0% found this document useful (0 votes)
125 views12 pages

Calculus (BMTC-131)

This document outlines the exam structure for the BMTC-131 Calculus course, including instructions for answering questions and the total marks available. It includes a variety of calculus problems covering topics such as limits, continuity, differentiability, and integration. The exam consists of one compulsory question and eight additional questions to be attempted from a total of ten.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
125 views12 pages

Calculus (BMTC-131)

This document outlines the exam structure for the BMTC-131 Calculus course, including instructions for answering questions and the total marks available. It includes a variety of calculus problems covering topics such as limits, continuity, differentiability, and integration. The exam consists of one compulsory question and eight additional questions to be attempted from a total of ten.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 12

No.

of Printed Pages : 12 BMTC–131

BACHELOR OF SCIENCE/BACHELOR
OF ARTS [B. SC.(G)/B. A.(G)/BSCM]
Term-End Examination
December, 2024

BMTC-131 : CALCULUS

Time : 3 Hours Maximum Marks : 100

Note : (i) Question No. 1 is compulsory.

(ii) Attempt any eight questions from


Question No. 2 to 10.

(iii) Use of calculator is not allowed.

1. Which of the following statements are true and


which are false ? Give a short proof or a
counter-example, in support of your answer : 20

(i) If { }
Z, A =x ∈ Q | x ≥ 3 ,U =
Q, then

AC ∪ ZC =Q − {1,2,3,...} .

B–1414/BMTC–131 P. T. O.
[2] BMTC–131

(ii) The value of k for which the function f


defined by :

 x 2 − 2, if x < 1
f ( x) = 
 kx − 2, if x ≥ 1

is continuous at x = 1 is 0.
(iii) The only solution of the equation :

 x2   2x 
=log x log   − log  
 2  1 + x 
1 − x 
1
is x = .
2
(iv) The maximum possible domain of a

4 − x2
function f given by f ( x) = is
x2 + x
R − {0,1} .

4 9
(v) The curve 2
− 1 has no asymptotes
=
x y2

parallel to axes.

(vi)
d
dx
(
sin x ≠
d
dx
) ( )
sin x .

16 x 2 − 25
(vii) lim = 10 .
x→−
5 4x + 5
4

B–1414/BMTC–131
[3] BMTC–131

(viii) The function f, defined by f ( x=


) | x − 2| is

differentiable at x = 2 .

 1 
(ix)  − ,0,1  ∈ Q × Z × N .
 2 

(x) If f ( x ) = x3 and ) 2x + 1,
g ( x= then

f o g (1) = g o f (1) .

2. (a) Find all the roots α,β and γ of the cubic

equation 3 x3 + 11 x 2 + 12 x + 4 =
0 such that

the roots are in H.P. 5

(b) Prove that the function f : R →]1, ∞[

x ) 32 x + 1 is invertible and
defined as f (=

find a formula for the inverse. 5

3. (a) If y = sin x and n is any positive integer,

then find yn2 + yn2+1 . 5

(b) Find the nth Taylor’s polynomial for


1
about x = 1 . 5
x

B–1414/BMTC–131 P. T. O.
[4] BMTC–131

, when y = x( x ) .
dy x
4. (a) Find 5
dx

(b) Evaluate : 5

2
∫ −1 (| x|+| x − 1|) dx

5. (a) Test the continuity and differentiability of


the function : 5

 x 2 − 1, x ≥ 1
f ( x) = 
 1 − x, x < 1

at x = 1 .

(b) Draw the rough sketch of the curve

=r 2 3 r sin θ . 5

6. (a) Find the fourth roots of the complex


number 1+i and show the solution
geometrically. 5

(b) A bee follows the trajectory x = t − 3sin t


and y= 4 − 3cos t , where t ≥ 0 . It lands on

a wall at time t = 10 . A what time was the


bee flying horizontally ? 5

B–1414/BMTC–131
[5] BMTC–131

7. Trace the curve y 2 ( a + x )= x 2 ( a − x ) , a > 0,

stating all the properties you use to trace it. 10

8. (a) Using the ε-δ definition of limit, find δ

such that lim (4 x + 5) =


13 ; ε =0.04 . 5
x →2

(b) Verify Lagrange’s mean value theorem for

the function f, defined by f ( x ) = x3 on the

interval [ −1,1] . 5

9. (a) Find the area of the region bounded by the

curves y = x 2 and y = x3 . 5

(b) Find all possible relative extreme values of

the function f defined by

f ( x ) = x3 − 6 x 2 + 9 x − 4 by using first

derivative test. 5

B–1414/BMTC–131 P. T. O.
[6] BMTC–131

10. (a) Find the length of the curve given by the


equations
= x 2 cos t + 3 and
= y 2sin t + 4 ;

0 ≤ t ≤ 2π . 5

d2y
(b) If x= a ( θ − sin θ), y= a (1 − cos θ) , find
dx 2
at θ = π . 5

B–1414/BMTC–131
[7] BMTC–131

BMTC–131

foKku Lukrd@dyk Lukrd


[ch- ,l&lh- (th-)@ ch- ,- (th-)@
ch- ,l- lh- ,e-]
l=kkar ijh{kk
fnlEcj] 2024
ch-,e-Vh-lh--131 % dyu
le; % 3 ?k.Vs vf/dre vad % 100
uksV % (i) iz'u la- 1 djuk vfuok;Z gSA
(ii) iz'u la- 2 ls 10 rd dksbZ vkB iz'u
dhft,A
(iii) dSYdqysVj dk iz;ksx djus dh vuqefr ugha
gSA
1- fuEufyf[kr esa ls dkSu&ls dFku lR; vkSj dkSu&ls
dFku vlR; gSa\ vius mÙkj ds i{k esa laf{kIr miifÙk
;k izfr&mnkgj.k nhft, % 20
(i) ;fn { }
Z, A =x ∈ Q | x ≥ 3 ,U =
Q gS]a rks
AC ∪ ZC =Q − {1,2,3,...} gksxkA
B–1414/BMTC–131 P. T. O.
[8] BMTC–131

(ii) k dk og eku] ftlds fy,

 x 2 − 2, ;fn x < 1
f ( x) = 
 kx − 2, ;fn x ≥ 1

}kjk ifjHkkf"kr iQyu f ,x =1 ij larr~ gS] 0 gSA

 x2   2x 
(iii) lehdj.k
= log x log  − log  dk
 1 − x 2  
1 + x 
 

1
dsoy gy x= gSA
2

4 − x2
(iv) f ( x ) = }kjk ifjHkkf"kr iQyu f dk
x2 + x

vf/dre laHkkfor izkar R − {0,1} gSA

4 9
(v) oØ − 1 dh
= v{kksa ds lekukarj dksbZ
x2 y2

vuarLi'khZ ugha gSA

(vi)
d
dx
(
sin x ≠
d
dx
) ( sin x )
16 x 2 − 25
(vii) lim = 10
x→−
5 4x + 5
4

B–1414/BMTC–131
[9] BMTC–131

(viii) f ( x=
) | x − 2| }kjk ifjHkkf"kr iQyu f ,x = 2

ij vodyuh; gSA

 1 
(ix)  − ,0,1  ∈ Q × Z × N
 2 

(x) ;fn f ( x ) = x3 vkSj g ( x=


) 2x + 1 gSa] rks

f o g (1) = g o f (1) A

2- (d) ?ku cgqin 3 x3 + 11 x 2 + 12 x + 4 =


0 ds lHkh

ewy α, β vkSj γ] tks fd H.P. esa gSa]

fudkfy,A 5

([k) x ) 32 x + 1
f (= }kjk ifjHkkf"kr iQyu

f : R →]1, ∞[ O;qRØe.kh; gSa vkSj O;qRØe dk

lw=k fudkfy,A 5

3- (d) ;fn y = sin x vkSj n ,d /ukRed iw.kk±d

gS] rks yn2 + yn2+1 Kkr dhft,A 5

B–1414/BMTC–131 P. T. O.
[ 10 ] BMTC–131

1
([k) ds fy, x =1 ds lkis{k noha Vsyj cgqin
x

fudkfy,A 5

y = x( x
x) dy
4- (d) ds fy, fudkfy,A 5
dx

2
([k) ∫ −1 (| x |+| x − 1|) dx dk eku fudkfy,A 5

5- (d) iQyu 5

 x 2 − 1, x ≥ 1
f ( x) = 
 1 − x, x < 1

dh x =1 ij lrrrk vkSj vodyuh;rk dk

ijh{k.k dhft,A

([k) oØ=r2 3 r sin θ dk jiQ LdSp [khafp,A 5

6- (d) lfEeJ la[;k 1+i dk prqFkZ ewy Kkr dhft,

vkSj bls T;kfefr :i esa Hkh n'kkZb,A 5

B–1414/BMTC–131
[ 11 ] BMTC–131

([k) ,d eD[kh iz{ksioØ x = t − 3sin t vkSj

y= 4 − 3cos t ] tgk¡ t >0] esa mM+rh gSA ;g

t = 10 le; ij nhokj ij vkrh gSA eD[kh

fdrus le; ij {kSfrt :i ls mM+ jgh Fkh \ 5

7- oØ y 2 ( a + x )= x 2 ( a − x ) ] a>0 dk vkjs[k.k

dhft, vkSj ,slk djus esa iz;ksx fd, x;s xq.k/eks± dks

fyf[k,A 10

8- (d) lhek dh ε-δ ifjHkk"kk dk iz;ksx djds δ dk

og eku Kkr dhft, ftlds fy,


lim (4 x + 5) =
13 ] ε =0.04 gSA 5
x →2

([k) f ( x ) = x3 }kjk ifjHkkf"kr iQyu f ds fy,


varjky [ −1,1] ij ySxzkat ekè;eku izes;

lR;kfir dhft,A 5

B–1414/BMTC–131 P. T. O.
[ 12 ] BMTC–131

9- (d) oØksa y = x2 vkSj y = x3 ls f?kjs izns'k dk


{ks=kiQy Kkr dhft,A 5

([k) izFke vodyt ijh{k.k dk iz;ksx djds


f ( x ) = x3 − 6 x 2 + 9 x − 4 }kjk ifjHkkf"kr iQyu
f ds lHkh laHko lkis{k b"Vre eku Kkr
dhft,A 5

10- (d) lehdj.kks


= a x 2 cos t + 3 vkS=
j y 2sin t + 4 _

0 ≤ t ≤ 2π ] }kjk fn, x, oØ dh yackbZ Kkr

dhft,A 5

([k) ;fn x= a ( θ − sin θ), y= a (1 − cos θ) gS] rks


d2y
θ=π ij Kkr dhft,A 5
dx 2

×××××××

B–1414/BMTC–131

You might also like