# ANN
from sklearn.datasets import load_breast_cancer
cancer = load_breast_cancer()
cancer.keys()
dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names', 'filename',
'data_module'])
cancer['data'].shape
(569, 30)
import pandas as pd
df = pd.DataFrame(cancer['data'])
df
df1 = pd.DataFrame(cancer['target'])
df1
0 0
1 0
2 0
3 0
4 0
... ...
564 0
565 0
566 0
567 0
0
568 1
569 rows × 1 columns
df2 = pd.DataFrame([cancer])
df2
df3 = pd.DataFrame(cancer['target_names'])
df3
0
0 malignant
1 benign
df4 = pd.DataFrame(cancer['feature_names'])
df4
0 mean radius
1 mean texture
2 mean perimeter
3 mean area
4 mean smoothness
5 mean compactness
6 mean concavity
7 mean concave points
8 mean symmetry
9 mean fractal dimension
10 radius error
11 texture error
12 perimeter error
13 area error
0
14 smoothness error
15 compactness error
16 concavity error
17 concave points error
18 symmetry error
19 fractal dimension error
20 worst radius
21 worst texture
22 worst perimeter
23 worst area
24 worst smoothness
25 worst compactness
26 worst concavity
27 worst concave points
28 worst symmetry
29 worst fractal dimension
x = cancer['data']
y = cancer['target']
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x,y,test_size = 0.20)
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(x_train)
x_train = scaler.transform(x_train)
x_test = scaler.transform(x_test)
from sklearn.neural_network import MLPClassifier
mlp = MLPClassifier(hidden_layer_sizes=(20,20,20))
mlp.fit(x_train,y_train)
predictions = mlp.predict(x_test)
from sklearn.metrics import classification_report,confusion_matrix
print(confusion_matrix(y_test,predictions))
[[39 3]
[ 0 72]]
print(classification_report(y_test,predictions))