [ 2-7t '27t l
-{O}
21. The domain of the function cos-1 (2.x-1) is
(a) [O, 1] (b) [- 1, 1] (c) (- 1, 1) (d) [O, 1t]
22. The domain of the function defined by f (x) = sin - l Jx -1 is
[NCERT Exemplar)
(a) [l, 2] (b) [- 1, 1] (c) [O, 1] (d) none of these
23. sin (tan-1 x), where Ix I < 1, is equal to [CBSE Sample Paper 2021-22 (Tenn-1))
X l l x
(a) Ji - x1- (b) /1 - xi (c) Ji + xi (d) [l+;i
(a) 1 1 1
(c) - (d) 4
3
Answers
1. (b) 2. (c) 3. (d) 4. (d) 5. (d) 6. (a) 7. (b)
8. (d) 9. (d) 10. (c) 11. (d) 12. (c) 13. (b) 14. (d)
15. (c) 16. (a) 17. (a) 18. (a) 19. (b) 20. (d) 21. (a)
22. (a) 23. (d) 24. (a)
1
As we know that sin-1x and cos- x exist for xe[-1, l].
xE(1,l)
⇒ ( 1, 1) C( ½,1)
:. Option (c) is correct.
3. We have, sm[;-sm-
1
(-½)]
• [ 1[ - ( -
3 - sin
. [
= sin IT . ( - 7[ ))]
. - I ( sm = sm 7t )]
6 3 6
. 7[ = 1
. [7[ + 7[1 =sm
=sin
3 6 2
: . Option (d) is correct.
4. Let sin- 1 x = 0, then sin 0 = x.
1 1
⇒ cosec0 = - ⇒ cosec 2 0 = -
X xi
. p l
⇒ sma= - = - --
h + x2/1
2
⇒ Sin (cot-IX) = sin(a) = l = (x 2 + 1r1/
/1 +xi
1 1
cos-1 a+ cos- p + cos- y = 3n
1 1
If and only if, cos- 1 a = cos- p = cos- y = n
⇒ cos n = a = p = y ⇒ - 1 = a = p= y
⇒ a = P=y= -1
a (P + y) + P(Y+a)+ y(a + P) = - 1(-1 - 1) -1(-1 - 1) -1(- 1 -1)
=2 + 2+2= 6
:. Option (c) is correc t.
. - I ( / 1 + COS= + /1 - COS
X-""""r== ==
X)
16 G1ven, tan ~ == COS X - / 1- COS X
. / 1+
r,;2 r,;2 . xl
x + v L. sm-
-v L. cos-
= tan - 1 2 2 h . 3rr
r,; x r,; . x , w ere rr < ., < 2
I - vL.cos - v 2sm
2 2
Y'
⇒ /2cos 2 x=.fi.x,xE[;,rc]c[O,rc]
⇒ .fj_ COS X = .fj_ X
⇒ COS X =X ( · .' X E [ ; , TC])
As in the given figure graph of y = x and y = cos x does not intersect in [; , rr.] so the number of
solutions is zero.
: . Option (a) is correct.
18. cos- 1 (2x 2 -l)
Put x=cosa ⇒ a=cos-1 x
cos-1(2x2-l) = cos-1 (2 cos 2 a- l) ⇒ cos (- f )S cos a S cos 0
1 1
= cos- (cos 2 a)= 2a = 2 cos- x rr
⇒ -
:. Option (a) is correct. 2 S a S0
. -1 3 -] ) ⇒ - rr S 2a S 0
19.
5 +cos X = 0
COS ( Stn
Assertion-Reason Questions
The following questions consist of two statements-Assertion(A) and Reaso11(R). Answer thes,
questions selecting the appropriate option given below:
(a) Both A and R are true and R is the correct explanation for A
(b) Both A and R are true but R is not tire correct explanation for A.
(c) A is true but R is false.
(d) A is false but R is true.
1. Assertion (A) : Domain offix)= sin-1 x + cos xis [-1, 1).
Reason (R) : Domain of a function is the set of all possible values for which function will b
defined.
2. Assertion (A) : Function f: R ➔ R given byf(.x) = sin x is not a bijection.
Reason (R) : A function f: A ➔ B is said to be bijection if it is one-one and onto.
3. Assertion (A) : Principal value of tan-1 (-/3) is - ; .
Reason (R) : tan- 1 : R ➔ (-f, ; )so for any x e R, tan- (x) represents an angle in (- ;, ; ) .
1
2 - cos- x + 2 cos- x
6. Let/(x) = sin- 1 x + 2 cos-1 x = 1 1
⇒ j(x) = + cos- 1 x
2
As O::; cos- 1 x :;; n
re 3rr
⇒ - <f(x) < -
2- - 2
⇒ Range of [;, s; ].
Here, Assertion (A) is true but Reason (R) is false.
:. Option (c) is correct.
9. Let cos-1 x = 0 ⇒ x = cos 0
⇒ 0 e [0, 1t] ⇒ 0 :,; 0 :,; 1t
⇒ 0:,; 92:,; 7t2
Case-based/Data-based Questions
Two men on either side of a temple 30 meters high observe its top at the angles of elevation a an
prespectively. (as shown in the figure above). The distance between the two men is 40/3 metn
and the distance between the first person A and the temple is 30/3 metres.
[CBSE Q11estio11 811111
j
(i) Find LCAB = a in tem,s of sin-1.
(ii) Find L CAB = a in tenns of cos-1.
(iii) (11) Find L BCJ\ =pin terms of tan-1.
OR
(iii) (I.,) Find the domain and range of cos-1 x.
Sol. We have, B
30 m
A C
30\IJm D 10\IJm
⇒ a=sin-1 ( ; )
./3
(i1) We have from (1) a = 30° ⇒ cos a =cos 30° = -
2
⇒ a= cos-1 ( ~ )
(iii) (11) In right t:.BCD, we have
BO
tanS= DC ⇒
.
tan a=_lQ_ = _l_ = ./3
10./3 ./3
⇒ S= tan-I ( ./3)
OR
1
(iii) (b) Let cos- x = y ⇒ x =cosy
-1 5 cosy 5 l ⇒ -1 5 x 5 1 ⇒ Domain = [-1, 1]
05 y5 1t ⇒ Range= [O, n].
½) = B ⇒
1
Sol. We have, tan-1 ( - = tan B
2
1
tan-
1
( ½) = C ⇒ - = tan C
3
Im c1 se T1 i9on0rnetr11.. Funct1011c; 57
(,) 11111 If I
I I J I ~} • l!,
(11) ,' 11•1 l'
.1 .I
I I J I _1 J 1/ l(l
I ,
(iii) (,1 ) ·: l,111 /I
..
') / li) ll (
2 )( ;l (1 (i
/(
:- II I (' II II l I ( I ) ,,
OR
(iii) (/•) · · l-'rll111 (i) nnd (II) Wl' lrnv1•
I J
:-1111 /I C
l:i ' . l ' llS
/ 10
ms II .- / 1- sln J II O ,/ 1- !.1
tJ 7r.
v :1
/ 25 ✓ I
5
= /§() = \ 50 ::, 2 a J2I
CONCEPTUAL QUESTIONS
I. \\' ri l,• lh,· pr indp .1' , .rhrl• of co-. (~ )+2sl1
1 '(~) . 1 ICBSE (F) 201
0....11 1. 1,111
1
1, co, '(-~) =1.111 '(1,111J) +cos· (cos(rr -; )) 1