Minor s4 4
Minor s4 4
M o dule 1:
Analysi s and Design P r ocedures, B ina ry Adde r, S ubtractor, De cim al Add er,
Magnit ude C omparator, Decode r, Encod er, Multi plexers, Demul ti plexers
N umber Systems
2.
3.
4.
Bi na ry Numbers ys tem
i.
ii.
A four
-
bitcollec tion (1 101 ) isknow nas a nibble.
1.
2.
It
isalso kn o wn asth e ba se2 nu mbers ystem.
3.
Th epo sition o fadigit repr esen tsth e0 po wer o fth eba se(2 ).E xamp le: 2
0
4.
Th epo sition o fth ela stdigitrepr esen ts th exp o wero fth eba se (2).E xamp le:2
x
,wh erexrepr esen ts
th elast po sition , i.e., 1
(2×10
3
) + (5×10
2
) + ( 4× 10
1
) + (1×10
0
)
2000 + 500 + 40 + 1
254
1.
A n o ctaln u mbersyste mcarr ies eigh t digits s tar tin g fro m0, 1, 2, 3, 4, 5, 6, an d 7.
2.
I t isalso
kn o wn asth e ba se8 nu mbers ystem.
3.
Th epo sition o fadigit repr esen tsth e0 po wer o fth eba se(8 ).E xamp le: 8
0
4.
Th epo sition o fth ela stdigitrepr esen ts th exp o wero fth eba se (8).E xamp le:8
x
,
wh erexrepr esen ts
th elast po sition , i.e., 1
Num b er
Octal Nu m b er
0
000
001
010
011
Exam ples:
(273)
8
, (5644)
8
, (0.53 65)
8
, (1123)
8
, (1223)
8
.
100
101
110
7
111
Thesingle
-
bitrepresentation of dec imalvalues10 , 11 ,1 2 ,1 3, 14 , and1 5 arerepresented by A,B ,
C,D , E ,
andF.
1.
2.
3.
5.
Binary N um ber
0000
0001
0010
0011
0100
0101
5
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
Exam ples:
(FA C2)
16
, (564)
16
, (0A BD5)
16
, (1123)
16
, (11F3)
16
.
N umber Ba se Co nversi o n
1.
2.
3.
4.
Exa mp le 1: (10110.001)
2
(1 01 1 0 .0 01 )
2
=(1×2
4
)+ (0×2
3
)+(1×2
2
) +(1×2
1
)+
(0×2
0
)+
(0 ×2
-
1
)+(0 ×2
-
2
)+(1×2
-
3
)
(1 01 1 0 .0 01 )
2
=(1×16)+(0×8)+ (1×4)+ (1×2)+
(0×1)+
(1 01 1 0 .0 01 )
2
=16+0+4+2+0+0+0 +0. 125
(1 01 1 0 .0 01 )
2
=
(2 2 .1 2 5 )
10
D eci mal to o th er N umber System
'r'
.
1.
I n th e first step, we pe rfo rm th e division o pera tio n on int eger an d su cces sive pa rt
with ba se
'r'
.
We wil l list do wn all th e remain ders till th e q u o tien t is zero . Th en we fin d o u t th e
remain ders in
reverse o rd er for getti n g th e int eger pa rt o f th e equ ivalen t n u mber o f ba se
'r'
. I n th is, th e least
an d mo st sign ifican t di gitsar edeno tedby th efirst an d thelast r em ain ders.
2.
'r '
'r '
,
th en o rmalsequ en ceo fcarr ying is con sidered .
Fo r co n vertin g decimalto bin ar y, th erear etw o stepsrequ ired to per for m, wh ich ar eas
foll o ws:
1.
2.
Exa mp le 1: (152.25)
10
Step 1 :
Oper a ti on
Quoti e nt
Remaind er
1 52 /2
76
0
(LSB)
7 6 /2
38
3 8 /2
19
1 9 /2
9 /2
4 /2
2 /2
1 /2
0
1 (M SB)
(152)
10
=(10011 000 )
2
Step 2 :
(0.25)
10
=
(.01)
2
H exa
-
d eci mal to Deci mal Con ver sion
Th epr o ces so f con vertin gh exad ecimalto deci mali sth e sam ea sbin a ryto dec imal.Th
epr o c ess star ts
fro m multiplying th e d igits o f h exad e cimal n u mbers with its cor res po n din g po
sition al wei gh ts. A n d
lastly, w eadd all th o se pr o du cts.
Let'stak ean examp l et o u n derstan d ho wth econ version isdo n efro mh exad ecimalto d
eci mal.
Wemultiplyeach digito f
1 5 2 A.25
(1 52 A.2 5 )
16
=(1×16
3
)+(5×16
2
)+(2×16
1
) +(A ×1 6
0
)+(2×16
-
1
)+(5×16
-
2
)
(1 52 A.2 5 )
16
=(1×409 6)+(5×256 )+(2 ×16)+(10 ×1)+(2×16
-
1
)+ (5×16
-
2
)
(1 52 A.2 5 )
16
(1 52 A.2 5 )
16
=541 8+0. 125+0.1 25
(1 52 A.2 5 )
16
=541 8.1 44531 25
5 4 18.1 4 45 31 25
(1 52 A.2 5 )
16
=(
0 00 1 01 0 1 00 10 1 01 0 .00 10 0 1 01 )
2
(1 0 1 0 10 0 10 10 10 .00 10 01 01 )
2
Oper a ti on
Result
car ry
0 .25 ×2
0 .50
0 .50 ×2
ASCII Cod e
TheASCII isa 7
-
bitc odec apableof
representing2
7
Th e A SCI I cod e star ts fro m 00h to 7Fh . I n th is, th e cod e fro m 00h to 1Fh is u sed
for con tro l
cha ra cters,an d thecod efro m20h to 7F h is u sed fo r grap h icsymb o ls.
Th e 8
-
bit cod e h o lds A SCI I, wh ich su pp o rt s 256 symbo ls wh ere m ath an d gr ap h ic
symb o ls ar e
add ed.
Th e
non
-
pr intab le chara cters u sed for sen di n g comman ds to th e PC o r pr int er are kn own as
con tr o l
cha ra cters. We can set tab s, an d lin e br eak s fun ctio n ality by th is cod e. Th e con tr o l
ch ar acters ar e ba sed
o n telex te chn o log y. No wadays, it's n o t so m u ch po pu lar i
n u se. Th e cha ra cter fro m 0 to 31 an d 127
comesu n dercon tr o lcha ra cters.
I n th is categor y, two
gro u ps o f letters ar e con tain ed, i.e., th e gr ou p o f u pp ercase letters a n d th e gr oup
o flowercase letters. Th era n gefro m65 to 90 an d 97to 122 comesu n derth iscategor y.
Excess
-
3 Code
Th e exc es s
-
3 cod e is also tr eated as
XS
-
3 code
. Th e exce ss
-
3 cod e is a
non
-
weigh ted an d s elf
-
complemen tar y BCD cod e u sed to repr esen t th e dec imal n u mbers. Th is cod e h as
a bias ed
repr esen tat ion . Th is c o de plays an impo rt an t ro le in ar ith meti c o peratio n s becau
se it re so lves
deficien ci es en cou n tered wh en w e u s e th e 84 21 BCD cod
e for add in g two deci mal digit s w h o se su m i s
gr eater th an 9. Th e E xcess
-
3 cod e u s es a s pecial typ e o f a lgo rith m, wh ich differ s fro m th e bin ar y
po sition aln u mbersyst emo r no rmaln o n
-
biased BCD.
steps:
1.
2.
3.
Now,w efind thebinary c odeof eachdigitof thenew ly generated dec imal number.
Decim al Di git
B CDCo de
Ex cess
-
3 Cod e
0 00 0
0 01 1
0 00 1
0 10 0
0 01 0
0 10 1
0 01 1
0 11 0
0 10 0
0 11 1
5
0 10 1
1 00 0
0 11 0
1 00 1
0 11 1
1 01 0
1 00 0
1 01 1
1 00 1
1 10 0
Gray Code
Th e
Gra yCode
Th egr ay cod ei sa very ligh tweigh tedcod ebe cau seit do esn 'tdepen do n th evalu eo f th
edi gitspec ified
by th e po sition . Th is cod e is also call ed a cyclic var iable cod e as th e tr an sition o f on e
valu e to its
su cces sivevalu e carr ie sacha n geo fo n ebit o n
ly.
Th epr ef ixan dr efle ctm eth o dar erecur sive ly u sedto generate th eG ra ycod e o f a n u
mber. Fo rgeneratin g
gr aycod e:
1.
2.
3.
4.
We performthis proc ess rec lusively untilall thecodes arenotuniquely identified.
5.
Decim al Numb er
B i nary Numb er
Gray
Co de
0 00 0
0 00 0
1
0 00 1
0 00 1
0 01 0
0 01 1
0 01 1
0 01 0
0 10 0
0 11 0
0 10 1
0 11 1
0 11 0
0 10 1
0 11 1
0 10 0
8
1 00 0
1 10 0
1 00 1
1 10 1
10
1 01 0
1 11 1
11
1 01 1
1 11 0
12
1 10 0
1 01 0
13
1 10 1
1 01 1
14
1 11 0
1 00 1
15
1 11 1
1 00 0
The Bas ic
Ga tes
The
basic
gates ar e
AN D , OR
& NOT
gates.
AND
gate
An AND gate is a digi tal circuit that has two or more input s and produces an output ,
which
is
the
logi cal
AND
of
all
those
input s.
It
is
opti onal
to
represent
the
L ogical
AND
with
the
The
tru th tabl e
of 2
-
i nput AND
gate.
Y
= A.B
then
o nly the
output , Y
is
the output, Y
is
and one
output ,
Y.
S im il arly, if there
are
OR
gate
AnORgate isadigi talci rcuit thathastwo ormor e input sandproduc esan o utput ,
whichisthelogi c al
OR of all those input s. This
logi cal O R
is represe nted wit h the symbol
The
the
tru th tabl e
of
2
-
input OR gate.
=A
+B
1
1
Here
A,
ar e
the
input s
and
is
the
output
of
two
input
OR
gate.
If
bo th
input s
are
then
only t he
output , Y
is
remaining combinations of
input s,
the
output , Y
is
one
output , Y.
input s
NO T
gate
NOT
gate
is
digi tal
circuit
that
has
singl e
in put
and
singl e
output .
T he
output
of
NOT
gate
is t he
of input.
Hence, the
NOT
g ate is
also call ed
as
inverter.
The
following
table shows
the
tru th
tabl e
of
NOT gate.
Here
and
ar e
the
in put
and
output
of
NOT
g ate
r especti vely.
If
the
in put,
is
then
the
output , Y
S im il arly, if the
input, A
output ,
The
following
figure
sho ws
the
sym b ol
of
NOT
g ate,
which
is
having
one
input ,
and
on e
output , Y.
This
NOT
gate produc es
an output
(Y), which
is t he
com p lem en t
of
input ,
A.
U n iver sal
gate s
B ooleanfuncti on,
which is in sum of products form by using NAND gates alone. S im il arly,
gates
alone.
NA ND
gate
NAND
gate
is
digi tal
circuit
that
has
two
or
m ore
input s
and
produc es
an
output ,
which
is t he
in version
of logical AND
of all those
input s.
The
following t able
shows the
tru th tabl e
of 2
-
inp ut
NAND gate.
A
Here A, B ar e the inputs and Y is t he output of tw o input NAND gate. Wh en both i nputs
are
just
opposi tetothatof
tw oinput
AND gate
one
output , Y.
N A ND
gate
symb ol i s represented lik e that.
NO R
gate
NOR
gate
is
digi tal
circuit
that
has
two
or
m ore
input s
and
produces
an
output ,
which
is t he
in version
of logical OR
The
the
tru th tabl e
of 2
-
i nput NOR gate
A
Ifatleas toneof
input
OR gate operati o n.
The following figure sho ws the
sym b ol
of NOR gate, which is having t wo input s A, B and
one
output , Y.
NOR
gate op erati on is
s a me as
that o f OR
gate fo ll owed
NOR
gate symb ol
is represent ed li ke that.
LOG IC CIRCUIT
B oole an
Laws
and
T heorem s
B ooleanAlgeb ra
isanalgebra,whichde alswithbinarynumbers&binaryvariables.
H ence,it isalso
call ed as B inary Algebr a or logi cal Algebra. A mathematician, named
call ed
as B oolea n variables.
volt ag es
correspondi ng to l ogic
Pos tulates
and
B asic Laws
of
B oolean
Algebra
In
thi s
secti on,
let
us
discuss
about
the
B oolean
post ulates
and
basic
law s
that
are
used
in
B oolea n
algebra.
These
are
us eful
B oole an
Postulates
C onsi der the binary nu mbers 0 and 1, B oolean variable (x ) and it s
the
B oolean
variable
or
compl em ent
of
it is
known
as
li teral
.
OR
li terals and
sho wn below.
x+0=x
+
1
x+x=x
S im il arly,
the
four
possi ble
logi cal
AND
op erati ons
among
those
li ter als
and
bina ry
numb ers
ar e
shown
below.
x.1 = x
x.0 = 0
x.x = x
These
are
the
sim ple
B oolean
post ulates.
We
ca n
verify
these
post ulates
easil y,
by
subst it uti ng
the B oolean
or
Note
The
compl ement
of
compl ement
of
any
B oolean
variable
is
equ al
to
the
variable
it self.
i.e.,
B asic
Laws
ofB oole an
Alg eb ra
Foll owing
are
the
three
b asic
laws
of
B oolean
Alg ebra.
C omm utative
law
Associative
law
Dist ributi ve
law
C omm utative
Law
If any logi cal op erati on of two B oolean va riable s give the same result ir respecti ve of
the orde r o f
those two vari ables, then that logi cal ope rati on is said to be
Com m u tative
. The
logi cal
OR &
logi ca l AND
operati ons
of two B oolea n
variables x &
y are
sho wn
below
x +y =y +x
x .y =y .x
A ND op erati on
and it is op ti onal t o repre sent. C omm utative law obeys for logi cal OR &
lo gical
AND
operati ons.
Associ ativ e
Law
If
logi c al
oper ati on
of
any
two
B oolean
va ria bles
is
performed
first
a nd
then
the
same
op er ati on
is
performed
with
the
rem aini ng
variable
gives
the
same
result ,
then
that
logi cal
oper ati on
is
said
to
be
Associative
.
The
logi cal
OR
&
logi cal
AND
op erati ons
of
th ree
B oolean variables x, y
& z ar e
sho wn
below.
x +(y +z)= (x +y )+
z
x. (y.z)
=(x.y ).z
Associative
law
obeys
fo r
logi cal
OR &
logical AND
Law
If any logi c al ope rati on c an be dist ributed to all the terms pr esent in the B oolean
operati on is said to be
Distrib u tive
. The dist ributi on of logi cal
OR
operat ions of
three
B oolean v ariables x ,
y & z are
shown b elow.
x .(y
+ z)=
x .y +x .z
+ (y .z)=
(x +y ).(x
+ z)
Dist ributi ve
law
obeys fo r
logi cal OR
AND
oper ati ons.
These
a re
the
B asic
l aw s
of
B oolean
algebr a.
We
can
ve rify
thes e
laws
easil y,
by
subst it uti ng
the B oolean
or
T he orem s
of
B oolean
Alg eb ra
The
following
two
theorems
are
used
in
B oolean
algebra.
Duali ty
theorem
theorem
Duality
The orem
This
theorem
states
that
the
d u al
of
the
B oolean
functi on
is
obtained
by
ev ery
B oolean
will
be
correspondi ng Du al
funct ion.
Let
us
make
th e
B oolean
equati ons
(relations )
t hat
we
discussed
in
the
secti on
of
B oolean
post ul ates
and
basic
laws
int o two
groups. The
these
two groups.
Group 1
Group 2
x+
0=
x.1 =
x+
1=
x.0 =
x+
x=
x.x =
x+
x+
y=
y+
x
x.y =
y.x
(y + z) = (x +
y)
x.(y.z)
(x.y).z
x.(y +
z)
x.y +
x.z
(y.z)
=
(x
y ).(x
z)
In
ea ch
row,
th ere
a re
tw o
B oolean
equati ons
and
they
ar e
dual
to
each
oth er.
We
can
ve rify
all
thes e
B oolean
equati ons of Group1 and
„Pv[’
T heorem
Thistheoremisusefulinfindingthe
com p lem en tofB ooleanfun ction
.Itstatesthat
thecompl ement
of logical OR of at l east t wo Bool ean
variabl es is equal t o the logical AND
of
each
compl emented
v ariable.
theor em
with
B oolean
variables
x a nd
can
be
repr esented
as
(x
The
dual of
the
abov e
B o olean functi on
is
Therefo re, the compl em ent of
logi cal AND of two B oolean variables is equal to the logi cal
OR of each
than
2 B oolean variables
also.
of
B oolean
Fun ctions
Till
now,
we
discussed
t he
post ulates,
basic
laws
and
theorems
of
B oole a n
algebra.
Now,
let
us
sim pli fy
some
B oolean
functi ons.
Eg
Let us
sim p lify
We
can
sim pli fy this functi on in two methods .
Method
Given
B oolean
functi on,
=
+p qr.
S tep
In
first
and
seco nd
terms
is
comm on
and
in
thi rd
and
fourth
terms
pq
is
comm on.
S o,
take
the
comm on terms by usi ng
Distrib u tive
law
.
f=
r)
S tep
The
terms
present
in
first
parenthesis
can
be
to
Ex
-
OR
operati on.
The
te rms
present
in second par enthesis
can be
using
B oolean p ostul ate
f=
(p
R
q) r
+
pq(1)
S tep
The
first
term
be
furth er .
B ut,
the
second
term
can
be
to
pq
using
B oolean p ostul ate
.
œ
f=
(p
R
q)r
pq
f = (p
R
q )r + p q
Method
Given
f=
p qr.
S tep 1
Use the
B oolea n p ostul ate
, x + x = x. That
means, the Logic al OR operati on with
any B oolean
term
ti mes.
f=
pqr +
pqr
pqr
S tep
Use
Distrib u tive
law
for
1
st
and 4
th
terms,
2
nd
and
5
th
terms,
3
rd
and
6
th
terms.
f=
p) +
q) +
r)
S tep
Use
B oolean
p ostul ate
,
+
=
f or
the
terms
present
in
ea ch
pa rent hesis .
f=
qr(1)
pr(1 ) +
pq ( 1)
S tep
Use
for
above
three
terms.
f=
qr +
pr
pq
f = pq + qr + pr
Therefo re,
the
B oolean
functi on
is
f
=
pq
qr
+pr
.
S o, we got two different B oolean functi ons after sim pli fying the given B oolean functi on
in
each
m ethod.
Functi onall y,
those
two
B oolean
functi ons
are
s a me.
S o,
based
on
the
req uirement,
we
c an choos e
one
of
those
Eg
Let
us find the
com p lemen t
of the
B oolean
functi on, f
The
compl ement
of
B oolean functi on
is
+
S tep
Use
theorem,
(x +
S tep
Use
theorem,
S tep 3
Use
the
B oolean
post ulate,
œ
=
{p +
q}
pq
S tep
Use
the
B oolean
f=
0+
pq +
f=
pq +
Therefo re,
the
com p lemen t
of
B oolean
functi on,
is
pq
.
Sum of
produc tMethod(SO P)
canonic al
sum
of
prod ucts
is
boole an
exp ressi on
that
enti rely
consi sts
of
The
In p u ts
Ou tpu t
1
we can form t he mi nterm from t he variabl e's value . Now, a colum n will be added for
and
value
is 1 wi ll remain
the
same.
In p u ts
Ou tpu t
Min term
X'Y'
1
1
X'Y
XY'
XY
Now,
we
will add
which the
o utput is
true
to
find
the
desired
canonic al
S OP (
S um
of
P roduct) expressi on.
F= X'
Y+X Y'+ XY
Convertin g
Sum
of
Prod u cts
(SOP)
to shorth an d
n otation
The proc ess of conv erting S OP form t o shorthand notation i s the same as the process o f
notation
of the
given SOP
expressi on.
o
Write
the
given SOP
expressi on.
Find
the
shorthand
notation of
all
R eplace
the
mi nterms wi th
their
shorthand notations
in
the given
expressi on.
Examp le:
F =X 'Y+XY'+X Y
1.
Firstl y,
we
writ e
the
S OP
expressi on:
X'Y+XY' +XY
2.
Now,
we
find
the shortha nd
notations of
the
mi nterms
X'Y = (01)
2
=m
1
XY' = (10)
2
=m
2
XY
(11)
2
m
3
3.
In
the end,
we
r eplace all
the
mi nterms
with
their shorthand
notations :
F=m1+m2+m3
C onv erting
shorthand
nota tion
to
SO P
exp ression
The proc ess of conv erting shorthand notation t o S OP i s the reverse p roc ess of
converting
S OP
expressi on
to
shorthand
notation.
Let's
see
an
ex a mpl e
to
understand
thi s
conversion.
Examp le:
Let us
assum e that we h a ve a boolean functi on F, which defined on two v ar iables X and Y.
Th e
mi nterms
for
ar e
exp ressed as
Now,
from
we
will find
the
S OP expressi on.
The
B oolean
f uncti on
has
two
input
variables X
and y
i.e., 1
st
,
2
nd
, and
3
rd
S o,
F=
m1
m2
m3
F=
01 +
10
11
Now, we r eplac e z eros with eit her X' or Y' an d ones with eit her X or Y. S im ply, the
compl ement variable is used when the variable value is 1 otherwise the non
-
compl ement
variable
is us ed.
F=01+10+11
F=
A'B + AB' +
AB
Karnaugh
Map(K
-
Map)
m ethod
Karnau gh
int roducedamethodforsim pli ficati onofB ooleanfuncti onsinan
easy
way.Thismetho d
isknownasKarnaughm apmethodorK
-
mapmet hod.Itisagraphi cal
cell sfor
singl e
for
2 to
5Variables
K
-
Map
method
is
most
suit able
for
mi nim izing
Boolean
of
va r iables
to
va riables.
No w,
let us
discuss about t he
K
-
Maps
fo r 2 to
5 variable s one
by
one.
Variable
K
-
Map
The
number
of
c ell s
in
2 variable K
-
map is
four,
s ince
the
number
of v aria bles
is
two.
The
following figure
shows
2 variab le K
-
Map
.
There
is onl y
of grouping
4 adjacent
mi n terms.
The
possi ble
combi nati ons
of
grouping
adjacen t
min
terms
are
{(m
0
,
m
1
),
(m
2
,
m
3
),
(m
0
,m
2
) and
(m
1
,
m
3
)}.
Variable
K
-
Map
The
number
of
cell s
in
variable
K
-
m ap
is
eig ht,
since
the
numbe r
of
variables
is
thr ee.
The
following figure
shows
3 variab le K
-
Map
.
There
is onl y
of grouping
8 adjacent
mi n terms.
(m
4
,m
5
,m
7
,m
6
),
(m
0
,m
1
,m
4
,m
5
), (m
1
,m
3
,m
5
,m
7
), (m
3
,m
2
,m
7
,m
6
) and (m
2
,m
0
,
m
6
,m
4
)}.
The possi ble combi nati ons of grouping 2 adjacent mi n terms are {(m
0
,m
1
), (m
1
,m
3
),
(m
3
,
m
2
),
(m
2
,
m
0
),
(m
4
,
m
5
),
(m
5
,
m
7
),
(m
7
,
m
6
),
(m
6
,
m
4
),
(m
0
,
m
4
),
(m
1
,
m
5
),
(m
3
,
m
7
) and
(m
2
,m
6
)}.
If
x=0,
then 3
variable K
-
map
becomes
2 variable K
-
map.
Variable
K
-
Map
The
number
of
cell s
in
variable
K
-
map
is
sixt e en,
since
the
number
of
variables
is
fou r. The
following
figure
shows
4 variab le K
-
Map
.
There
is onl y
of grouping
16 adjacent
mi n terms.
Let R
1
,R
2
,R
3
and R
4
represents the mi n terms o f first row, se cond row, thi rd row and
fourth ro w
respecti vely. S im il arly, C
1
,C
2
,C
3
and C
4
represe nts the mi n terms of first
colum n,
second colum n,
thi rdcolum nand fourth c olum nrespecti vely. The possi ble
R
1
),
(C
1
,
C
2
), (C
2
,C
3
), (C
3
,C
4
),(C
4
,C
1
)}.
If
w=0,
then
4
variable
K
-
map
becomes
variable K
-
map.
Variable
K
-
Map
The
number
of
cell s
in
variable
K
-
map
is
thi rty
-
two,
since
the
numb er
of
variabl es
is
5. The
following figure
shows
5 variab le K
-
Map
.
There
There
ar e
two
of
grouping
16
adjace nt
min
terms.
i.e.,
grouping
of
min
terms
from m
0
to m
15
and
m
16
to m
31
.
If
v=0,
then 5
variable K
-
map
becomes
4 variable K
-
map.
In
the
above
all
K
-
maps,
we
used
ex clusi vely
the
min
terms
notation.
S im ilarly,
you
can
use
exclusi vely
the
Min im ization
of
B oolean
Fun ctions
using
K
-
Maps
we
will
g et
the
B oolean
functi on,
which
is
in
stand ard
su m
of
p rod u cts
form
aft er
the K
-
map.
the K
-
map.
Foll ow
these
ru les
for
si m p lifyin g
K
-
m ap s
in
order
to
get
standard
sum
of
products
form.
pro duct
terms are
vali d.
C heck for the possi bil it ies of grouping maximum number of adjac ent o nes. It shoul d
be powe rs of
two. S tart from highest power o f two and upto l east powe r of two.
power
is zer o.
Each g rouping will give eit her a li teral o r on e pr oduct term. It is known as
p rim e
im p licant
. The
prime im pli cant is said to be
essential p rim e im p licant
, if atl e ast
singl e
is
not
covered
with
any
other
groupings
but onl y
that
grouping
covers.
Note down all the prime im pli cants and essential prime im pli cants. The simpl ified
B oolean functi on
contains all essential pri me impl icants and only t he requir ed prime
im pli c ants.
Note 1
will be
repres ented wit h
K
-
map.C onsi der
a djacent
ones.
Inthose
cas es,
treat
the
value as
Eg
Let
us
sim p lify
the
following
B oolean
functi on,
f(W,
X,
Y,
Z )=
WY
using K
-
map.
The
given
B oolean
funct ion
is
in
sum
of
products
form.
It
is
having
vari ables
W,
X,
&
Z. S o,
we
requir e
variab le
K
-
m ap
.
The
variab le
K
-
m ap
with
ones
correspondi ng
to
the
given
product
terms i s shown in t he
following figure.
Here,
1s
are
pla ced in
of
K
-
map.
The
cell s,
which
a re
co mm on
to
the
int ersecti on
of
R ow
and
colum ns
&
are
co rrespondi n g
to t he product t erm,
.
The
cell s,
which
ar e
co mm on
to
the
int ersecti on
of
R ows
&
and
col umns
&
are
correspondi ng to t he
The
cell s,
which
ar e
co mm on
to
the
int ersecti on
of
R ows
&
and
c olum n
are
co rrespondi ng
to t he
product t erm,
Thereare nopossi bil it iesofgroupingeit her 16adj acenton esor8adjac ento nes.Ther ea re
variab le
K
-
m ap
with
these
three
grou p in gs
is shown
in
Here,
we
got
three
pri me
im pli cants
WY
&
All
these
prime
im pli cants
are
e ssential
because
Two
ones
(m
8
&
m
9
)
of
fourth
row
grouping
are
n ot
covered
by
any
other
groupings.
Only
fourth
row grouping cove rs those
two ones.
S ingl e
one
(m
15
)
of
square
shap e
g rouping
is
no t
covered
by
any
othe r
groupings.
Only
the
square
shap e
Two
ones
(m
2
&
m
6
)
of
fourth
colum n
grouping
are
not
cove red
by
any
o ther
groupings.
Only
fourth column grouping covers those
two on es.
Therefo re,
the
sim p li fied
B oolean
fun ction
is
+WY
+
Foll ow
these
ru les
for
si m p lifyin g
K
-
m ap s
in
order
to
get
standard produ ct
of
sums
form.
at
r espe cti ve
Max
term
c ell s
in
the
K
-
map.
If
the
B oolean
functi on
is
given
as
the
given sum ter ms are
v ali d.
C heck
for
the
of
grouping
maximum
number
of
adjac ent
z eroe s.
It
shoul d be powe rs of
two. S tart from highest power of two and upto lea st power of
two.
Highest
power
is
equal
to
the
number
of
variabl es
con sidered
in
K
-
map
and
le ast
power is zero.
term. It is
kno wn as
p rim e
im p li can t
. The prime
im pli cant is said to be
essential p rim e im p li can t
, if atl east
singl e
is
not
covered
with
any
other
groupings
but onl y
that
grouping
covers.
Note down all the prime im pli cants and essential prime im pli cants. The simpl ified
B oolean functi on
contains all essential pri me impl icants and only t he requir ed prime
im pli c ants.
Note
K
-
map.C o nsider
adjacent
z eroes.
In
those
c ases,
treat
the
value as
Pair,
Quad
and
O ctet
:
R emove the vari able whic h changes it s st ate from c ompl emented to
uncompl emented
or vice
versa.P air r emoves one
v ariable
only.
:
R emove the two variabl e s which chang e their stat es.A quad
r emoves
two
variables.
Octet
R ed u ction Rul e
:
R emove the three v ariabl es which chan ges their st ate.Octet r emoves
thr ee
variables.
Map Rolli n g
:
Map rolling means roll the map consi dering the map as if it s left edges are
touching the
right edges and top edge s are touching
bott om edges.Whil e marking the p airs
quads
and octet, map must
be rolled.
Overlap p in g Group s
:
Overlapping m eans s ame 1 can be encircl ed more than once.
Ov erlapping
Red u n d an t Group
:
It i s a group whose all 1's are overlapped by othe r gro ups. R edundant
groups
must
be removed. Remov al
of
redundant
group
leads
to
much simpl er
expressi on .
Eg
R epresent t he
follo wing
boolean expressi on
in
aK
-
map
and
x'yz
x'yz'
xy'z'
xy'z
S o luti on
:
The
K
-
map is
as
follows :
x'y +
xy'
E x.
:
S impl ify the
following
boolean expressi on
using
K
-
map.
F
a'bc
ab'c'
ab c
a bc'
S o luti on
The
K
-
map is
as
follows :
=
bc
a c'
}v[ ı
Care
C ond itio n
K
-
Map
to form a
grouping of
as
eit he r
or
or
we
c an
sim ply
ignore
that
cell .
Therefo re,
c ondit ion
can
help
us
to
for m
large r
group
of
cell s.
-
Maps r epres enti ng a invalid
and
1111
a re
invalid
or
unspecified.
Th ese
a re
c all ed
c ares.
Also,
in
d esign
of
4
-
bit
BCD
-
to
-
XS
-
3 code conv erte r, the in put
combi nati ons 1010, 1011, 1100, 1101, 1110, and 1111 are
car es.
standard
S OP
functi on
having
car es
c an
be
converted
int o
P OS
exp ressi on
by
cares as
they a re, and wri ti ng the mis sing m interms of the SOP form as the
maxterm
of
P OS
form.
S imi larly,
P OS
functi on
having
ca res
can
be
conv erte d
to
S OP
form
keeping
the
c ar es
as
they
a re
a nd
writ e
the
mi ssi ng
maxterms
of
the
P OS
expr essi on
as
the
mi nterms
of
S OP
express ion.
Eg
Minimise
the
following
function
in
S OP
mi nimal
form
using
K
-
Maps:
f =
Exp lanat i on
The
S OP
K
-
map
for
the
g iven
expr essi on
is:
Therefo re,
S OP
mi nim al
is,
Eg
Minimise
the
following
function
in
S OP
mi nimal
form
using
K
-
Maps:
Writing
the
given
express ion
in
P OS
form:
The
P OS
K
-
map
for
the
g iven
expr essi on
is:
Therefo re,
P OS
mi nim al
is,
F(A, B , C , D)
m(0, 1,
2,
3, 4, 5)
+
d(10, 11, 12, 1 3, 14, 15)
F(A,
B , C , D)
M(6, 7,
8, 9)
14, 15)
A'(B ' +
C ')
BC'+
B D' +
A'C'D
Eg
Mini mi se
the
following
functi on
in
S OP
mini mal
form
using
K
-
Maps:
F(A,
B,
C,
D)
m(1,
2,
6,
7,
8,
13,
14,
15)
d(3,
5,
12)
The
S OP
K
-
map
for
the
g iven
expr essi on
is:
Therefo re,
AC'D' + A' D
+
A'C
AB
P rodu ct
of
Sum
Method(POS)
canonic al
produ ct
of
s um
is
boolean
expressi on
that
enti rely
c onsi sts
of
input s
of
the
boolean
functi on
whose
output
is
true
when
onl y
one
of
the
input s
is
set
to
true.
The
truth tabl e
is as
follows:
In p u ts
Ou tpu t
1
0
In ou r
mi nterm and maxt erm secti on, we l earn ed a bout how we can form t h e maxterm from
remain
the same.
In p u ts
Ou tpu t
Min term
X'+Y'
0
1
X'+Y
X+Y'
X+Y
Now, we will mul ti ply all t he mi nterms for which the output i s false to find the desired
canonic al
expressi on.
C onv erting
Produ ct
of
Sum
(PO S)
to
shorthand
notation
findingshorthand
notation for maxterms. There ar e the following steps used to find the
shorthand
notation of the
given P OS
expressi on.
Write
the
given POS
expressi on.
Find
the
shorthand notati on
of
all the
maxterms.
R eplace
wi th t heir
shorthand notations
in t he
Eg
(X'+Y').(X+Y)
1.
Firstl y,
we
will
writ e
the
P OS
expressi on:
2.
Now,
we
will
of the
maxterms X'+Y'
and X + Y.
3.
In
the
end,
we
will repla c e
all the
mi nterms wi th t heir
shorthand notations:
C onv er ti ng
s hort han d
nota t ion
to
P OS
ex pre s si on
The proc ess of conv erting shorthand notation t o P OS i s the reverse p roc ess of
conv erting P OS
expressi on to s horthand notation. Let's s ee an ex a mpl e to understand thi s
c onversion.
Eg
Let us
assum e that we h a ve a boolean functi on F, defined on two va riables X and Y.
Th e
maxterms
for the
functi on F
ar e
follows:
Now, from t his expressi o n, we find the POS expre ssi on. The B oolean funct ion F has two
input
variables X
and
and th e
output of F=0
for
M3, i .e., 1
st
,
2
nd
, and
3
rd
S o,
Next, we r eplac e ze ros w it h eit her X or Y and on e s with eit her X' or Y'. Si mpl y, if the
value
of the v ariable
is 1,
then we take the co mpl ement of that variabl e, and if the valu e of the
variable
is 0, t hen we
tak e
the
variable
"as is" .
=
(X' +Y'). (X+ Y)
X'+Y'
(00)
2
M
0
X+Y
(11)
2
M
3
F=M
0
.M
3
F=
M1.M2.M3
F=
01.10.11
F
F=01.10.11
A' +B ).(
A'+B ')
P ro duct
of
Su m
S im pl ific at i on
follo ws:
1.
cell and
fill t he remaining cell s
w it h one's.
2.
We
will
make
the
groups
of 'z eros'
not
for
'ones'.
3.
Now,
we
will
define
the
boolean
group as sum
-
terms.
4.
At last, t o find thesim plified boolean exp ressi on i n the POS form, we will combi ne
the
sum
-
terms
of all indi vidual groups.
Let's
take
some
ex ampl e of
2
-
vari able,
3
-
vari able,
4
-
variable and
5
-
v ariable K
-
map
ex ampl es
Eg
Eg
Y=(A
+B +
C') + (A
B'+
C') + (A'
+B'+
C)
+ (A' +
B ' + C')
S im pl ified
ex pre s sion:
Y=(A +
C ')
. (A' +
B ')
Eg
A‰~ïU ñU óU ôU í ìU í íU í îU í ï
S imp li fied
exp ressi on :
Y=(A
C')
.(A'
B ')
Ka rna ug h
ma p:
fo r
B oolean
functi on
:
Ci rcuit
i mplement at i on:
CD+
CD+
(C
+
+
D)
B (C
w=
A+
BC
BD
A+
B (C
D)
Introduct ion tocombi nat ional circuit s
:
A c ombi nat i onal c i rcui t c onsi st s of l ogi c gat e swhose out put s at any t i me are de
te rmi ne df rom onl y t he pre se nt
c ombi nati on of i nput s.
A c om bi na t i ona l c i rcui t pe rform s a n ope ra t ion tha t ca n be spe ci fie d l ogi cal l y
bya se t of Bool ea n func t i ons.
Se que nt i al c i rc uit s:
A n al ysi s Pr oc ed ur e
The analysi s can b e pe rfo rmed manuall y by findi n g the Boolean functi ons or truth t able
or by usi ng a
comput er simul ati on program.
The first s tep in the analy sis is t o make that the given circuit is combi nati onal or
sequenti al.
Once the logic diag ram i s verified to be combi nati onal, one can p roce ed to obtain the
output B oolean
functi ons or the truth t abl e.
To obtain the output B oolean functi ons from a logi c diagram, pro ceed as fo ll ows:
1.
Label all gate output s tha t are a functi on of input variables wit h arbitr ary sy mbol s.
Determi ne the
B oolean functi ons for e a ch gate output.
2.
Label t he gates th at are a functi on of input variable s and previous ly l abeled gates wit h
other arbitr ary
symb ols. Find t he B oolean functi ons for these g ate s.
3.
R epeat t he pro cess out li ned in s tep 2 until the outputs of the circuit ar e obta ined.
4.
B y repeated substi tut ion of previous ly defined fun cti ons, obt ain t he output B oolean
functi ons i n ter ms of
input variables.
E xam ple
:
F1 =
T3 + T2
=í=
The Boo lean func tions for the abo veo utputs ar e,
Der i ve
trut h
tabl e
fr om
logic
d i agr am
We
can
d er i ve th etrut h
tabl e
in
T ab l e
4
-
1
by
u sin g
th e ci r cu it
of
Fi g. 4
-
2.
Design
p roced u re :
Th ed esign
of
comb in at ion al
circu it s
st art s
f rom
t he sp ecificat ion
of
t h e design
ob ject ive an d
cu lmin ates
in
logic
circuit
d iagram
or a
set of
Boolea n
fu n ct ion s
f ro m
w h ich
th e
logic
d iagram
can
be
ob t ain ed .
Th e
pro cedu re
in volved
in volves
the
f ollow in g
step s,
Fro m
of
the
circu it ,
d etermine
th e
req u ired
n u mb er of
inp u t s
and
outpu t s
and
assign
a
symb ol
to
ea ch .
D er ive
th e
t rut h
t ab le
t hat
d efin es
th e
req uired
rela t ion sh ip
b etwe en
in pu t s
an d
outp ut s.
Ob t ain
the
fu n ct ion s f or ea ch
ou tp ut
as
f un ct ion
of
th e
inp ut
variab les.
D raw
the
logic
d iagram
an d
verif y
th e
of
the
d esign .
E x a mple :
Design a combi na ti onal logic circuit with three in p uts , theoutp ut is a t logic 1 whe n
more
than one in p uts are at logic 1.
Solution:
Assume
A,
B,
are in puts an d
Y is
outp ut
T ruth
table
K ma p
Simplification
Boole a n
Expression
Y=AC + BC
+
AB
Logic
Diagram
Bi na ry
A dder
-
Subtra cto r:
HALF
-
ADD ER
:
add ition
of
two
b its
is
c alled a
H alf
-
ad d er
is
used
to
add
two b it s.
Therefore,
half
-
ad d er
has
two
The
Boolea n
for
S UM an d CARRY
are,
S UM =
CARRY = AB
S UM outp ut isE X
-
OR gat e a nd the CARRY outp ut is AND
gat e.
in clud in g the
NAND
gat es
only.
Tru t h ta ble
Inputs
Output
0
1
1
1
Inputs
Outputs
Carry
Sum
1
1
FU LL
AD D ER
one
that
per for ms
the
addition
of
thr ee
bits (two
signif ic ant
bits
and
pr evious c ar r y)
is
a
full adder
.
(x
y)
ïï
+
ï
x yz +
±ï
xy
K
-
ma p
simplifications
Inputs
Outputs
Cin
Cout
Sum
0
1
0
1
T ruth
table
Ca rry
Prop a ga t ion
Th e sign alf ro m C
i
t ot h eou tp ut carry C
i+1
, pro p agat est h rou gh an AND and OR
to
ou tp ut .
Becau se
th e
d ela y
w ill
af fect
t he
outp u t
sign als
on
d if f erent
t ime,
so
th e
sign als
are
given
en ou gh
t ime
to
get
the
p recise
and
st ab le
ou tp ut s.
The
F ull
Ad d er
can
be
implemen t
using
Two Ha lf
Ad d ers
and OR
gates
The
exp ressi on
for
sum
is
The
E xp ressi on
for
carry
is
Logic
Diagram
T ruth
table of Hal f
adder
Logic
Diagram
K
-
ma p
for Diffe re nc e
a nd
Borrow
Subtractor
an d F ull
S ubt ract or.
Rule s
0
-
= 1 wit h
b orro w
Ha lf
Subtractor
H alf Subt ract or is used for subt ract in g one sin gle b it b inary d igit from an other single
b it b in ary
d igit. The t ruth tab le ofH alf
S ubt ract or is shown b elow.
Inputs
Outputs
Difference
Borrow
0
F ull
Subtractor
logic
Circuit
Which
is
used
for
Three
S in gle
b it
Bin ary
d igit
is known a s F ull
S ubt ract or. The i np uts are A, B, Bin an d the outputs are D and Bout.
K
-
ma p
for D
a nd
Bout
Logic
Diagram
T ruth
table
We
can
further
simp lify
the
functi on
of
the
Differen ce
(D)
S imp lified
L ogic
diagram
Mag nitude
compar ator
:
Th eequ alit y rela t ion o f each p air of b it s can be exp re ssed logicallyw ith an
exclu sive
-
N OR
f un ct ion
as:
=A
3
A
2
A
1
A
0
;
B=B
3
B
2
B
1
B
0
x
i
=A
i
B
i
+A
i
i
ï
for i = 0, 1, 2, 3
(A
B) = x
3
x
2
x
1
x
0
Ma gnitude
Compa ra tor
Definition
A
magni tud e
comp arator
is
comb in at iona l
circuit
that
comp ares
two
numbe rs
&
to
d et ermin e whet her:
>
B,
or A
=
B,
orA<B
Inputs
Outputs
Bin
Bout
1
0
0
0
We in sp ect th e rela t ivemagn itu d es of p airs of MSB. If equ al,w e comp are t he
next
low er
sign if icant
p air of
d igit s
un t ila
pair
of
u nequ al
d igit s
is
re ached .
If the co rrespo nding digit of A is 1 and t hat o fB is0 ,we co nclude that
A>B.
(A>B)=
A
3
3
+x
3
A
2
2
+x
3
x
2
A
1
1
+x
3
x
2
x
1
A
0
(A<B)=
3
B
3
+x
3
2
B
2
+x
3
x
2
1
B
1
+x
3
x
2
x
1
0
B
0
Decoder
Decode r
is
comb in at iona l
circuit . It has N
in p uts an d 2
N
outp uts.
Th e
d ecod er
is
calle d n
-
to
-
m
-
lin e
d ecod er ,
w her e
uGî
n
the
d ecod er
is
also
u sed
in
con ju n ct ion
w it h
oth er
cod e
con vert er s
su ch
as
BCD
-
to
-
seven _se gmen t
decod er.
3
-
to
-
8 lin e d ecod er : Fo rea ch possib le inp u t comb in at ion , th er e are seven
ou tp ut s
t h at
are
equ al
to
0
and
on ly
one
th at
is
eq u al
to
1.
to
Decoder
It
has 2
in p uts an d
2
2
outputs.
C ircuit
Diagram
T ruth
Table
Logic
Diagram
to 4
Dec ode r
wi th
Ena ble
input
T ruth
Table
Logic
Diagram
to
8
Decoder
It
has 3
in p uts
and
2
3
outputs.
Logic
Diagram
Encoders
E ncod ers
is
2
N
inp uts
an d gives out N
outp uts,
to
Encoder
It
has
2
2
in p uts an d
outputs.
T ruth
Table
P riority
Encoders
A Priorit y
E ncod er
wor ks
opp osite
of the
d ecod er
circuit .
Ifmore
to
2
Priori ty
Encoders
D0
-
D3
in p uts
A 1, A 0
outputs
Active (A)
Outp ut
is
vali d
when at
lea st
one
in p ut is
act ive
. i, e,
A=1
T ruth
Table
K
-
ma p
simplification
Logic
Diagram
to
Priori ty
Encoder
Mu l tip l exer
(Mux)
M ultip lexer
is
circuit
that
select s
b in ary
in formati on
f r om one
of
many in p uts
an d directs it in to sin gle outp ut.
The
select ion
of
p articul ar
in p ut
is
controlled
by
a
set
of
select ion
in p uts,
n se lect lin e (control inp ut) and one outp ut
It
also
called
as
Data
selector
.
2 to 1
Multiplexer
has
2
1
in p uts,
select
line
an d one
output
Circ uit
diagram
4 to 1
MUX
4 to
M UX has 2
2
in p uts, 2
select
line
and
one
output
8 to1
MUX
8 to1 M UX has
2
3
= 8 in p uts,
one
output
MUX
as
unive rsa l
c ombina tional
modules
E ach
mint erm
of
the
functi on can
be
map p ed
to
d ata
in p ut
of
the
multiplexer.
F or
ea ch
row
the
output is
d ata i np ut of themux to
1.
S et
1:
Implemen t
the
followin g Boolea n
f uncti on
using
4: 1
ááááá
T ruth
Table
Multiple x e r
Implementation
E x a mple
2:
Impl e me nt
func tion
us ing
8 :1
MUX
F (A, B, C, D)
áá
4,
11, 12
-
15)
Dem ultiplexer
(DEMUX)
Demul tiple xe r
h as
2
n
ou tp ut s
select
lines,
on e
in pu t . A
de multiple xe r
is also calle d a d at ad ist rib ut or .
1
-
to
-
2
demultiplexer
has
2
2
outp uts
select
line s,
one
input.
T ruth
Table
Logic
diagram
1
-
to
-
4
Demultiplexer
It
has
o ne input,2
selec t
lines,4
outputs
T ruth
Table
Logic
Diagram
1
-
to
-
8
Demultiplexer
H as
one
in p ut 3
-
select line s
8
-
outputs
T ruth
Table
Logic
Diagram
1
-
to
-
8
DEMUX
us ing
T wo
1
-
to
-
Demultiplexers
1
-
to
-
8
d emulti p lexer
can
be
imp lement ed
b y using
two
1
-
to
-
4
d emulti p lexers
wit h
a p rope r
cascad in g.
App lications
of
Demultiplexer
Syn ch ro nou s
d at a
tran smission
systems
Boo lea n
fu n ction
implemen t at ion
(as
we
d iscu ssed
fu ll
sub t ract or
fu n ction
above)
D at a
systems
Com b in at ion al
circu it
design
Au t omat ic
t est
eq u ip men t
systems
Se cu rit y
mon itor in g
systems
(fo r
sele ct in g
su rveillan ce
came ra
at
at ime), et c.
In
thefigure
, thehighes tsignifican tb it Aof
the select ion in p uts are conne cted to the
en ab leinp utssuchthat it iscomp lement ed
b efore conne ctin g to one DE MUX and to
the other it is d irectly
conne cted. By
this
configurat ion, when A is se t t o zero, one o f
the outp ut line s
from Y 0 to Y3 is select ed
b ase d on the comb inat ion of select line s B
an d C. S imilarly, whenA isset toone, b ased
on the select line s
one of the outp ut lines