0% found this document useful (0 votes)
4 views236 pages

Minor s4 4

The document provides an overview of digital design and computer organization, focusing on number systems and codes such as binary, decimal, hexadecimal, and octal. It explains the characteristics of each number system, conversion methods between them, and basic digital logic concepts including gates and combinatorial circuits. Additionally, it covers ASCII code and its role in data communication within digital computers.

Uploaded by

mparavind50
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
4 views236 pages

Minor s4 4

The document provides an overview of digital design and computer organization, focusing on number systems and codes such as binary, decimal, hexadecimal, and octal. It explains the characteristics of each number system, conversion methods between them, and basic digital logic concepts including gates and combinatorial circuits. Additionally, it covers ASCII code and its role in data communication within digital computers.

Uploaded by

mparavind50
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 236

Digit al Desi gn a nd Comp uter Organ izat ion

M o dule 1:

Num b er S ystem s an d Codes


: B inary Number syst em, B inary to decim al, decim al to binary, he xa decim al,
ASC II cod e, Exc ess,3 C ode, Gray cod e. Digit al Logic: The B asic Gates, NOT, OR, AND,
Unive rsal
Logic
Gates, NOR, NA ND.

Com b in atorial L ogic Circu its


: B oolean Laws and Th eor ems. , S um of P roducts method ,Tr uth table to
Karnaugh Map

P airs, Quads, O ctets

S im pli ficati ons

Com b in ation al Circu its

Analysi s and Design P r ocedures, B ina ry Adde r, S ubtractor, De cim al Add er,
Magnit ude C omparator, Decode r, Encod er, Multi plexers, Demul ti plexers

Number Sy stems a nd Codes

N umber Systems

I na digital system,the systemc an understand only the


optionalnumbersystem.I nthesesy stems,digits
sy mbolsareused to representdiff erentvalues, dependingon theindexfromw hic hit settledin
thenumber
sy stem.

Types ofN umber Sys tem

I nthe digitalc omputer, there arevarious ty pesof


numbersy stemsused for representinginfo rmation.
1.

Bina ryNu mberSyst em

2.

DecimalNu mberS yste m

3.

Hexad ecimalNu mber System

4.

OctalNu mberSy stem

Bi na ry Numbers ys tem

binary numbersy stemisused inthe digitalc omputers. I nthis numbersystem,it c arriesonly


two digits,
either 0 or 1.

Thereare two ty pesof elec tronic pulsespresentina binary numbersystem.

i.

the absenc eof anelec tronic pulserepresenting'0 '


.

ii.

the presenc eof elec tronic pulserepresenting'1 '.


E ac hdigitiskno wnas abit.

A four
-
bitcollec tion (1 101 ) isknow nas a nibble.

A c ollec tion of eight bits (11 00 10 10 ) isknow nas a by te.

Cha r a cter istics :

1.

I t ho ldso n lytwo values, i.e., eith er 0o r 1.

2.

It
isalso kn o wn asth e ba se2 nu mbers ystem.

3.

Th epo sition o fadigit repr esen tsth e0 po wer o fth eba se(2 ).E xamp le: 2
0

4.

Th epo sition o fth ela stdigitrepr esen ts th exp o wero fth eba se (2).E xamp le:2
x
,wh erexrepr esen ts
th elast po sition , i.e., 1

D eci mal Number Sys tem


Thedec imalnumbersy stem c ontains tendigitsfrom0 to 9(ba se1 0).

Here,the succ essiveplacevalue orposition, leftto thedec imalpointholds units,tens,


hundreds,
thousands,andso on.

Theposition inthe dec imal numbersy stem


specifiesthe pow erof the base(1 0). The 0 is theminimum
value of thedigit,and9 is themaximumvalue of thedigit.

Fo r examp le, th e decimal n u mber 254 1 consist o f th e digit 1 in th e u n it po sition, 4 in


th e tens
po sition , 5 in th e h un dreds po sition , an d 2 in th e th o u san d po sition s an d th e valu e
will be written
as:

(2×1000) + (5×100) + (4×10) + (1×1)

(2×10
3
) + (5×10
2
) + ( 4× 10
1
) + (1×10
0
)

2000 + 500 + 40 + 1

254

Octal Number Sys tem


Theoc tal number system has base8(means ithas only eightdigits
fro m0 to 7 ).

With the help of only three bits, an oc tal number is represented.

E ach set of bits has a distinc t value


betw een0 and 7.

Cha r a cter istics :

1.

A n o ctaln u mbersyste mcarr ies eigh t digits s tar tin g fro m0, 1, 2, 3, 4, 5, 6, an d 7.

2.

I t isalso
kn o wn asth e ba se8 nu mbers ystem.

3.

Th epo sition o fadigit repr esen tsth e0 po wer o fth eba se(8 ).E xamp le: 8
0

4.

Th epo sition o fth ela stdigitrepr esen ts th exp o wero fth eba se (8).E xamp le:8
x
,
wh erexrepr esen ts
th elast po sition , i.e., 1

Num b er

Octal Nu m b er

0
000

001

010

011

Exam ples:

(273)
8
, (5644)
8
, (0.53 65)
8
, (1123)
8
, (1223)
8
.

100

101

110

7
111

Hexa deci mal N umber Sys tem

Thenumbersy stemhasa baseof 1 6 means there aretotal16 symbols(0 , 1, 2, 3,4 , 5, 6, 7 , 8,


9 , A, B,
C, D ,
E , F) usedfo r representinga number.

Thesingle
-
bitrepresentation of dec imalvalues10 , 11 ,1 2 ,1 3, 14 , and1 5 arerepresented by A,B ,
C,D , E ,
andF.

Only 4 bitsare requiredfor representinga number ina hexadec imalnumber.

E ac hset of bitshas a distinc tvalue betw een 0and 15 .

Cha r a cter istics :

1.

I t hasten digits fro m0 to 9an d 6letters fro m A to F.

2.

Th eletters fro mA to F definesn u mbers fro m 10 to 15.

3.

I t isalso kn o wn asth e ba se16n u mbersyst em .


4.

I n h exad ecimaln u mber, th epo sitiono fa


digitrepr esen tsth e0po wero fth eba se(16).E xample:16
0

5.

I n h exad ecimal n u mber, th e po sition o f th e last digit repr esen ts th e x po wer o f th


e ba se(16).
E xamp le: 16
x
, wh erex
repr esen tsth e last po sit ion , i.e., 1

Binary N um ber

Hexadecim al Num ber

0000

0001

0010

0011

0100

0101

5
0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Exam ples:
(FA C2)
16
, (564)
16
, (0A BD5)
16
, (1123)
16
, (11F3)
16
.

N umber Ba se Co nversi o n

1.

Bina ryto o th er Nu mber


System s.

2.

Decimalto o th er Nu mberSyste ms.

3.

Octalto o th er Nu mberSyst ems.

4.

Hexad ecimalto o th er Nu mberSystem s.

Bi na ry toD eci mal Co nversio n

Theproc essstarts frommultiplying thebitsof binary numberw ithits


correspondingpositionalw eights.
And
lastly, w eaddall thoseproduc ts.

Exa mp le 1: (10110.001)
2

We multiplied each bit o f (10110 .0 01)


2

with its respectiv e po sition al weigh t, an d last we add th e


pr o du ctso fallth ebits with its weigh t.

(1 01 1 0 .0 01 )
2
=(1×2
4
)+ (0×2
3
)+(1×2
2
) +(1×2
1
)+

(0×2
0
)+

(0 ×2
-
1
)+(0 ×2
-
2
)+(1×2
-
3
)
(1 01 1 0 .0 01 )
2
=(1×16)+(0×8)+ (1×4)+ (1×2)+

(0×1)+

(1 01 1 0 .0 01 )
2
=16+0+4+2+0+0+0 +0. 125

(1 01 1 0 .0 01 )
2
=
(2 2 .1 2 5 )
10
D eci mal to o th er N umber System

Th edec imaln u mbercan be


an int eger o rflo ati n g
-
po int int eger. Wh en th edecima ln u mberi sa flo atin g
-
po int int eger, th en we con vert bo th pa rt (in teger an d fractio n al) o f t h e decimal n u
mber in th e iso late d
for m(ind ividu ally). Th e re ar e th e follo w ing st eps th at ar e u sed to c o n vert t
h e decimal n u mber int o a
similar n u mbero fan y ba se

'r'
.

1.

I n th e first step, we pe rfo rm th e division o pera tio n on int eger an d su cces sive pa rt
with ba se

'r'
.
We wil l list do wn all th e remain ders till th e q u o tien t is zero . Th en we fin d o u t th e
remain ders in
reverse o rd er for getti n g th e int eger pa rt o f th e equ ivalen t n u mber o f ba se

'r'
. I n th is, th e least
an d mo st sign ifican t di gitsar edeno tedby th efirst an d thelast r em ain ders.

2.

I n th en extstep, th emultiplicatio n o peration isdo n ewith ba se

'r '

o fth efractio n alan dsu ccessiv e


fractio n . Th e carr ies ar e n o ted u n til th e resu lt is zero o r wh en th e requ ired n u
mber o f th e
equ ivalen t digit is o bt ain ed. Fo r getting th e fractio n al pa rt o f th e eq u ivalen t n u
mber o f ba se

'r '
,
th en o rmalsequ en ceo fcarr ying is con sidered .

D eci mal to Bin ar yC on ver si on

Fo r co n vertin g decimalto bin ar y, th erear etw o stepsrequ ired to per for m, wh ich ar eas
foll o ws:

1.

I n th e first step, w e pe rfo rm th e division o peratio n on th e int eger an d th e su cces


sive qu o tien t with
th eba seo f
bin ar y(2).

2.

Next, we perfor m th e multiplicatio n o n th e int eger an d th e su ccessive qu o tien t with


th e ba se o f
bin ar y(2).

Exa mp le 1: (152.25)
10

Step 1 :

D ividethe number152 andits suc c essivequotientsw ithbase2 .

Oper a ti on

Quoti e nt

Remaind er

1 52 /2

76
0
(LSB)

7 6 /2

38

3 8 /2

19

1 9 /2

9 /2

4 /2

2 /2

1 /2

0
1 (M SB)

(152)
10
=(10011 000 )
2

Step 2 :

No w, perfo rmth emultiplicatio n o f0. 27 an d s u ccessiv efractio n with ba se2.

(0.25)
10
=
(.01)
2

H exa
-
d eci mal to Deci mal Con ver sion

Th epr o ces so f con vertin gh exad ecimalto deci mali sth e sam ea sbin a ryto dec imal.Th
epr o c ess star ts
fro m multiplying th e d igits o f h exad e cimal n u mbers with its cor res po n din g po
sition al wei gh ts. A n d
lastly, w eadd all th o se pr o du cts.

Let'stak ean examp l et o u n derstan d ho wth econ version isdo n efro mh exad ecimalto d
eci mal.

Exa mp le 1: (152A .25)


16
Step 1 :

Wemultiplyeach digito f

1 5 2 A.25

with itsres pectivepo sition alweig h t, andlastweadd


th epr o du cts
o fallth ebit swith its w eigh t.

(1 52 A.2 5 )
16
=(1×16
3
)+(5×16
2
)+(2×16
1
) +(A ×1 6
0
)+(2×16
-
1
)+(5×16
-
2
)

(1 52 A.2 5 )
16
=(1×409 6)+(5×256 )+(2 ×16)+(10 ×1)+(2×16
-
1
)+ (5×16
-
2
)

(1 52 A.2 5 )
16
(1 52 A.2 5 )
16
=541 8+0. 125+0.1 25

(1 52 A.2 5 )
16
=541 8.1 44531 25

So, th edecimaln u mbe r ofth eh exad ecimal n u mber152 A .2 5 is

5 4 18.1 4 45 31 25

Hexade cimal to Binary C onv ersi on

Th e pr o cess o f con vertin g h exad ecimal to bin ar y is th e reverse pr o cess o f bin ar y to


h exad ecimal.
Wewrit eth efou r bits bin ar y
cod eo feach h e xad ecimaln u mberdigi t.

Exa mp le 1: (152A .25)


16

Wewrit eth efou r


-
bit binar ydigitfor 1, 5, A , 2, an d 5.

(1 52 A.2 5 )
16
=(
0 00 1 01 0 1 00 10 1 01 0 .00 10 0 1 01 )
2

So, th ebin ar yn u mbero fth eh exad ecimaln u mber152 .2 5 is

(1 0 1 0 10 0 10 10 10 .00 10 01 01 )
2
Oper a ti on

Result

car ry

0 .25 ×2

0 .50

0 .50 ×2

ASCII Cod e

TheASCII standsfor Americ an StandardCodefo rInformationI nterc hange.

TheASCII c odeisan alphanumeric c odeusedfo rdata communication indigital c omputers.

TheASCII isa 7
-
bitc odec apableof
representing2
7

or 1 28 number of different c harac ters.


TheASCII c odeismadeupof a three
-
bitgroup,w hic hisfollow ed by a four
-
bitc ode.

Th e A SCI I cod e star ts fro m 00h to 7Fh . I n th is, th e cod e fro m 00h to 1Fh is u sed
for con tro l
cha ra cters,an d thecod efro m20h to 7F h is u sed fo r grap h icsymb o ls.

Th e 8
-
bit cod e h o lds A SCI I, wh ich su pp o rt s 256 symbo ls wh ere m ath an d gr ap h ic
symb o ls ar e
add ed.

Th era n geo fth eexten dedA SCI I is80h to FF h .

Con trol C harac t ers

Th e
non
-
pr intab le chara cters u sed for sen di n g comman ds to th e PC o r pr int er are kn own as
con tr o l
cha ra cters. We can set tab s, an d lin e br eak s fun ctio n ality by th is cod e. Th e con tr o l
ch ar acters ar e ba sed
o n telex te chn o log y. No wadays, it's n o t so m u ch po pu lar i
n u se. Th e cha ra cter fro m 0 to 31 an d 127
comesu n dercon tr o lcha ra cters.

Special C harac t ers

A ll pr int ab le cha ra cters th at ar e n eith er nu mbers n o r letters come u n der th e special


cha racters. Th ese
cha ra cters con tain tech n ical, pu n ctuatio n, and math ematical cha ra c ters with spa ce
also . T h e cha ra cter
fro m32 to 47, 58 to 64, 91 to 96, an d 123to 126 c
o mesu n derth is categor y.

Num bers C hara cters

Th iscategor yo f A SCI I cod econ tain sten A ra bicn u mera lsfro m0 to 9


.

Lett ers Ch arac t ers

I n th is categor y, two
gro u ps o f letters ar e con tain ed, i.e., th e gr ou p o f u pp ercase letters a n d th e gr oup
o flowercase letters. Th era n gefro m65 to 90 an d 97to 122 comesu n derth iscategor y.

Excess
-
3 Code

Th e exc es s
-
3 cod e is also tr eated as

XS
-
3 code
. Th e exce ss
-
3 cod e is a

non
-
weigh ted an d s elf
-
complemen tar y BCD cod e u sed to repr esen t th e dec imal n u mbers. Th is cod e h as
a bias ed
repr esen tat ion . Th is c o de plays an impo rt an t ro le in ar ith meti c o peratio n s becau
se it re so lves
deficien ci es en cou n tered wh en w e u s e th e 84 21 BCD cod
e for add in g two deci mal digit s w h o se su m i s
gr eater th an 9. Th e E xcess
-
3 cod e u s es a s pecial typ e o f a lgo rith m, wh ich differ s fro m th e bin ar y
po sition aln u mbersyst emo r no rmaln o n
-
biased BCD.

We can eas ily get an e xcess


-
3 cod e o fa deci maln u mberby si mply add ing 3 to each deci maldigit. A n d
th en we write th e 4
-
bit bin ar y n u mber for each digit o f th e decimal n u mber. We can fin d th e exces s
-
3
cod eo fth egiven binar yn u mberbyu sing th e follo wing

steps:

1.

We findthe dec imalnumberof thegivenbinary number.

2.

Thenw eadd3 ineachdigitof thedec imalnumber.

3.

Now,w efind thebinary c odeof eachdigitof thenew ly generated dec imal number.

Wecan al so add 001 1 i n each 4


-
bit BCD cod e o fth edecimal n u mberfor getting exce ss
-
3 c o de.
The Excess
-
3code for the decima lnu mber is as follows :

Decim al Di git

B CDCo de

Ex cess
-
3 Cod e

0 00 0

0 01 1

0 00 1

0 10 0

0 01 0

0 10 1

0 01 1

0 11 0

0 10 0

0 11 1
5

0 10 1

1 00 0

0 11 0

1 00 1

0 11 1

1 01 0

1 00 0

1 01 1

1 00 1

1 10 0

Gray Code

Th e

Gra yCode

is ase qu en ceo fbin ar yn u m ber


sy stem s,wh ich is al so kn o wn as

refl ectedbin ar ycode


.
Th e reaso n for callin g th is cod e as re flected b i n ar y cod e is th e fir st N/2 valu es
compa red wi th th o se o f
th elast N/2 valu e s inr everse o rd er. I n th is cod e,twocon se cut iveval u esar e dif fered
by o n ebit o fbin ar y
digits. G ra y cod es ar e u sed in th e gener
al s equ en ce o f h ar dware
-
generated bin ar y n u mbers. Th ese
n u mberscau se ambigu ities o rerr o rs wh en th e tr an sition fro mo n e n u mberto it s su
cce ssiv ei sdo n e.Th is
cod e simpl y so lves th i s pr o blem b y cha n gin g o n ly o n e bit wh en t h e tr an sition
is betwe e n n u mbers
is
do n e.

Th egr ay cod ei sa very ligh tweigh tedcod ebe cau seit do esn 'tdepen do n th evalu eo f th
edi gitspec ified
by th e po sition . Th is cod e is also call ed a cyclic var iable cod e as th e tr an sition o f on e
valu e to its
su cces sivevalu e carr ie sacha n geo fo n ebit o n
ly.

How to gen erat e Gray c ode ?

Th epr ef ixan dr efle ctm eth o dar erecur sive ly u sedto generate th eG ra ycod e o f a n u
mber. Fo rgeneratin g
gr aycod e:

1.

We findthe numberof bitsrequired to


representa number.

2.

Next, w efind thec odefor 0, i.e., 00 00 ,w hichisthe same as binary .

3.

Now,w etake thepreviousc ode,i.e.,0 000 , andchange themost significantbitof it.

4.
We performthis proc ess rec lusively untilall thecodes arenotuniquely identified.

5.

I f by c hangingthe mostsignific antbit,w efind thesamec odeobtained previously, thenthe


second most
signific antbitw illbec hanged,andso on.

Pr ocess o f ge n eratin g Gra y Co de

Gray C ode T abl e

Decim al Numb er

B i nary Numb er

Gray
Co de

0 00 0

0 00 0

1
0 00 1

0 00 1

0 01 0

0 01 1

0 01 1

0 01 0

0 10 0

0 11 0

0 10 1

0 11 1

0 11 0

0 10 1

0 11 1

0 10 0

8
1 00 0

1 10 0

1 00 1

1 10 1

10

1 01 0

1 11 1

11

1 01 1

1 11 0

12

1 10 0

1 01 0

13

1 10 1

1 01 1

14

1 11 0

1 00 1

15

1 11 1
1 00 0

Dig ital Lo g ic:

The Bas ic
Ga tes

The

basic

gates ar e

AN D , OR

& NOT

gates.

AND

gate

An AND gate is a digi tal circuit that has two or more input s and produces an output ,

which

is

the
logi cal

AND
of

all
those

input s.

It

is

opti onal

to

represent

the
L ogical

AND

with

the

The

following t able shows the

tru th tabl e

of 2
-
i nput AND

gate.

Y
= A.B

then

o nly the

output , Y

is

combi nati ons of inputs ,

the output, Y
is

The following figure shows the


sym b ol
of an AND gate, which is having two input s A, B

and one

output ,
Y.

This AND gate produ ces an output (Y), which is t he


logi cal AND
of two i nputs A, B.

S im il arly, if there

AND of all those input s. That

are

OR

gate

AnORgate isadigi talci rcuit thathastwo ormor e input sandproduc esan o utput ,

whichisthelogi c al
OR of all those input s. This
logi cal O R
is represe nted wit h the symbol
The

following t able shows

the
tru th tabl e

of

2
-
input OR gate.

=A

+B

1
1

Here

A,

ar e

the

input s

and

is

the

output

of

two

input

OR

gate.

If

bo th

input s
are

then

only t he

output , Y

is

remaining combinations of

input s,

the

output , Y

is

The following figure sho ws the


sym b ol
of an OR gate, which is h aving t w o input s A, B
and

one

output , Y.

This OR gate produ ces a n output (Y), which is the


logi cal OR
of two inpu ts A, B . S im il arly,
input s, then the OR gate produces an output , whi ch is the logi cal OR of a ll

those input s. That means, the


output of an OR

input s

NO T

gate

NOT

gate

is

digi tal

circuit

that

has

singl e

in put

and

singl e
output .

T he

output

of

NOT

gate

is t he

logi cal i n version

of input.

Hence, the

NOT

g ate is

also call ed

as
inverter.

The

following

table shows

the
tru th

tabl e

of
NOT gate.

Here

and

ar e

the

in put

and

output

of

NOT

g ate

r especti vely.
If

the

in put,

is

then

the

output , Y

S im il arly, if the

input, A

output ,

The

following

figure

sho ws

the

sym b ol
of

NOT

g ate,

which

is

having

one

input ,

and

on e

output , Y.

This

NOT

gate produc es

an output

(Y), which

is t he
com p lem en t
of

input ,
A.

U n iver sal

gate s

NAND&NOR gatesar ecall edas


u n iversalgates
. B ecausew ecanim pleme ntany

B ooleanfuncti on,
which is in sum of products form by using NAND gates alone. S im il arly,

we can im plement any B oolean


functi on, which is i n product of sums form by us ing NOR

gates

alone.

NA ND

gate

NAND

gate

is

digi tal

circuit

that

has
two

or

m ore

input s

and

produc es

an

output ,

which

is t he

in version

of logical AND
of all those

input s.

The

following t able

shows the

tru th tabl e

of 2
-
inp ut

NAND gate.
A

Here A, B ar e the inputs and Y is t he output of tw o input NAND gate. Wh en both i nputs
are
just

opposi tetothatof

tw oinput
AND gate

ope rati on.

The following i mage sho ws the


sym b ol
of NAND gate, which is having t w o input s A, B and

one

output , Y.

N A ND

gate
symb ol i s represented lik e that.

NO R

gate

NOR

gate

is

digi tal
circuit

that

has

two

or

m ore

input s

and

produces

an

output ,

which

is t he

in version

of logical OR

of all those input s.

The

following t able shows

the
tru th tabl e

of 2
-
i nput NOR gate
A

Ifatleas toneof

input

OR gate operati o n.
The following figure sho ws the
sym b ol
of NOR gate, which is having t wo input s A, B and

one

output , Y.

NOR

gate op erati on is

s a me as

that o f OR

gate fo ll owed

NOR

gate symb ol
is represent ed li ke that.

COMB INAT IONAL

LOG IC CIRCUIT

B oole an

Laws

and
T heorem s

B ooleanAlgeb ra
isanalgebra,whichde alswithbinarynumbers&binaryvariables.

H ence,it isalso
call ed as B inary Algebr a or logi cal Algebra. A mathematician, named

George B oole had dev eloped thi s


algebra in 1854. Th e vari ables used in t his algebra are also

call ed

as B oolea n variables.

volt ag es

correspondi ng to l ogic

Pos tulates

and

B asic Laws

of

B oolean

Algebra

In

thi s

secti on,
let

us

discuss

about

the

B oolean

post ulates

and

basic

law s

that

are

used

in

B oolea n

algebra.
These

are

us eful

in m ini mi zing B oolean functi ons.

B oole an

Postulates
C onsi der the binary nu mbers 0 and 1, B oolean variable (x ) and it s

the

B oolean

variable

or

compl em ent

of

it is

known

as
li teral
.

The four possi ble


logi cal

OR

op erati ons among thes e

li terals and

binary numbe rs are

sho wn below.

x+0=x

+
1

x+x=x

S im il arly,

the

four

possi ble
logi cal

AND
op erati ons

among

those

li ter als

and

bina ry

numb ers
ar e

shown
below.

x.1 = x

x.0 = 0

x.x = x

These

are

the

sim ple

B oolean

post ulates.

We

ca n

verify

these

post ulates

easil y,
by

subst it uti ng

the B oolean

or

Note

The

compl ement

of

compl ement

of

any

B oolean

variable

is

equ al

to

the

variable

it self.

i.e.,
B asic

Laws

ofB oole an

Alg eb ra

Foll owing

are

the

three

b asic

laws

of

B oolean

Alg ebra.

C omm utative

law

Associative

law
Dist ributi ve

law

C omm utative

Law

If any logi cal op erati on of two B oolean va riable s give the same result ir respecti ve of

the orde r o f
those two vari ables, then that logi cal ope rati on is said to be
Com m u tative
. The

logi cal

OR &

logi ca l AND

operati ons

of two B oolea n

variables x &

y are

sho wn

below

x +y =y +x
x .y =y .x

A ND op erati on
and it is op ti onal t o repre sent. C omm utative law obeys for logi cal OR &

lo gical

AND

operati ons.

Associ ativ e

Law

If

logi c al

oper ati on

of

any

two

B oolean

va ria bles

is

performed
first

a nd

then

the

same

op er ati on

is

performed

with

the

rem aini ng

variable

gives

the

same

result ,

then

that

logi cal

oper ati on

is

said
to

be

Associative
.

The

logi cal

OR

&

logi cal

AND

op erati ons

of

th ree

B oolean variables x, y

& z ar e

sho wn
below.

x +(y +z)= (x +y )+
z

x. (y.z)

=(x.y ).z

Associative
law

obeys

fo r

logi cal

OR &

logical AND

oper ati ons.

Dist ribu tiv e

Law

If any logi c al ope rati on c an be dist ributed to all the terms pr esent in the B oolean

functi on, then tha t


logi cal

operati on is said to be
Distrib u tive
. The dist ributi on of logi cal

OR

& logi cal AND

operat ions of
three

B oolean v ariables x ,

y & z are

shown b elow.

x .(y
+ z)=

x .y +x .z

+ (y .z)=

(x +y ).(x

+ z)

Dist ributi ve

law

obeys fo r

logi cal OR

and logi cal

AND
oper ati ons.

These

a re

the

B asic

l aw s

of

B oolean

algebr a.

We
can

ve rify

thes e

laws

easil y,

by

subst it uti ng

the B oolean

or

T he orem s

of

B oolean

Alg eb ra

The

following

two
theorems

are

used

in

B oolean

algebra.

Duali ty

theorem

theorem

Duality

The orem

This

theorem

states

that

the
d u al
of
the

B oolean

functi on

is

obtained

by

int erchanging the logi cal


AND oper ator with logi cal OR oper ator and ze r os with ones. For

ev ery

B oolean

functi on, ther e

will

be

correspondi ng Du al

funct ion.

Let

us

make

th e

B oolean

equati ons
(relations )

t hat

we

discussed

in

the

secti on

of

B oolean

post ul ates

and
basic

laws

int o two

groups. The

following t able s hows

these

two groups.

Group 1

Group 2

x+
0=

x.1 =

x+

1=

x.0 =

x+

x=

x.x =

x+

x+

y=

y+
x

x.y =

y.x

(y + z) = (x +

y)

x.(y.z)

(x.y).z

x.(y +

z)

x.y +

x.z

(y.z)

=
(x

y ).(x

z)

In

ea ch

row,

th ere

a re

tw o

B oolean

equati ons

and

they

ar e

dual

to

each

oth er.

We
can

ve rify

all

thes e

B oolean
equati ons of Group1 and

Group2 by usi ng duali ty t heorem.

„Pv[’

T heorem

Thistheoremisusefulinfindingthe
com p lem en tofB ooleanfun ction
.Itstatesthat

thecompl ement
of logical OR of at l east t wo Bool ean
variabl es is equal t o the logical AND

of

each

compl emented

v ariable.

theor em
with

B oolean

variables

x a nd

can

be

repr esented

as

(x

The

dual of

the

abov e

B o olean functi on

is
Therefo re, the compl em ent of
logi cal AND of two B oolean variables is equal to the logi cal

OR of each

than

2 B oolean variables
also.

Sim plific ation

of

B oolean

Fun ctions

Till

now,

we

discussed

t he

post ulates,

basic

laws

and

theorems

of
B oole a n

algebra.

Now,

let

us

sim pli fy

some

B oolean

functi ons.

Eg

Let us
sim p lify

We

can
sim pli fy this functi on in two methods .

Method

Given

B oolean

functi on,

=
+p qr.

S tep

In

first

and

seco nd

terms

is

comm on

and

in

thi rd

and

fourth

terms
pq

is

comm on.

S o,

take

the
comm on terms by usi ng

Distrib u tive

law
.

f=

r)

S tep

The

terms

present

in
first

parenthesis

can

be

sim pli fied

to

Ex
-
OR

operati on.

The

te rms

present
in second par enthesis

can be

using
B oolean p ostul ate

f=

(p
R
q) r

+
pq(1)

S tep

The

first

term

be

sim pli fied

furth er .

B ut,

the

second

term

can

be

sim pli fied

to

pq

using
B oolean p ostul ate
.
œ

f=

(p

R
q)r

pq

Therefo re, the sim pli fied B oolean functi on is

f = (p
R
q )r + p q

Method

Given

B oolean functi on,

f=
p qr.

S tep 1

Use the
B oolea n p ostul ate
, x + x = x. That
means, the Logic al OR operati on with

any B oolean

term

pqr two more

ti mes.

f=

pqr +
pqr

pqr

S tep

Use

Distrib u tive

law
for

1
st

and 4
th

terms,

2
nd

and

5
th

terms,

3
rd

and

6
th

terms.

f=

p) +

q) +

r)

S tep

Use

B oolean

p ostul ate
,

+
=

f or

sim pli fying

the

terms

present

in

ea ch

pa rent hesis .

f=

qr(1)

pr(1 ) +

pq ( 1)

S tep

Use

B oolean p ostul ate


,
x.1 =

for

sim pli fying the

above

three

terms.

f=

qr +

pr

pq

f = pq + qr + pr

Therefo re,

the

sim pli fied

B oolean

functi on

is

f
=

pq

qr

+pr
.

S o, we got two different B oolean functi ons after sim pli fying the given B oolean functi on
in

each

m ethod.

Functi onall y,

those

two

B oolean

functi ons

are

s a me.

S o,

based

on

the

req uirement,
we

c an choos e

one

of
those

two B oolean functi ons.

Eg

Let

us find the

com p lemen t

of the

B oolean

functi on, f

The

compl ement

of

B oolean functi on

is
+

S tep

Use

theorem,

(x +

S tep

Use
theorem,

S tep 3

Use

the

B oolean

post ulate,

œ
=

{p +

q}

pq

S tep

Use

the

B oolean

f=
0+

pq +

f=

pq +

Therefo re,

the

com p lemen t

of

B oolean

functi on,

is

pq

.
Sum of

produc tMethod(SO P)

canonic al

sum

of

prod ucts

is

boole an

exp ressi on

that

enti rely

consi sts

of

mi nterms. The B oolea n


functi on F is defined on two variables X and Y. T he X and Y are the

input s of the boolean functi on F whose


output istruewhen anyo neofthe input sissettot rue.

The

t ruthtable forB o olean


Expr essi on

is asf oll ows:

In p u ts

Ou tpu t

1
we can form t he mi nterm from t he variabl e's value . Now, a colum n will be added for

the mint erm in


the above table. Th e com plement of the vari ables is t aken whose valu e is 0,

and

the variables whos e

value
is 1 wi ll remain

the

same.

In p u ts

Ou tpu t

Min term

X'Y'

1
1

X'Y

XY'

XY

Now,

we

will add

all the mint erms for

which the

o utput is

true

to

find

the
desired

canonic al

S OP (
S um

of
P roduct) expressi on.

F= X'

Y+X Y'+ XY

Convertin g

Sum

of

Prod u cts

(SOP)

to shorth an d

n otation

The proc ess of conv erting S OP form t o shorthand notation i s the same as the process o f

finding sho rthand


notation for mi nterms. There a re the following st eps t o find theshorthand

notation

of the

given SOP
expressi on.
o

Write

the

given SOP

expressi on.

Find

the

shorthand

notation of

all

the mint erms.

R eplace

the

mi nterms wi th

their

shorthand notations

in

the given

expressi on.
Examp le:

F =X 'Y+XY'+X Y

1.

Firstl y,

we

writ e

the

S OP

expressi on:

X'Y+XY' +XY

2.

Now,

we

find

the shortha nd

notations of
the

mi nterms

X'Y, XY', and XY.

X'Y = (01)
2
=m
1

XY' = (10)
2
=m
2

XY

(11)
2

m
3

3.

In

the end,

we

r eplace all

the
mi nterms

with

their shorthand

notations :

F=m1+m2+m3

C onv erting

shorthand

nota tion

to

SO P

exp ression

The proc ess of conv erting shorthand notation t o S OP i s the reverse p roc ess of
converting

S OP

expressi on

to

shorthand

notation.

Let's
see

an

ex a mpl e

to

understand

thi s

conversion.

Examp le:

Let us
assum e that we h a ve a boolean functi on F, which defined on two v ar iables X and Y.

Th e

mi nterms

for

the fun cti on

ar e

exp ressed as

shorthand notat ion i s as follows:

Now,
from

thi s expressi on,

we

will find

the

S OP expressi on.

The

B oolean

f uncti on

has

two

input

variables X

and y

and th e output of F=1 fo r

m1, m 2, and m3,

i.e., 1
st
,

2
nd
, and

3
rd

combi nati ons.

S o,

F=

m1

m2

m3

F=

01 +

10

11

Now, we r eplac e z eros with eit her X' or Y' an d ones with eit her X or Y. S im ply, the

compl ement variable is used when the variable value is 1 otherwise the non
-
compl ement

variable

is us ed.
F=01+10+11

F=

A'B + AB' +

AB

Karnaugh

Map(K
-
Map)

m ethod

Karnau gh
int roducedamethodforsim pli ficati onofB ooleanfuncti onsinan
easy

way.Thismetho d
isknownasKarnaughm apmethodorK
-
mapmet hod.Itisagraphi cal

met hod,whichconsi sts of2


n

cell sfor

singl e

bit posi ti on.


K
-
Maps

for

2 to

5Variables

K
-
Map

method

is

most

suit able

for

mi nim izing

Boolean

fun cti ons

of

va r iables

to

va riables.
No w,
let us

discuss about t he

K
-
Maps

fo r 2 to

5 variable s one

by

one.

Variable

K
-
Map

The

number

of

c ell s

in

2 variable K
-
map is

four,
s ince

the

number

of v aria bles

is

two.

The

following figure

shows
2 variab le K
-
Map
.

There

is onl y

one possi bil it y

of grouping

4 adjacent

mi n terms.

The

possi ble
combi nati ons

of

grouping

adjacen t

min

terms

are

{(m
0
,

m
1
),

(m
2
,

m
3
),

(m
0
,m
2
) and
(m
1
,

m
3
)}.

Variable

K
-
Map

The

number

of

cell s

in

variable

K
-
m ap

is

eig ht,

since

the

numbe r

of

variables
is

thr ee.

The
following figure

shows
3 variab le K
-
Map
.

There

is onl y

one possi bil it y

of grouping

8 adjacent

mi n terms.

Thepossi blecombi nati onsofgrouping4adjac ent mi ntermsare{(m


0
,
m
1
,m
3
,m
2
),

(m
4
,m
5
,m
7
,m
6
),
(m
0
,m
1
,m
4
,m
5
), (m
1
,m
3
,m
5
,m
7
), (m
3
,m
2
,m
7
,m
6
) and (m
2
,m
0
,

m
6
,m
4
)}.
The possi ble combi nati ons of grouping 2 adjacent mi n terms are {(m
0
,m
1
), (m
1
,m
3
),

(m
3
,

m
2
),

(m
2
,

m
0
),

(m
4
,

m
5
),

(m
5
,

m
7
),

(m
7
,

m
6
),

(m
6
,

m
4
),

(m
0
,

m
4
),

(m
1
,

m
5
),

(m
3
,

m
7
) and

(m
2
,m
6
)}.

If

x=0,

then 3

variable K
-
map

becomes

2 variable K
-
map.

Variable

K
-
Map

The

number

of

cell s
in

variable

K
-
map

is

sixt e en,

since

the

number

of

variables

is

fou r. The

following

figure

shows
4 variab le K
-
Map
.

There
is onl y

one possi bil it y

of grouping

16 adjacent

mi n terms.

Let R
1
,R
2
,R
3
and R
4
represents the mi n terms o f first row, se cond row, thi rd row and

fourth ro w
respecti vely. S im il arly, C
1
,C
2
,C
3
and C
4
represe nts the mi n terms of first

colum n,
second colum n,
thi rdcolum nand fourth c olum nrespecti vely. The possi ble

combi nati onsof grouping8 adjac entmi n


terms are { (R
1
,R
2
), (R
2
,R
3
), (R
3
,R
4
), (R
4
,

R
1
),

(C
1
,

C
2
), (C
2
,C
3
), (C
3
,C
4
),(C
4
,C
1
)}.

If

w=0,

then
4

variable

K
-
map

becomes

variable K
-
map.

Variable

K
-
Map

The

number

of

cell s

in

variable

K
-
map

is

thi rty
-
two,

since

the

numb er

of

variabl es

is

5. The
following figure

shows
5 variab le K
-
Map
.

There

is onl y one possi bil it y of

grouping 32 adjacent m in t erms.

There
ar e

two

possi bil it ies

of

grouping

16

adjace nt

min

terms.

i.e.,

grouping

of

min

terms

from m
0

to m
15

and

m
16

to m
31
.
If

v=0,

then 5

variable K
-
map

becomes

4 variable K
-
map.

In

the

above

all

K
-
maps,

we

used

ex clusi vely

the

min

terms

notation.
S im ilarly,

you

can

use

exclusi vely

the

Max terms no tation.

Min im ization

of

B oolean

Fun ctions

using

K
-
Maps

we

will

g et

the
B oolean

functi on,

which

is

in
stand ard

su m

of

p rod u cts
form

aft er

sim pli f ying

the K
-
map.

then we will get


the Bool ean functi on, wh ich is i n
stand ard p roduct of su m s
form after

sim pli fying

the K
-
map.

Foll ow

these
ru les

for

si m p lifyin g

K
-
m ap s

in

order

to

get

standard

sum

of

products

form.

S elect t he resp ecti ve K


-
map based on the numbe r of variabl es pres ent i n the Boolean

fun cti on.

IftheB ooleanfuncti onisgivenassumofmi ntermsform,thenplacetheonesat

respecti vemi nter m


cell s in the K
-
map. If the B oolean functi on is give n as sum of

produ cts for m, then place the on es in


all possi ble cell s of K
-
ma p for which the given

pro duct

terms are

vali d.

C heck for the possi bil it ies of grouping maximum number of adjac ent o nes. It shoul d

be powe rs of
two. S tart from highest power o f two and upto l east powe r of two.

High est power is equ al to the


number of vari ables cons idered in K
-
map and leas t

power

is zer o.

Each g rouping will give eit her a li teral o r on e pr oduct term. It is known as
p rim e

im p licant
. The
prime im pli cant is said to be
essential p rim e im p licant
, if atl e ast

singl e
is

not

covered

with

any

other

groupings

but onl y

that

grouping

covers.

Note down all the prime im pli cants and essential prime im pli cants. The simpl ified

B oolean functi on
contains all essential pri me impl icants and only t he requir ed prime

im pli c ants.

Note 1

If output s ar e not defin ed fo r some c ombi nati on of input s, then those


output v alues

will be
repres ented wit h

. That m eans, we c an consi de r the m as eit her


Note2

K
-
map.C onsi der

a djacent

ones.

Inthose

cas es,

treat
the

value as

Eg

Let

us

sim p lify
the

following
B oolean

functi on,

f(W,

X,

Y,

Z )=

WY

using K
-
map.

The

given

B oolean

funct ion

is

in

sum

of

products
form.

It

is

having

vari ables

W,

X,

&

Z. S o,

we

requir e

variab le

K
-
m ap
.

The

variab le

K
-
m ap

with

ones

correspondi ng

to

the

given

product
terms i s shown in t he

following figure.

Here,

1s

are

pla ced in

the following cell s

of

K
-
map.
The

cell s,

which

a re

co mm on

to

the

int ersecti on

of

R ow

and

colum ns

&

are

co rrespondi n g

to t he product t erm,

.
The

cell s,

which

ar e

co mm on

to

the

int ersecti on

of

R ows

&

and

col umns

&

are

correspondi ng to t he

pro duct t erm,


WY
.

The

cell s,

which

ar e

co mm on

to

the

int ersecti on

of

R ows

&

and

c olum n

are

co rrespondi ng

to t he
product t erm,

Thereare nopossi bil it iesofgroupingeit her 16adj acenton esor8adjac ento nes.Ther ea re

three possi bil it ies


of grouping 4
adjacent ones. After these thre e gro upings , there is no single

one left as ungrouped. S o, we no


need to check for groupi ng of 2 adjacent ones. The
4

variab le

K
-
m ap

with

these

three
grou p in gs
is shown
in

the foll owing figure.

Here,

we

got

three

pri me
im pli cants

WY

&

All

these

prime

im pli cants

are

e ssential
because

of following rea sons.

Two

ones

(m
8

&

m
9
)

of
fourth

row

grouping

are

n ot

covered

by

any

other

groupings.

Only

fourth
row grouping cove rs those

two ones.

S ingl e

one

(m
15
)

of

square

shap e
g rouping

is

no t

covered

by

any

othe r

groupings.

Only

the
square

shap e

grouping co vers that one.

Two

ones

(m
2

&

m
6
)

of

fourth
colum n

grouping

are

not

cove red

by

any

o ther

groupings.

Only
fourth column grouping covers those

two on es.

Therefo re,

the

sim p li fied

B oolean

fun ction

is

+WY
+

Foll ow

these

ru les

for

si m p lifyin g

K
-
m ap s
in

order

to

get

standard produ ct

of

sums

form.

S elect t he resp ecti ve K


-
map based on the numbe r of variabl es pres ent i n the Boolean

fun cti on.


If
the B oolean functi on is given as product of Max terms form, then place the zeroes

at

r espe cti ve

Max

term

c ell s

in

the

K
-
map.

If

the

B oolean

functi on

is

given

as

pr oduct of sums form, then


place the zero es in all possi ble cell s of K
-
map fo r which

the
given sum ter ms are

v ali d.

C heck

for

the

possi bil it ies

of

grouping

maximum

number

of

adjac ent

z eroe s.

It

shoul d be powe rs of
two. S tart from highest power of two and upto lea st power of

two.

Highest

power

is

equal
to

the

number

of

variabl es

con sidered

in

K
-
map

and

le ast

power is zero.

Each grouping will

give eit her a li ter al or on e su m

term. It is

kno wn as
p rim e

im p li can t
. The prime
im pli cant is said to be
essential p rim e im p li can t
, if atl east

singl e
is

not

covered

with

any

other

groupings

but onl y

that

grouping

covers.

Note down all the prime im pli cants and essential prime im pli cants. The simpl ified

B oolean functi on
contains all essential pri me impl icants and only t he requir ed prime

im pli c ants.

Note

K
-
map.C o nsider
adjacent

z eroes.

In

those

c ases,

treat

the

value as

Pair,

Quad

and

O ctet

Pair Red u ction Rul e

:
R emove the vari able whic h changes it s st ate from c ompl emented to

uncompl emented

or vice
versa.P air r emoves one

v ariable

only.

Qu ad Red u ction Rul e

:
R emove the two variabl e s which chang e their stat es.A quad

r emoves

two
variables.

Octet
R ed u ction Rul e

:
R emove the three v ariabl es which chan ges their st ate.Octet r emoves

thr ee

variables.

Map Rolli n g

:
Map rolling means roll the map consi dering the map as if it s left edges are

touching the
right edges and top edge s are touching
bott om edges.Whil e marking the p airs

quads
and octet, map must
be rolled.

Overlap p in g Group s

:
Overlapping m eans s ame 1 can be encircl ed more than once.

Ov erlapping

always l eads t o si mpl er e xpressi ons.

Red u n d an t Group

:
It i s a group whose all 1's are overlapped by othe r gro ups. R edundant

groups

must

be removed. Remov al

of

redundant

group

leads

to

much simpl er

expressi on .
Eg

R epresent t he

follo wing

boolean expressi on

in

aK
-
map

and

sim pli fy.

x'yz

x'yz'

xy'z'

xy'z

S o luti on
:

The

K
-
map is

as

follows :

Hence th e sim pli fied exp ressi on is

x'y +

xy'

E x.

:
S impl ify the

following

boolean expressi on

using

K
-
map.
F

a'bc

ab'c'

ab c

a bc'

S o luti on

The

K
-
map is

as

follows :

Hence th e sim pli fied exp ressi on is

=
bc

a c'

}v[ ı

Care

C ond itio n

K
-
Map
to form a

grouping of

as

eit he r

or

or

we

c an

sim ply

ignore
that

cell .

Therefo re,

c ondit ion

can

help

us

to

for m

large r

group

of

cell s.

-
Maps r epres enti ng a invalid

combi nati on.


For ex ampl e, in Excess
-
3 code syst em, t he states 0 000, 0001, 0010, 1101, 1110

and
1111

a re

invalid

or

unspecified.

Th ese

a re

c all ed

c ares.

Also,

in

d esign

of

4
-
bit

BCD
-

to
-
XS
-
3 code conv erte r, the in put
combi nati ons 1010, 1011, 1100, 1101, 1110, and 1111 are
car es.

standard

S OP

functi on

having

car es

c an

be

converted

int o

P OS

exp ressi on

by

cares as
they a re, and wri ti ng the mis sing m interms of the SOP form as the

maxterm

of

P OS
form.

S imi larly,

P OS

functi on

having

ca res

can

be

conv erte d

to

S OP

form

keeping

the

c ar es

as

they

a re

a nd
writ e

the

mi ssi ng

maxterms

of

the

P OS

expr essi on

as

the

mi nterms

of

S OP

express ion.

Eg

Minimise

the

following

function

in

S OP
mi nimal

form

using

K
-
Maps:

f =

m( 1, 5, 6, 12,13, 14) +d( 4)

Exp lanat i on

The

S OP

K
-
map

for

the

g iven

expr essi on

is:

Therefo re,

S OP

mi nim al
is,

Eg

Minimise

the

following

function

in

S OP

mi nimal

form

using

K
-
Maps:

Exp lanat i on:

Writing

the

given

express ion

in

P OS

form:
The

P OS

K
-
map

for

the

g iven

expr essi on

is:

Therefo re,

P OS

mi nim al

is,

F(A, B , C , D)

m(0, 1,

2,

3, 4, 5)

+
d(10, 11, 12, 1 3, 14, 15)

F(A,

B , C , D)

M(6, 7,

8, 9)

d(10, 11, 12,


13,

14, 15)

A'(B ' +

C ')

BC'+

B D' +

A'C'D

Eg

Mini mi se
the

following

functi on

in

S OP

mini mal

form

using

K
-
Maps:

F(A,

B,

C,

D)

m(1,

2,

6,

7,

8,

13,

14,
15)

d(3,

5,

12)

Exp lanat i on:

The

S OP

K
-
map

for

the

g iven

expr essi on

is:

Therefo re,

AC'D' + A' D

+
A'C

AB

P rodu ct

of

Sum

Method(POS)

canonic al

produ ct

of

s um

is

boolean

expressi on

that

enti rely

c onsi sts

of

maxterms. The B oolea n


functi onF isdefin edont wo
variabl esX andY.T heXandY ar ethe

input s

of

the

boolean

functi on

whose

output

is

true

when

onl y

one

of

the

input s

is

set

to

true.
The

truth tabl e

fo r B oolean expr essi on

is as
follows:

In p u ts

Ou tpu t

1
0

In ou r
mi nterm and maxt erm secti on, we l earn ed a bout how we can form t h e maxterm from

the va ria ble's


value. A colum n will be added for th e maxterm in the above table. Th e

co mpl ement of the variable s is taken


whose value is 0, and the variables whos e value is 1 will

remain

the same.

In p u ts

Ou tpu t

Min term

X'+Y'

0
1

X'+Y

X+Y'

X+Y

Now, we will mul ti ply all t he mi nterms for which the output i s false to find the desired

canonic al

P OS(P roduct of sum)

expressi on.

F=( X'+Y') .( X+Y)

C onv erting

Produ ct

of
Sum

(PO S)

to

shorthand

notation

Theprocessofconve rtingP OSformtoshorthandnotationisthesameastheprocessof

findingshorthand
notation for maxterms. There ar e the following steps used to find the

shorthand

notation of the

given P OS
expressi on.

Write

the

given POS

expressi on.

Find

the

shorthand notati on

of

all the
maxterms.

R eplace

the mint erms

wi th t heir

shorthand notations

in t he

given expressi on.

Eg

(X'+Y').(X+Y)

1.

Firstl y,

we

will

writ e

the

P OS

expressi on:
2.

Now,

we

will

find the shorthand notati ons

of the

maxterms X'+Y'

and X + Y.

3.

In

the

end,

we

will repla c e

all the

mi nterms wi th t heir

shorthand notations:

C onv er ti ng

s hort han d

nota t ion

to
P OS

ex pre s si on

The proc ess of conv erting shorthand notation t o P OS i s the reverse p roc ess of

conv erting P OS
expressi on to s horthand notation. Let's s ee an ex a mpl e to understand thi s

c onversion.

Eg

Let us
assum e that we h a ve a boolean functi on F, defined on two va riables X and Y.

Th e

maxterms
for the

functi on F

ar e

exp ressed as shorth and notat ion i s as

follows:

Now, from t his expressi o n, we find the POS expre ssi on. The B oolean funct ion F has two

input

variables X

and

and th e

output of F=0
for

M1, M2, and

M3, i .e., 1
st
,

2
nd
, and

3
rd

combi nati ons.

S o,

Next, we r eplac e ze ros w it h eit her X or Y and on e s with eit her X' or Y'. Si mpl y, if the
value

of the v ariable
is 1,
then we take the co mpl ement of that variabl e, and if the valu e of the

variable

is 0, t hen we

tak e

the
variable

"as is" .

=
(X' +Y'). (X+ Y)

X'+Y'

(00)
2

M
0

X+Y

(11)
2

M
3

F=M
0
.M
3

F=

M1.M2.M3

F=

01.10.11
F

F=01.10.11

F=( A+B ').(

A' +B ).(

A'+B ')

P ro duct

of

Su m

S im pl ific at i on

To find the sim pli fied m axterm solut ion using


K
-
map is the s ame as to f ind for the

mi nterm solu ti on.


There are som e mi nor ch anges in t he maxterm sol uti on, which are as

follo ws:

1.

We will populate the K


-
map by entering t he valu e of 0to ea ch sum
-
term i nto t he K
-
map

cell and
fill t he remaining cell s
w it h one's.

2.

We

will

make

the

groups

of 'z eros'

not

for

'ones'.

3.

Now,

we

will

define

the

boolean

expressi ons for


e ach

group as sum
-
terms.

4.

At last, t o find thesim plified boolean exp ressi on i n the POS form, we will combi ne

the

sum
-
terms
of all indi vidual groups.

Let's

take

some

ex ampl e of

2
-
vari able,

3
-
vari able,

4
-
variable and

5
-
v ariable K
-
map
ex ampl es

Eg

Y=(A'+B ')+(A'+B )+(A+ B )

S im pl ified ex pres s ion: A 'B

Eg

Y=(A

+B +

C') + (A

B'+

C') + (A'

+B'+

C)

+ (A' +

B ' + C')

S im pl ified

ex pre s sion:

Y=(A +

C ')

. (A' +
B ')

Eg

A‰~ïU ñU óU ôU í ìU í íU í îU í ï

S imp li fied

exp ressi on :

Y=(A

C')

.(A'

B ')

C o mbi na tio na l Ci rcui ts

Ka rna ug h

ma p:

For e ach sym bol of the E xcess


-

fo r

sim pli fying

B oolean

functi on

:
Ci rcuit

i mplement at i on:

CD+

CD+

(C

+
+

D)

B (C

w=

A+

BC

BD

A+

B (C

D)
Introduct ion tocombi nat ional circuit s
:

A c ombi nat i onal c i rcui t c onsi st s of l ogi c gat e swhose out put s at any t i me are de
te rmi ne df rom onl y t he pre se nt
c ombi nati on of i nput s.

A c om bi na t i ona l c i rcui t pe rform s a n ope ra t ion tha t ca n be spe ci fie d l ogi cal l y
bya se t of Bool ea n func t i ons.

Se que nt i al c i rc uit s:

Se que nti al c i rc ui t s empl oy st orage e le me nt s in addi t i on t o logi c gat e s. The i r out


put s are a f unc ti on of t he
i nput s and t he st ate of t he st orage e le me nt s.

Bec a use t he st a te of the st ora ge el em e nt s i s a func t i onof pre vi ous i nput s, t he


output s of a se que nt ia l c i rc ui t
de pe nd not onl y on pre sent va l ue s of i nput s, but a l so on pa st i nput s, a ndt he c i rc
ui t be ha vi orm ust be
spe c i fi e d bya ti m e se que nc e ofi nput s a n
d i nte rnal sta t e s.

A n al ysi s Pr oc ed ur e

E xplai n th e an alysis procedu re. A n alyze th e combi n ati on al circu it th e follow in g


logic diagram . (May 2015)
The analysi s of a combi nati onal circuit requir es that we dete rmine the fun cti on that the
circuit
im plements.

The analysi s can b e pe rfo rmed manuall y by findi n g the Boolean functi ons or truth t able
or by usi ng a
comput er simul ati on program.

The first s tep in the analy sis is t o make that the given circuit is combi nati onal or
sequenti al.

Once the logic diag ram i s verified to be combi nati onal, one can p roce ed to obtain the
output B oolean
functi ons or the truth t abl e.

To obtain the output B oolean functi ons from a logi c diagram, pro ceed as fo ll ows:

1.

Label all gate output s tha t are a functi on of input variables wit h arbitr ary sy mbol s.
Determi ne the
B oolean functi ons for e a ch gate output.

2.

Label t he gates th at are a functi on of input variable s and previous ly l abeled gates wit h
other arbitr ary
symb ols. Find t he B oolean functi ons for these g ate s.

3.

R epeat t he pro cess out li ned in s tep 2 until the outputs of the circuit ar e obta ined.

4.

B y repeated substi tut ion of previous ly defined fun cti ons, obt ain t he output B oolean
functi ons i n ter ms of
input variables.

E xam ple
:

F1 =
T3 + T2

=í=

The Boo lean func tions for the abo veo utputs ar e,

Der i ve

trut h

tabl e

fr om

logic

d i agr am

We

can

d er i ve th etrut h

tabl e
in

T ab l e

4
-
1

by

u sin g

th e ci r cu it

of

Fi g. 4
-
2.

Design

p roced u re :

Th ed esign

of

comb in at ion al

circu it s

st art s

f rom

t he sp ecificat ion
of

t h e design

ob ject ive an d

cu lmin ates

in

logic

circuit

d iagram

or a

set of

Boolea n

fu n ct ion s

f ro m

w h ich

th e

logic

d iagram

can

be

ob t ain ed .
Th e

pro cedu re

in volved
in volves

the

f ollow in g

step s,

Fro m

t h e sp ecif icat ion s

of

the

circu it ,

d etermine

th e

req u ired

n u mb er of

inp u t s

and

outpu t s

and
assign
a

symb ol

to

ea ch .

D er ive

th e

t rut h

t ab le

t hat

d efin es

th e

req uired

rela t ion sh ip

b etwe en

in pu t s

an d

outp ut s.

Ob t ain

the

simp lif ied


Boole an

fu n ct ion s f or ea ch

ou tp ut

as

f un ct ion

of

th e

inp ut

variab les.

D raw

the

logic

d iagram

an d

verif y

th e

cor re ctn ess

of

the
d esign .

E x a mple :
Design a combi na ti onal logic circuit with three in p uts , theoutp ut is a t logic 1 whe n
more
than one in p uts are at logic 1.

Solution:

Assume

A,

B,

are in puts an d

Y is

outp ut

T ruth

table

K ma p
Simplification
Boole a n
Expression

Y=AC + BC

+
AB

Logic

Diagram

Bi na ry

A dder
-
Subtra cto r:

HALF
-
ADD ER
:

ac omb in ation alc ircu itth atp erform s th e

add ition
of

two

b its

is

c alled a

h alf add er.

H alf
-
ad d er

is

used

to

add

two b it s.

Therefore,

half
-
ad d er

has

two

in p uts and two outp uts, wit h

S UM an d CARRY. F igure shows the t ruth ta b le of a half


-
ad d er.

The

Boolea n

exp ressi ons

for

S UM an d CARRY

are,

S UM =

CARRY = AB

These exp ressi ons shows` that ,

S UM outp ut isE X
-
OR gat e a nd the CARRY outp ut is AND

gat e.

F igure shows the b e i mplemen ta ti on of half


-
add er wit h all the comb in at ions

in clud in g the

imp lement at ion


using

NAND

gat es

only.

Tru t h ta ble

Inputs

Output

0
1

1
1

Inputs

Outputs

Carry

Sum

1
1

FU LL

AD D ER

one

that

per for ms

the

addition

of

thr ee

bits (two

signif ic ant

bits

and

pr evious c ar r y)

is
a

full adder
.

(x

y)

ïï

+
ï

x yz +

±ï

xy

K
-
ma p

simplifications
Inputs

Outputs

Cin

Cout

Sum

0
1

0
1

T ruth

table

Ca rry

Prop a ga t ion

Th e sign alf ro m C
i
t ot h eou tp ut carry C
i+1
, pro p agat est h rou gh an AND and OR

gat es, so,


f or an n
-
b it RCA,t her e are 2n gate levels f or th e carry t o p rop agat e
f rom in p ut

to

ou tp ut .

Becau se

th e

pro p agat ion

d ela y

w ill

af fect

t he

outp u t

sign als

on

d if f erent

t ime,

so

th e

sign als

are

given
en ou gh

t ime

to

get

the

p recise

and

st ab le

ou tp ut s.

The

F ull

Ad d er

can

be

implemen t

using

Two Ha lf

Ad d ers

and OR

gates

The
exp ressi on

for

sum

is

The

E xp ressi on

for

carry

is

Logic

Diagram

T ruth

table of Hal f
adder

Logic
Diagram

K
-
ma p

for Diffe re nc e

a nd
Borrow

Subtractor

S ubt ract or is the logic c ircuit which is

used to subtract two b in ary nu mbe r (di git ) an d p rovides


Differen ce an d Borrow as a outp ut.

In d igital ele ctronics we have two

type s of subtractor, H alf


S ubt ract or

an d F ull
S ubt ract or.

Rule s

for two bit


addition

0
-

= 1 wit h

b orro w

Ha lf

Subtractor

H alf Subt ract or is used for subt ract in g one sin gle b it b inary d igit from an other single
b it b in ary
d igit. The t ruth tab le ofH alf
S ubt ract or is shown b elow.

Inputs
Outputs

Difference

Borrow

0
F ull

Subtractor

logic

Circuit

Which

is

used

for

S ubt ract ing

Three

S in gle

b it

Bin ary

d igit

is known a s F ull
S ubt ract or. The i np uts are A, B, Bin an d the outputs are D and Bout.

K
-
ma p

for D
a nd
Bout

Logic

Diagram

T ruth

table

We

can

further

simp lify

the

functi on

of

the
Differen ce
(D)

S imp lified

L ogic

diagram

Mag nitude

compar ator
:

Th eequ alit y rela t ion o f each p air of b it s can be exp re ssed logicallyw ith an

exclu sive
-
N OR

f un ct ion

as:

=A
3
A
2
A
1
A
0

;
B=B
3
B
2
B
1
B
0

x
i
=A
i
B
i
+A
i

i
ï

for i = 0, 1, 2, 3

(A

B) = x
3
x
2
x
1
x
0

Ma gnitude

Compa ra tor
Definition
A

magni tud e

comp arator

is

comb in at iona l

circuit

that

comp ares

two

numbe rs

&

to
d et ermin e whet her:

>

B,

or A

=
B,

orA<B

Inputs

Outputs

Bin

Bout

1
0

0
0

We in sp ect th e rela t ivemagn itu d es of p airs of MSB. If equ al,w e comp are t he

next

low er

sign if icant

p air of

d igit s

un t ila

pair

of

u nequ al

d igit s

is

re ached .
If the co rrespo nding digit of A is 1 and t hat o fB is0 ,we co nclude that
A>B.

(A>B)=

A
3

3
+x
3
A
2

2
+x
3
x
2
A
1

1
+x
3
x
2
x
1
A
0

(A<B)=

3
B
3
+x
3

2
B
2
+x
3
x
2

1
B
1
+x
3
x
2
x
1

0
B
0

Decoder

Decode r

is

comb in at iona l

circuit . It has N

in p uts an d 2
N
outp uts.

Th e

d ecod er

is

calle d n
-
to
-
m
-
lin e

d ecod er ,

w her e

uGî
n

the

d ecod er

is

also

u sed

in

con ju n ct ion
w it h

oth er

cod e

con vert er s

su ch

as

BCD
-
to
-
seven _se gmen t

decod er.

3
-
to
-
8 lin e d ecod er : Fo rea ch possib le inp u t comb in at ion , th er e are seven

ou tp ut s

t h at

are

equ al

to

0
and

on ly

one

th at

is

eq u al

to

1.

to

Decoder

It

has 2

in p uts an d

2
2

outputs.

C ircuit
Diagram

T ruth

Table

Logic

Diagram

to 4

Dec ode r

wi th

Ena ble
input

T ruth

Table

Logic

Diagram

to
8

Decoder

It

has 3

in p uts

and

2
3

outputs.

Logic

Diagram

Encoders

E ncod ers
is

a combi nat ional

circuit which ta kes

2
N

inp uts

an d gives out N

outp uts,

the e nab le pin should


b e kep t 1 for en ab ling the circuit .

to

Encoder

It

has

2
2

in p uts an d

outputs.

T ruth
Table

P riority

Encoders

A Priorit y

E ncod er

wor ks

opp osite

of the

d ecod er

circuit .

Ifmore

than one in p ut is a ctive, thehigher


ord er inp ut has p riorit y.

to

2
Priori ty

Encoders

D0
-
D3

in p uts
A 1, A 0

outputs

Active (A)

Vali d in d icator. It i nd icat es the outp ut is valid or not Output is i nvalid


when n o inp uts are
act ive . i. e, A=0

Outp ut

is

vali d

when at

lea st

one

in p ut is

act ive

. i, e,
A=1

T ruth

Table

K
-
ma p

simplification

Logic

Diagram

to

Priori ty

Encoder

Mu l tip l exer

(Mux)

M ultip lexer
is

comb inat iona l

circuit

that

select s

b in ary

in formati on

f r om one

of

many in p uts
an d directs it in to sin gle outp ut.

The

select ion

of

p articul ar

in p ut

is

controlled

by

a
set

of

select ion

line Mutlip lexer


has2
n

in p uts,
n se lect lin e (control inp ut) and one outp ut

It

also

called

as

Data

selector
.

2 to 1
Multiplexer

has

2
1

in p uts,

select
line

an d one

output

Circ uit
diagram

4 to 1
MUX

4 to

M UX has 2
2

in p uts, 2

select

line

and

one
output
8 to1
MUX

8 to1 M UX has

2
3

= 8 in p uts,

select line and

one

output

MUX

as

unive rsa l

c ombina tional

modules

E ach

mint erm

of

the

functi on can
be

map p ed

to

d ata

in p ut

of

the

multiplexer.

F or

ea ch

row

in the t ruth tab le, where

the

output is

1, set the corresp ond in g

d ata i np ut of themux to
1.

S et

the remain ing inp uts of the mux to 0.


Ex a mple

1:

Implemen t

the

followin g Boolea n

f uncti on

using

4: 1

ááááá

T ruth

Table

Multiple x e r

Implementation

E x a mple

2:

Impl e me nt

the follow ing


Boolea n

func tion

us ing

8 :1

MUX

F (A, B, C, D)

áá

4,

11, 12
-
15)

Dem ultiplexer

(DEMUX)

Demul tiple xe r

h as

2
n

ou tp ut s

select
lines,

on e

in pu t . A
de multiple xe r
is also calle d a d at ad ist rib ut or .

1
-

to
-
2

demultiplexer

has

2
2

outp uts

select

line s,

one

input.
T ruth

Table

Logic

diagram

1
-
to
-
4

Demultiplexer

It

has

o ne input,2

selec t

lines,4

outputs

T ruth

Table

Logic
Diagram

1
-
to
-
8

Demultiplexer

H as

one

in p ut 3
-
select line s
8
-
outputs

T ruth

Table
Logic

Diagram

1
-
to
-
8

DEMUX

us ing

T wo

1
-
to
-

Demultiplexers

1
-
to
-
8

d emulti p lexer

can

be
imp lement ed

b y using

two

1
-
to
-
4

d emulti p lexers

wit h

a p rope r
cascad in g.

App lications

of

Demultiplexer

Syn ch ro nou s

d at a

tran smission

systems

Boo lea n

fu n ction

implemen t at ion
(as

we

d iscu ssed

fu ll

sub t ract or

fu n ction

above)

D at a

acqu isit ion

systems

Com b in at ion al

circu it

design

Au t omat ic

t est

eq u ip men t

systems
Se cu rit y

mon itor in g

systems

(fo r

sele ct in g

p art icu lar

su rveillan ce

came ra

at

at ime), et c.

In
thefigure
, thehighes tsignifican tb it Aof
the select ion in p uts are conne cted to the
en ab leinp utssuchthat it iscomp lement ed
b efore conne ctin g to one DE MUX and to
the other it is d irectly
conne cted. By

this
configurat ion, when A is se t t o zero, one o f
the outp ut line s

from Y 0 to Y3 is select ed
b ase d on the comb inat ion of select line s B
an d C. S imilarly, whenA isset toone, b ased
on the select line s
one of the outp ut lines

from Y4 to Y 7 will b e se lecte d .

You might also like