Ksfrdaia Pdñkao: Combined Mathematics
Ksfrdaia Pdñkao: Combined Mathematics
    ksfrdaIa pdñkao
     B.Sc(Engineering) University of Moratuwa
                                                        Paper II
( 01 )
  Solution
                         Velocity
                          ~
                                                                                                      o      m
                                                                                                   .c
                                                                                   da
                                             5
                                                                                          5
                                                                                 in
                                                                   5
                          V
                                   am
                                     d                                                                       V
                                            U                 2d                              3d
                                 ch
                                      t1                       t2                             t3                         t
                               sh
...................................................................................................................................... 15
                            iro
                                                                t1
Displacement at uniform retardation is =2 ( V + U ) = d
                          .n
                                        t3
Displacement at uniform acceleration =2 ( V + U ) = 3d                                                  5
           w
          w
                               t1 + t2 + t3 = 2d     2d     6d
                                             V+U   + U   + V+U                                                      5
Total time taken                 2d                        2d ( 5U + V ) hours
                              =U ( U+ V ) { 4U + ( U+V) } = U ( U+ V )                                              5
                                        6d                          hours
Time taken if no track repair is done = V
                                                     2d { V2 + 2UV + 3U2 }                                5
                                                 =         UV ( U + V )
                                                      2d ( V - U ) ( V + 3U ) hours
                                                 =               UV ( U + V )
                                                                                                              m
...................................................................................................................................... 25
                                                                                                    o
1(b)
                                                                                                 .c
                                                          
                                                                                   da
                                             A                  a
                                                                         (         B
                                                                                 in
                                     am
                                   ch
                                 sh
                                             D                                     C
                              iro
Velocity of H , W = v
           W,E =w
                            .n
                                                                                                 5
Vector addition       Vel . of H , E = v + w
                           w
Velocity triangles
           w
          w
P R
                                                                                        (                     (            S
                                      )                                                    
                                                                                        w             v
                                             v
                                                                       Q
                                                                                                                    10
                                                  {
                                                       PR =        v2 - w2 sin2  + w cos                       5
From the two velocity - triangles ,
                                                       SR =         v2 - w2 sin2  - w cos                       5
                                    a
Time from A to B                 = PR
                                                                                                             m
                                   a
Time from C to D                = SR
                                                                                                     o
                                                                                                  .c
       Their sum T1 = a ( SR + PR )
                         ( PR )( SR )
                                                                                   da
                                     2a . v2 - w2 sin2                                         5
                                                                                 in
                                =                                    hours
                                                 v -w
                                                  2       2
                                   am
...................................................................................................................................... 30
                                                                                         5
( Replacing  by -  ) = 2a v - w cos  = T
                                                  2      2       2
                               sh
                          2                      v2 - w2
                                                                               2
                            iro
                 5
Total time T = T1 + T2 = A ( v2 - w2 sin2  + v2 - w2 cos2  )                                                         5
where A is a constant = 2a / ( v - w ).
                          .n
2 2
....................................................................................................................................... 15
                         w
dT
                [
       - w2 sin  cos                             w2 sin  cos 
                                                                            ]
           w
d = A                   +
          v2 - w2 sin2                             v2 -w2 cos2 
          w
=
              Aw2 sin  cos 
      v2 - w2 sin2  v2 - w2 cos2 
                                                        [   v2 - w2 sin2 - v2 - w2 cos2                  ]
                                                                                 5
When 0 < <  ,                    dT > 0
            4                          d                               5
           (a)
                                                               V
                                                  m
                                                                                   F
                                      f                       M
                                                                                               05 marks for the FIGURE
                                                                                                     o        m
Acceleration of wedge M , T = F     , acceleration of m , M = f
                                                                                                  .c
Vector Addition => acceleration of m , T = ( F - f cos )  + f sin                                                  5
                                                                                   da
For the system ,                      m ( F - f cos ) - MF = 0                        10
                                                                                 in
                                      ( M + m ) F = mf cos 
                                   am
F m cos 
f = M + m = const ............... ( i )                                                 5
                                 ch
....................................................................................................................................... 25
                               sh
               M+m
                         w
             f ( M + m sin2 )
       =M+ m
           w
          ( M + m ) g sin 
       = M + m sin2 
          w
                                                                                       5
                                                                                                       5
This is the cons tan t retardation of m , relative to the wedge M
Using s = ut - 1 f t2 , for motion of the particle relative to wedge ,
               2
f ( M + m ) g sin 
............................................................................................................... 5 ................ 25 ..
                                            v               
                       1st collision                       
                                                                                  y
                                     2nd collision                  x             
                                                                    
               1st collision 
                                                                                                   5
                 Conservation of momentum :   av + bw = au
                Newton` s law of restitution :  w - v = eu
                                                                                                              m
                                                                                                   5
                   ( a - be ) u ............( i )                       5
                                                                                                      o
                v=     a+b
                                                                                                   .c
                    ( l + e ) au                                        5
                w=               ............ ( ii )
                                                                                    da
                       a+b
                                                                                  in
                                   am
      ( b - ce ) w
 x=                .............. ( iii ),
          b+c                                                   5
                                 ch
      ( l + e ) bw ................ ( iv )                      5
 y=       b+c
                               sh
                                     abu ( l + e )2                     ( l + e )2 u               5
from ( ii ) , ( iv ) ,         y = ( a + b )( b + c ) =
                                                                    ( )( )
                            iro
                                                                     1+b            1+c
                                                                       a              b
                          .n
.......................................................................................................................................
                                                                                                                                        35
                                           a            b
                         w
 Given v = 0 , x = 0                          =  e  =
                                          b             c                                      5
          w
                a : b : c : = e2 : e : 1
         w
                                1
 Initial KE           T0 =        au2
                                2
                                                            1
  Final KE ( retained in the system ) T =                     c y2
                                                            2                                  5
   T  c y
                  ( )
                          2
  T =a u
    0
T    c               ( l + e )4              1                                                5
T0 = a                                  =        e4 = e2
            ( )( )
              1+12 1+1 2
                    e            e
                                            e2
.............................. ..........................................................................................................15
  ksh; jYfhkau Tnj úIfhys olaIhl= lrkafkuq'                                                                   ksfrdaIa pdñkao
                                                                                                                                      
                                                                                                                                      05
( 03 )
  Solution                                                                            v
(i) R
 mg
                                                                                                              m
                                                                                                      5
                                                                                                     o
                                                                                              For the figure
                                                                                                  .c
                                                                        u
                                                                                    da
           Let m be the mass of the particle.
                                                                                  in
           Conservation of energy :
                                    am
           1 mv2 + mga cos  = 1 mu2 - mga .                                          15
           2                     2
                                  ch
           v2 = u2 - 2ga ( 1 + cos  ).                                                  5
                                sh
          v=           u2 - 2ga (1 + cos  ).                                           5
                             iro
....................................................................................................................................... 30
           For particle P
                           .n
             R + mg cos  = mv2                                                              10
                          w
                            a
           w
                                   u2                                                         5
                 R - mg cos  + m [a 2g ( 1 + cos  )]
          w
                                                                                             5
              = m [ ua - g ( 2 + 3 cos  )].
                      2
....................................................................................................................................... 20
3 ( ii ) The particle will leave the bowl at the edge , provided that R > 0 , when
            1
              ()
= cos-1 4 =  , an acute angle.
                                                                   5
                                                4
....................................................................................................................................... 10
3 ( iii ) When leaving the bowl at the edge where = , the speed V of the particle is given by
           V2 = u2 - 2ga 1 +      (       1
                                          4   )                                           5
             = u2 - 5ga .
                                                                                                              m
                       2
 In free motion under gravity
                                                                                                     o
        x - t . V cos                                                   5
                                                                                                  .c
         0 = t . V sin  - 1 gt2
                           2
                                                                                    da
                                                                          5
              2V sin 
                                                                                  in
           t=      g
                                    am
              2V 2
                                                                          5
           x = g sin  cos 
                                  ch
Particle will not fall back in to the bowl , provided that x > 2a sin  .                                        5
                                sh
                       ga
  i . e . V2 > cos                             5
                           .n
  u2 - 5 ga > 4 ga
                          w
         2
                  13 ga .                        5
  i . e . u2 >
           w
                    2
....................................................................................................................................... 40
          w
l l
                                                            4a     x T
                                                 T0
                                                                                                              m
                                                 Q
                                                                          mg
                                                                                                     o
                                                    4mg
                                                                                                  .c
                                                                                     da
T0 = 4 mg
                }     = mg
                                                                                   in
   =  4a
      l            l a
                                    am
         5                  5
At time t
                                  ch
    x   mg
               ( )
T= l = a x, x>0.
                                                                      5
                                sh
                                                       ..
                                   mg - T = mx
                             iro
                                                                      5
 mg -
      mg     ..
      a x = mx
                           .n
                          w
 d2 x g                                                              5
 dt 2    +   a (  x  - a  ) =   0  ,  x  >  0  .
           w
......................................................................................................................................... 25
          w
Given Solution
                                                             g
  x = a + b sin  t + c cos  t ...............( i ) , 2 = a .
  dx                                                      5
  dt = b  cos t - c sin  t
When t = 0 , x = 4a 5
                              dx = 0                             5
  When t = 0 ,
                              dt
                                                                  5
    0=b b=0.
....................................................................................................................................... 25
 When the string becomes slack x = 0 ,
                               0 = a + 3a cos  t                                             5
 cos  t = - 1
                                                                                                               m
                                                                                              5
                          3
                                                                                                      o
                                                                                                   .c
  Moving under SHM , time t1 at which the string becomes slack is given by
                                                                                     da
         1
   t1 =  (  -  ), where a is the acute angle cos-1 3 .                   ()  1                  5
                                                                                   in
......................................................................................................................................... 15
                                    am
Then , velocity of P , just before the string becomes slack is
 dx                                        1-1 =2 2
                                  ch
  dt = - c sin t 1
                       , where sin  t 1
                                         =   9   3
                                sh
                                                                                             5
   dx = - 3a . ( g / a ) . 2 2
                             3 = -2                     2ga = -V
                             iro
dt
                            5                        5
                           .n
........................................................................................................................................ 15
                          w
       V2 8ga
  h = 2g = 2g = 4a .                     5
          w
                         1              1                                          5
                       =  (  -  ) +  2 2
........................................................................................................................................ 10
                                                                                                              m
When t = 0 , X = 3a , X = 0
                                                      5
                                                                                                     o
 => A = 3a
                                                                                                  .c
 ( Amplitude of SHM ) .                                                            5
                                                                                     da
 When
  . the string becomes slack x = 0 , X = -a and
 X2 = 2 { 9a2 - ( -a )2 }                                                         5
    .      .
                                                                                   in
                                    am
   X = x = -a ( 2 2 ) = -V                                                        5
......................................................................................................................................... 20
                                  ch
     V2 8ga                                                                    5
 h = 2g = 2g = 4a . In
                             iro
....................................................................................................................................... 10
                          w
  Time taken by the particle in SHM ( using the circular are in the figure below )
           w
          w
        1                                                        5
   T1 =  (  - )
FIGURE : ( 05 )
      2 2ga                         a
  =     g   = 2 2                   g
                        1                   1                                        5
                          (    -)   +   ( 2     2  )
......................................................................................................................................... 20
 ( 05 )
                                                                                                              m
    Solution
                                                                               F
                                                                                                     o
            (a)
                                                    R
                                                                                                  .c
                                                               m
                                                                                    da
                                            w
                                                                                  in
                                        am
                                      ch
 Resolving horizontally
                                 iro
                                                                        5
   F cos  = R sin  ................( i )
                               .n
      Also , F = R ......................( ii )                       5
                              w
                                      w
      Dividing ( iv ) by ( iii )  =W + w sec                              5
          (W+w
            w         )   2
                              =
                                  1 + 2
                                    2
w -1 = 2
         =          w                  =               w
                                                                                            5
             ( W + w )2 - w2                    W ( W + 2w )
....................................................................................................................................... 40
  5 ( b)
                                                                   
                                                       a -b
A b B
                                                                                                                 m
                                                           R   x          x      R
                                                                                                        o
                                                                                                     .c
                                                                                       da
            2 R cos  = 2W ; R = W sec 
                                                                                     in
                                     am
               X = R sin 
                 = W tan 
                                   b
                                   ch
                        = W
                              ( a - b )2 - b2
                                 sh
                               Wb
                    =
                              iro
                           a(a-2b)
........................................................................................................................................
                                                                                                                                           20
                            .n
                           w
                                                       C
            w
                                                       S
           w
                                                           W
                                               S
                                                   X           X
                                     R1                                                          5
                                            W
                                                                              For the FIGURE
2R1 cos  = 3W 5
           tan  =              b
                          a ( a - 2b )
                             S                                           5
                         X + 2 = R1 sin 
                                                                                                              m
                         X = 3W tan  - W                   >0             5
                              2        2 3
                                                                                                     o
                                                                                                  .c
           tan  > 1
                  3 3
                                                                                   da
                b2       1                            5
                                                                                 in
           a - 2ab > 27
             2
                                   am
           a2 - 2ab < 27b2
                                                      5
           ( a - b )2 < 28b2
                                 ch
           a - b < 2 7b
                               sh
                                                       5
            a<b(1+2 7 )
........................................................................................................................................ 40
                            iro
 ( 06 )
    Solution
                          .n
                                                         A                                 B
            (a)                                                                    O
                                                                                     
                         w
                                              MC
           w
          w
                                                                          C
                                          D                                            X
                                                                   X
                                                                           Y Y
                                         Figure : ( 05 ) Marks
 Let ( X , Y ) be the components of the reaction at C parallel and perpendicular to the string ,
 respectively .
                                                                                                            m
                                                                                                                         5
...................................................................................................................................... 50
                                                                                                    o
6(b)                                                                                                                                 c
                                                                                                 .c
                                                                                da
                                W
                                                                             b
                                                                              in
                                                                                                                                 d
                            B
                                 am
                                    30 0
                         30 0
                               ch
                             sh
                             d
           c                                               30 0
                          iro
    30 0           D                         E                C               a
a A            b
                                                                         Stress diagram : ( 10 ) marks
                                                                         [ ( 05 ) for each triangle of forces]
                        .n
                       w
 From  abc ,            ab      bc          ca
                            0 =       0 =
                      sin 30   sin 45     sin 1050
        w
From  bdc ,             cb = bd      = dc .
                      sin 1050 sin 600 sin 150
          W 3                                                                        5  ,     5
=> bd =             ; Tension in DE .
        2 2 sin 750
                                                                                                                      a
                                     A
                                                                                                                        
                                    O1                           X
                                                                                                              m
                                      B
                                                                                                     o
                                                                                                  .c
                                                                                    da
                                                      Figure : ( 05 ) Marks                                           C
                                                                                  in
Height of the frustum h = a ( l -  ) cos , where a is the semi - vertical angle .
                                    am
                       = > a cot  = h                                        5
                                        l-
                                          a cot 
                                  ch
                                     =                1
                                                  ( l - 3) a3 cot                                            5
                                                3
                           .n
                                    =            h ( l +  + 2) a2
           w
                                                3
                                                                                                                                          20
.........................................................................................................................................
          w
              _
 The_distance x of the centre of mass , G , from the vertex O of the cone is given by
 M x = x .  ( x tan  )2 dx
                                                             5
          =   tan2 1 ( l - 4) a4 cot4 
                4
                                                                                              5
         =  1 ( l - 4) a4 cot2 
                4
              _ 3 ( l - 4)
        Hence x  .              a cot 
                4 ( l - 3)                                                               5
  ksh; jYfhkau Tnj úIfhys olaIhl= lrkafkuq'                                                                    ksfrdaIa pdñkao
                                                                                                                                      
                                                                                                                                      15
                                                            _
Distance of G from the centre O1 of the smaller face , O1G = x - a cot 
                                                               h
                                                                       {
                                                                    3 ( l - 4 )
                                                        = ( l -  ) 4 ( l - 3 ) -              }                            5
                                                                h . 3 ( l - 4 ) - 4( l - 3 )
                                                        =       4             (l-)
                                                                h .     3 - 4 4
                                                        =       4 ( l -  )2 ( l +  + 2)
                                                                                                                m
                                                                 h . 3 + 2 2                                                  5
                                                       =
                                                                                                        o
                                                                 4         l +  + 2
                                                                                                     .c
........................................................................................................................................ 25
 Letting 0+ , we get M = 1 a2 hp,
                                                                                     da
                                                                                  5
                                               3
                                                                                   in
                                    . and x = 3 h .                               5
                                    am
                                                      4
........................................................................................................................................ 10
                                  ch
   x~ =
          1 a2 hp . ( 1 +  2 ) - 1 a22 1 hp
          3                           3       2
                           .n
           h [ 4 ( 3 + 2 2 ) - 2 ]
                          w
        = 48                                                                                                      5
           w
               1 ( 2 +  2 )
               6
          w
        = h . ( 12 +  2 )
                                        2
                                                                                                                  5
            8 ( 2 +   )
........................................................................................................................................ 30
                     
 Suppose G1  V so that ~x = h => 12 +  2 = 8 +  2 => 2 = 4 => = 2 > 1 .
                                               2
 Therefore G1 and V cannot coincide .                                                        5
......................................................................................................................................
                                                                                                                                         05
  ksh; jYfhkau Tnj úIfhys olaIhl= lrkafkuq'                                                                      ksfrdaIa pdñkao
                                                                                                                                         
                                                                                                                                         16
 When suspended from a point D , the axis of symmetry of J is inclined at an angle  to the
vertical DG1 , given by                                                     D
               O2 C           a                                                 5
 tan =                =
              O2 G1          h-~x                                                                                             O2
                                                                                                                      p
                  a         = 8a . ( 2 + 2  2)
                                                                        2
    =                                                                                A                      V
                                                                                                                    G1
        h . ( 4 + 8  )
                          2
                              h    ( 4 + 8  )
        8 ( 2 + 2  )2
5 C
.......................................................................................................................................
                                                                                                                m
                                                                                                    B
                                                                                                                                          10
( 08 )
                                                                                                       o
  Solution
                                                                                                    .c
                                                                                      da
            (a)
            ( i ) Two events A and B are said to be independent if P ( A  B ) = P ( A ). P ( B )
                                                                                    in
                                                                                          5
            ( ii ) Two events A and B are said to be mutually exclusive if A  B = 
                                    am
                                                                                          5
            ( iii Two events A and B are said to be exhaustive if A  B = S
                                                                                          5
                                  ch
......................................................................................................................................... 15
                                sh
  P [ ( A  B ) ( A  B1 )] = P [ ( A  B ) + P( A  B1 )]
 Also , since ( A  B ) ( A  B1 ) = A ,
  P [ ( A  B ) ( A  B1 )] = P ( A )                                                                           5
                           .n
....................................................................................................................................... 10
                                           1       1
           w
  Using ( 1 ) , P ( A  B ) + 2 = 2 => P ( A  B ) = 0                                                           5
          w
                                    (
                           = 1- 1 + 1 = 1
                                         2        3 )          6                           5
........................................................................................................................................ 10
                                                                                                              m
                                                                                                                5
  Then C1 is the event : ‘ the student goes to school by bus ’
  Let T be the event : ‘ the student arrives at the school early or on time ’
                                                                                                     o
  Then T 1 is the event : ‘ the student arrives late ’
                                                                                                  .c
                                                                                   da
  Since P ( T ) = 19 it follows that P ( T 1 ) = 1 - 19 = 9                                                      5
                  28                                 28 28
                     3                                      3   1
                                                                                 in
                                   am
                                                                                                                 5
  Since P ( T  C1) = , it follows that P ( T 1  C1) = 1 -   =
                     4                                      4   4
                                 ch
                                                                      1        1                                     5
   Hence P ( T 1  C ) = 2P ( T 1  C1) = 2 x                             =
                                                                      4        2
                               sh
    Now P ( T 1 ) = P ( T 1  C ) + P ( T 1  C1 )
                            = P ( T 1  C ) .P ( C ) + P( T 1  C1) . P( C1 )                                        5
                            iro
                                 1                   1                             9
                            = 2 P ( C ) + 4 { 1 - P ( C )} = 28                                                     5
                          .n
   Hence P ( C ) = 2 and P ( C1 ) = 5 .
                                 7                             7
                         w
                                                                                                                    5
........................................................................................................................................ 40
           w
                                P ( C1  T 1 )               P( T 1  C1) . P ( C1 )
      P ( C1  T 1 ) =                                  =                                                          5
                                       P( T 1 )                         P( T 1 )
          w
    ( 1 / 4 )( 5 / 7 )           5
                            =                                                                                      5
          ( 9 / 28 )             9
........................................................................................................................................ 10
                                                        L
                                     1\2
                           C
                c
                                1\2
                                               T       L
             l-c                     1\4
                                                                                                                m
                                B
                                                                                                       o
                                      3\4
                                                                                                    .c
                                                   T
                                                                                     da
                                              Tree Diagram                                                                 25
                                                                                   in
                    ( with all probabilities expressed numerically , or in terms of C )
                                    am
( i ) Here C denotes the probability of cycling to school , P ( C )
  Then the probability of the student ’ s coming to school on time is
                                  ch
 1     3             19                                      5
                                sh
 2 c + 4 ( l - c ) = 28
                             iro
                        c = 2                                 5
                                 7
                           .n
........................................................................................................................................ 35
  ace P ( B ) = 1 - c = 1 - 2 = 5 .
                          w
                                         7 7
           w
                       P ( B  L ) P ( L  B ) . P ( B ) ( 1 / 4) ( 5 / 7 ) 5 .
 P(BL) =
          w
                                  =                     =                  =
                        P(L)              P(B)              ( 9 / 28 )       9
                                                                5                             5
........................................................................................................................................
                                                                                                                                           10
Are the event B = C1 , and the event L = T 1 .
                                                                                                                                  5
                                                
                                                    n
                                        _ 1
           (i)         Mean             x = n             xi
                                                    i=1
                                                                                                                 _ 1 ,
                                                                                                                  n
                                                                
                                                                          n
                                                                                                  
                                                                n                                   n
           Using the given transformation ,                          y1         ( ax1 + b ) a            xi + b
                                                               i=1        i=1                      i=1            i=1
                                                                                                          = a n x + bn ,              5
           ( since a , b are constants ).
                                               _
                              
                                n
                _ 1                                                                                                           5
           Hence y = n                  yi = a x + b
                                                                                                              m
                              i=1
........................................................................................................................................ 15
                                                                                                      o
                                                                          
                                                                            n
                                                                                        _
            ( ii ) Standard deviation                       Sx = 1
                                                                                                   .c
                                                                        n       ( x i
                                                                                      - x )2
                                                                          i=1
                                                                                                                     5
                                                                                    da
                                   _                                                                    _
                                                                                         
                                                n                                           n
                                                                     _
           Also ,            ( yi - y )2 =              ( axi + b - ax - b )2 = a2               ( xi - x )2 = a2 . n sx2
                                                                                  in
                                              i=1                                          i=1
                                                                                                                   5
                                    am
                                 
                                    n
                      1                          _      a2 n sx2
           Hence Sy = n                   ( yi - y )2 =    n = a Sx ,
                                    i=1                                                                               5
                                  ch
            ( since Sx >    _ 0 ).
....................................................................................................................................... 15
                                sh
            Consider Geography .
            Let x1 denote the original mark of ith the candidate , and
                                                                                                                           5
                             iro
                                                                                                                           5
            and by ( ii )                                   15 = 12 a =>                    a = 5
                          w
                                                                                                      4
                                                                                                                           5
           w
           (2)-(1)               => 10 = a ( m - 40 );
          w
                                                         10                                                                 5
                                 => m = 40 + a
                                          m = 48 or 32                                                                      5
......................................................................................................................................... 30
            Next consider History .
            Let x1j denote the original mark of the jth candidate , and let yj 1 = c xj1 + d be his / her
            scaled mark ( j = 1 , 2 , ....... N ).
           Then                                                56 = 61 c + d ....................( 3 )                    5
           Also , by ( i )                                     50 = 53 c + d ....................( 4 )                    5
  ksh; jYfhkau Tnj úIfhys olaIhl= lrkafkuq'                                                                    ksfrdaIa pdñkao
                                                                                                                                      
                                                                                                                                      20
                                                                        3                                  5
           ( 3 ) - ( 4 ) =>                                           c=4
           by result ( ii )                                             15 = c s                            5
                                                                          s = 20                              5
........................................................................................................................................ 25
 Let N dente the total number of candidates who sat for History.
                                                                                                               m
The sum of marks of all candidates after re - scrutiny                                        = 53 N + N ( 68 - 65 )
                                                                                                     1000
                                                                                                     o
                                                                                                             5
                                                                                                  .c
                                                                                               53003 N
                                                                                              = 1000
                                                                                    da
                                                                                  in
The mean mark of all candidates after re - scrutiny                                           = 53003 N
                                                                                                1000 N
                                   am
                                                                                              = 53 . 003
                                                                                                                            5
                                 ch
....................................................................................................................................... 15
                               sh
                            iro
                          .n
                         w
           w
          w