0% found this document useful (0 votes)
18 views11 pages

Calculation Model

This document details the design calculations for a single stage centrifugal pump, including specifications such as head, flow rate, and efficiency metrics. It covers dimensions, power requirements, torque, and shaft design, as well as inlet and outlet dimensions and blade angles. Additionally, it includes volute design calculations to ensure optimal performance of the pump.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
18 views11 pages

Calculation Model

This document details the design calculations for a single stage centrifugal pump, including specifications such as head, flow rate, and efficiency metrics. It covers dimensions, power requirements, torque, and shaft design, as well as inlet and outlet dimensions and blade angles. Additionally, it includes volute design calculations to ensure optimal performance of the pump.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 11

CALCULATIONS OF A SINGLE STAGE CENTRIFUGAL

PUMP DESIGN
(model for case study)

By
Eng. Mohamed Khalil

1
1. Specification:
𝐻𝑚 = 16 (m) = 59.5 (ft)
Q = 13.5 (m3/hr) = 60 (Gpm)
N = 1450 (rev/min)
𝐻𝑠 = 13.2 (m)

2. General dimensions:
2.1 Specific Speed:
13.5
3.65×N×√Q 3.65×1450×√
3600
𝑁𝑠 = 3 = 3 = 40.512
(𝐻𝑚 )4 (16)4

It is a radial type centrifugal pump.


2.2 Nominal diameter:
3 13.5
3 Q
𝐷1𝑛𝑜𝑚 = 4.5 × 10 × √ = 4.5 × 10 × √
3 3 3600
= 62 ≅ 65 (mm)
N 1450

2.3 Hydraulic Efficiency:


0.42
𝜂ℎ𝑦 = 1 − = 0.84
[log (𝐷1𝑛𝑜𝑚 )−0.172]2

2.4 Volumetric Efficiency:


1 1
𝜂𝑣 = −
2 = −
2 = 0.9454
1+0.68×(𝑁𝑠 ) 3 1+0.68×(40.512) 3

2.5 Overall Efficiency:


From Chart:
𝜂𝑜 = 0.51
2.6 Mechanical Efficiency:
𝜂𝑜 0.51
𝜂𝑚 = = = 0.642
𝜂𝑣 ×𝜂ℎ𝑦 0.9454×0.84

2.7 Output Power:


13.5
𝑃𝑜 = ρg𝐻𝑚 Q = 1000 × 9.8 × 16 × = 588 (watt)
3600

2
2.8 Input Power:
𝑃𝑜 588
𝑃𝑠ℎ = = = 1153 (watt) = 1.55 (hp)
𝜂𝑜 0.51
Assuming an overload of 15% ,
𝑃𝑖𝑛 = 0.15 × 𝑃𝑠ℎ + 𝑃𝑠ℎ = 1.15 × 1153 = 1326 (watt) = 1.326 (kw)
= 1.78 (hp)
2.9 Torque:
𝑃𝑖𝑛 1.326
T= = 2×π×1450 = 0.008732 (KN. m)
ω
60

Taking the shaft material as ‘En8’ (Mild Steel), Ultimate Stress (𝑓𝑚 ) = 35
N/mm2 and taking factor of safety (FS) as 2 for uniform speed of
rotation.
2.10 Working Stress:
𝑓𝑚 35 N KN
𝑓𝑠 = = = 17.5 ( 2) = 1.75 × 104 ( 2)
FS 2 𝑚𝑚 𝑚

2.11 Shaft diameter:


3 16T 3 16×0.008732
𝑑𝑠 = √ =√ = 0.0136 (m) ≅ 14 (mm)
π𝑓 π×1.75×104
𝑠

Taking fatigue stress (bending and shear) into account, minimum shaft
diameter 𝑑𝑠 is taken as 25 (mm), 𝑑𝑠 = 25 (mm)
2.12 Hub diameter:
𝑑ℎ =1.2 × 𝑑𝑠 = 1.2× 25 = 30 (mm)

3. Inlet dimensions:
3.1 Theoretical discharge:
13.5
Q 3600 𝑚3
𝑄𝑡ℎ = = = 0.00397 ( )
𝜂𝑣 0.9454 sec

3.2 The suction pipe diameter (𝑫𝒔 )=(𝑫𝑶 ) [eye diameter]:


𝐷1𝑛𝑜𝑚 62
𝐷𝑠 = = = 55 (mm)
1.14 1.14

3
3.3 The axial velocity at impeller eye:
4𝑄𝑡ℎ 4×0.00397 m
𝐶𝑜 = = = 1.67 ( )
π(𝐷𝑠 )2 π×0.0552 sec

3.4 The diameter of the inlet edge of the impeller blade:


taken as 𝐷1 = 𝐷1𝑛𝑜𝑚 ≅ 65 (mm)
3.5 The flow velocity before the inlet edge of impeller blade:
3 3 m
𝐶𝑚𝑜 = 0.06√𝑄𝑡ℎ (𝑁)2 = 0.06√0.00397 × (1450)2 = 1.22 ( )
sec
m
𝐶𝑚1 = 𝐾1 × 𝐶𝑚𝑜 = 1.4 × 1.22 = 1.708 = ( )
sec
3.6 Inlet breadth:
𝑄𝑡ℎ 0.00397
b= = = 0.0114 (m) = 11.4 (mm)
𝜋𝐷1 𝐶𝑚1 π×0.065×1.708

π𝐷1 N π × 0.065 × 1450 m


𝑢1 = = = 4.935 ( )
60 60 sec
Assuming normal entry, (𝐶𝑢1 = 0), Inlet blade angle ‘𝛽1 ’ will be
𝐶𝑚1 1.708
𝛽10 = tan−1 ( ) = tan−1 ( ) = 19°
𝑢1 4.935
Allowing angle of attack δ ≈ 4.5°
𝛽1 = 𝛽10 + δ = 19 + 4.5 = 23.5°

4. Outlet dimension:
4.1 Overall head:
𝐻𝑚 16
𝐻𝑜 = = = 19.047 (𝑚)
𝜂ℎ𝑦 0.84
𝐶𝑢2
̅ =
Taking 𝐶𝑢2 = 0.5
𝑢2

̅ × 𝑢2 2
𝐻𝑚 𝐶𝑢2 × 𝑢2 𝐶𝑢2
𝐻𝑜 = = =
𝜂ℎ𝑦 𝑔 𝑔
4.2 First Approximation:
4.2.1 Outlet blade velocity:
4
𝑔𝐻𝑚 9.81 × 19.047 𝑚
𝑢2 = √ =√ = 19.33 ( )
̅
𝐶𝑢2 0.5 𝑠𝑒𝑐

4.2.2 Outlet diameter:


60𝑢2 60 × 19.33
𝐷2 = = = 0.2546 (𝑚) = 255 (𝑚𝑚)
𝜋𝑁 𝜋 × 1450
4.2.3 Outlet blade angle:
Taking,
𝑚
𝐶𝑚3 = 0.8𝐶𝑚𝑜 = 0.8 × 1.22 = 0.976 ( )
𝑠𝑒𝑐
𝐾2 = 1.2
𝐾1 = 1.4
𝑤1
= 1.18
𝑤2
𝐾2 𝑤1 𝐶𝑚3
sin 𝛽2 = sin 𝛽1 ∙ ∙ ∙
𝐾1 𝑤2 𝐶𝑚𝑜
1.2
= sin 23.5 × × 11.8 × 0.8 = 0.324
1.4
𝛽2 = 19°
4.2.4 Outlet flow velocity:
𝐶𝑚2 𝐾2 𝐶𝑚3 1.2
= = × 0.8 = 0.687
𝐶𝑚1 𝐾1 𝐶𝑚𝑜 1.4
𝑚
𝐶𝑚2 = 0.687𝐶𝑚1 = 0.687 × 1.708 = 1.1734 ( )
𝑠𝑒𝑐
4.2.5 No. of blades:
𝐷2 +𝐷1 𝛽1 +𝛽2 255+65 23.5+19
Z = 6.5 ∙ ∙ sin ( ) = 6.5 × 225−65 × sin ( )=
𝐷2 −𝐷1 2 2
3.9677 ≅ 4

𝜓 = 0.6(1 + sin 𝛽2 ) = 0.6(1 + sin 19) = 0.795

2𝜓 1 2×0.795 1
P= ∙ 𝑟 = × 65 2 = 0.409
𝑍 1−(𝑟1 )2 4 2 )
2 1−( 225
2
H∞ = (1 + 𝑃)𝐻𝑜 = 1.409 × 19.047 = 26.84
4.3 Second Approximation:
4.3.1 Outlet blade velocity:
𝐶𝑚2 𝐶𝑚2 2 1.1734 1.734 2
𝑢2 =
2 tan 𝛽2
+ √(
2 tan 𝛽2
) + 𝑔𝐻∞ = 2 tan 19 + √(2 tan 19) +
𝑚
9.81 × 26.84 = 18.019 ( )
𝑠𝑒𝑐

5
4.3.2 Outlet diameter:
60𝑢2 60 × 18.019
𝐷2 = = = 0.23734 (𝑚) = 238 (𝑚𝑚)
𝜋𝑁 𝜋 × 1450
D2 from first approximation (D2I = 255 mm) and D2 from second
approximation (D2II = 238 mm). Closely agrees, Final value of outer
diameter D2 is taken as (D2 = 250 mm)
4.3.3 Outlet breadth:
𝐶𝑚2 1.1734
𝐶𝑚3 = = = 0.9778
𝐾2 1.2
𝑄𝑡ℎ 0.00397
𝑏2 = = = 0.00517 (𝑚) = 5.17(𝑚𝑚)
𝜋𝐷2 𝐶𝑚3 𝜋×0.25×0.9778
4.3.4 Verification for flow coefficients:
1 1
𝐾1 = 𝑍𝛿1 = 4×0.005 = 1.33
1− 1−
𝜋𝐷1 sin 𝛽1 𝜋×0.065×sin 23.5
1 1
𝐾2 = 𝑍𝛿2 = 4×0.005 = 1.1
1− 1−
𝜋𝐷2 sin 𝛽2 𝜋×0.25×sin 19
𝐶𝑚1 1.708 𝑚
𝑤1 = = = 4.3 ( )
sin 𝛽1 sin 23.5 𝑠𝑒𝑐
𝐶𝑚2 1.1734 𝑚
𝑤2 = = = 3.6 ( )
sin 𝛽2 sin 19 𝑠𝑒𝑐
𝐾2 1.1
= = 0.827
𝐾1 1.33
𝑤1 4.3
= = 1.194
𝑤2 3.6
𝑄𝑝 = 𝜋𝑏1 𝐷1 (1 − 𝜀1 )𝐶𝑟1
0.00375 = 𝜋 × 0.0114 × 0.065 × (1 − 𝜀1 ) × 1.708
𝜀1 = 0.06 = 6%
𝑄𝑝 = 𝜋𝑏2 𝐷2 (1 − 𝜀2 )𝐶𝑟2
0.00375 = 𝜋 × 0.00517 × .250 × (1 − 𝜀2 ) × 1.1734
𝜀2 = 0.21 = 21%

5. Volute Design:
Calculation of circular volute with 𝑪𝒖 r = constant:

6
720𝜋𝑔 𝐻𝑚
𝐾= ∙
𝜔 𝑄360

2𝜋𝑁 2 × 𝜋 × 1450
𝜔= = = 151.844
60 60

720 × 𝜋 × 9.81 × 16
𝐾= = 623508.61
151.844 × 0.00375

𝑏3 = 𝑏2 + 0.05𝐷2 = 5.17 + 0.05 × 250 = 17.67 (𝑚𝑚)

𝐷3 = 1.04𝐷2 = 1.04 × 250 = 260 (𝑚𝑚)

𝑟3 = 130 (𝑚𝑚)

𝑎3 = 𝑟3 + 𝜌

𝜃° 𝜃°
𝜌 = + √2 𝑟3
𝐾 𝐾
Where:
a: It is the distance from the volute center to the discharge
diameter center.

S. No. 𝜃° 𝜃° 𝜃° 𝜌 (𝑚𝑚) 𝑎3 (𝑚𝑚)


(𝑚) √2 𝑟3 (𝑚)
𝐾 𝐾

1 45 7.22 × 10−5 4.33 × 10−3 4.4022 134.3


2 90 1.44 × 10−4 6.126 × 10−3 6.27 136.27
3 135 2.165 × 10−4 7.502 × 10−3 7.7185 137.7185
4 180 2.886 × 10−4 8.66 × 10−3 8.95 138.95
5 225 3.61 × 10−4 9.7 × 10−3 10.061 140.061
6 270 4.33 × 10−4 0.0106 11.033 141.033
7 315 5.052 × 10−4 0.0115 12.0052 142.0052
8 360 5.774 × 10−4 0.01225 12.83 142.83
6. Total Equivalent Length:
𝐻𝑠 = 13.2 (𝑚)

7
𝐻𝑠𝑠 = 1 (𝑚)
𝐻𝑠𝑑 = 12.2 (𝑚)
𝑚
𝑉𝑠 = 1.2 ( )
𝑠𝑒𝑐
𝑚
𝑉𝑑 = 1.6 ( )
𝑠𝑒𝑐
Just Major Losses:
𝐻𝑚 = 𝐻𝑠 + 𝐻𝑙𝑜𝑠𝑠𝑒𝑠 𝑖𝑛 𝑝𝑖𝑝𝑒𝑠
𝐻𝑙𝑜𝑠𝑠𝑒𝑠 = 𝐻𝑚 − 𝐻𝑠 = 16 − 13.2 = 2.8 (𝑚)
𝑉𝑠 2 𝐿𝑠 𝑉𝑑 2 𝐿𝑑
𝐻𝑙𝑜𝑠𝑠𝑒𝑠 = [𝑓𝑠 ∙ ∙ + 𝑓𝑑 ∙ ∙ ]
2𝑔 𝑑𝑠 2𝑔 𝑑𝑑
𝑄𝑝 = 𝑉𝑠 ∙ 𝐴𝑠 = 𝑉𝑑 ∙ 𝐴𝑑 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
13.5 𝜋
= 1.2 × × 𝑑𝑠 2
3600 4
𝑑𝑠 = 0.063 (𝑚)
13.5 𝜋
= 1.6 × × 𝑑𝑑 2
3600 4
𝑑𝑑 = 0.055 (𝑚)
𝑉∙𝐷
𝑅𝑒 =
𝜈
At temperature = 20° :
−5
𝑚2
𝜈 = 4.5 × 10 ( )
𝑠𝑒𝑐
1.2 × 0.063
𝑅𝑒,𝑠 = = 1680 < 2100 (𝑙𝑎𝑚𝑖𝑛𝑎𝑟)
4.5 × 10−5
1.6 × 0.055
𝑅𝑒,𝑑 = = 1955 < 2100 (𝑙𝑎𝑚𝑖𝑛𝑎𝑟)
4.5 × 10−5
64
𝑓=
𝑅𝑒
𝑓𝑠 = 0.038
𝑓𝑑 = 0.033
(1.2)2 𝐿𝑠 (1.6)2 𝐿𝑑
2.8 = [0.038 × × + 0.033 × × ]
2 × 9.8 0.063 2 × 9.8 0.055
2.8 = 0.044𝐿𝑠 + 0.0783𝐿𝑑
𝐿𝑠 𝐻𝑠𝑠 1
= = = 0.082
𝐿𝑑 𝐻𝑠𝑑 12.2
𝐿𝑠 = 0.082𝐿𝑑
2.8 = 0.044(0.082𝐿𝑑 ) + 0.0783𝐿𝑑
𝐿𝑑 = 34.2 (𝑚)

8
𝐿𝑠 = 2.803 (𝑚)
𝐿𝑠 + 𝐿𝑑 = 37 (𝑚)
ℎ𝑓𝑠 = 0.123 (𝑚)
ℎ𝑓𝑑 = 2.6778 (𝑚)

7. Pressures:
7.1 Suction Pressure:
𝑃𝑠 𝑃𝑎𝑡𝑚 𝑉𝑠 2
= − [ + 𝐻𝑠𝑠 + ℎ𝑓𝑠 ]
𝜌𝑔 𝜌𝑔 2𝑔
𝑃𝑠 100 × 103 1.22
= −[ + 1 + 0.123]
1000 × 9.81 1000 × 9.81 2 × 9.81
𝑃𝑠 = 88263.37 (𝑝𝑎)
7.2 Discharge Pressure:
𝑃𝑑 𝑃𝑎𝑡𝑚 𝑉𝑑 2
= + 𝐻𝑠𝑑 + ℎ𝑓𝑑 −
𝜌𝑔 𝜌𝑔 2𝑔
3
𝑃𝑑 100 × 10 1.62
= + 12.2 + 2.6778 −
1000 × 9.81 1000 × 9.81 2 × 9.81
𝑃𝑑 = 244671.218 (𝑝𝑎)

8. Net Positive Suction Head:


𝑃1 − 𝑃𝑣
𝑁𝑃𝑆𝐻𝑎 = [ ] − 𝐻𝑠𝑠 − ℎ𝑓𝑠
𝜌𝑔
At temperature = 20° :
𝑃𝑣 = 2.33 × 103 (𝑝𝑎)
105 − 2.33 × 103
𝑁𝑃𝑆𝐻𝑎 = − 1 − 0.123 = 8.833
1000 × 9.81

9. Pump Curve:
𝜂𝑜 = 0.51
Diameter of pump is constant
𝜌𝑔𝑄𝑝 𝐻𝑚
𝜂𝑜 = = 0.51
𝑃𝑠ℎ
𝜂𝑜 𝑃𝑠ℎ
𝐻𝑚 =
𝜌𝑔𝑄𝑝

10. System Curve:


𝐻𝑚 = 𝐻𝑠 + 𝐻𝑙𝑜𝑠𝑠𝑒𝑠 𝑖𝑛 𝑝𝑖𝑝𝑒𝑠
9
1 𝐿𝑠 1 1 𝐿𝑑 1
𝐻𝑚 = 𝐻𝑠 + [𝑓𝑠 ∙ ∙ ∙ 2 + 𝑓𝑑 ∙ ∙ ∙ 2 ] 𝑄𝑝 2
2𝑔 𝑑𝑠 𝐴𝑠 2𝑔 𝑑𝑑 𝐴𝑑
𝐻𝑚 = 𝐻𝑠 + 𝐾𝑄𝑝 2
𝐻𝑚 = 13.2 + (199111.111)𝑄𝑝 2

11. Final Values:

Variable Value
𝐻𝑚 16 m = 52.5 ft
Q 13.5 𝑚3 /hr = Gpm
N 1450 rpm
𝐻𝑠 13.2 m
𝑁𝑠 576 in chart - 40.512 rpm
𝜂𝑜 0.51
𝐷1 65 mm
𝜂ℎ𝑦 0.84
𝜂𝑣 0.9454
𝜂𝑚𝑒𝑐ℎ 0.642
𝑃𝑜 588 watt
𝑃𝑖𝑛 1326 watt
T 0.008732 KN.m
𝑑𝑠 25 mm
𝑑ℎ 30 mm
𝐶𝑟1 = 𝐶𝑚1 1.708 m/sec
𝑏1 = 𝐵1 11.4 mm
𝑢1 4.935 m/sec
𝛽1 23.5°
𝑢2 18 m/sec
𝐷2 250 mm
𝛽2 19°
𝐶𝑟2 = 𝐶𝑚2 1.1734 m/sec
P 0.409
𝐻𝑜 19.047 m
H∞ 26.84 m
Z 4
𝑤1 4.3 m/sec
𝑤2 3.6 m/sec
𝑏2 = 𝐵2 5.17 mm

10
𝜔 151.844 rad/sec
𝑄𝑝=𝑄 13.5
360° 𝑚3 /𝑠𝑒𝑐
3600
𝑏3 17.67 mm
𝐷3 260 mm
K 623508.61
𝐻𝑠 13.2 m
𝐻𝑚 16 m
𝐻𝑠𝑠 1m
𝐻𝑠𝑑 12.2 m
𝑉𝑠 1.2 m/sec
𝑉𝑑 1.6 m/sec
𝑑𝑠 63 mm
𝑑𝑑 55 mm
Total Equivalent Length 37 m
𝐿𝑠 2.803 m
𝐿𝑑 34.2 m
ℎ𝑓𝑠 0.123 m
ℎ𝑓𝑑 2.6778 m
𝑃𝑠 88263.37 pa
𝑃𝑑 244671.218 pa
𝑃𝑣𝑎𝑝 2.33× 103 pa
𝑁𝑃𝑆𝐻𝑎 8.833
System losses factor (K) 199111.111
𝜀1 6 %
𝜀2 21 %

11

You might also like