0% found this document useful (0 votes)
29 views10 pages

M2 PYQs

The document contains examination questions for a Mathematics - II course, including topics such as poles and residues, directional derivatives, and various differential equations. Students are instructed to attempt any five questions from a total of eight, with equal marks assigned to each question. The examination is scheduled for December 2024 and has a maximum score of 70.

Uploaded by

rochlani.pragati
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
29 views10 pages

M2 PYQs

The document contains examination questions for a Mathematics - II course, including topics such as poles and residues, directional derivatives, and various differential equations. Students are instructed to attempt any five questions from a total of eight, with equal marks assigned to each question. The examination is scheduled for December 2024 and has a maximum score of 70.

Uploaded by

rochlani.pragati
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 10

(4) Total No. of~stlons : 8) {Total No.

ofPrlnred Pages : 4

e" RoU No ...........- ••,.................


7. a) Find lhc poles Bild residues ot each pole of - 1- . 7
z +I BT-202(GS)
t
z +I
~~qi!' tR qi!'~ am)'q m ~• B.Tccb., I & II Semester
Examinalioa, December 2024
b) Find the din:ctionnl derivative of 0 - z2yz + 4.zr at
{I, - 2, - 1) in the din:ction of 2T - ] - if. 7 Grading System (GS)
27 -7-2f .fil ~ if (1,-2,- 1) ~ 0 -x2y.t+ 4.zril'iT Mathematics - II
~~ll@~I Ca,epr.-~.C&.:: 11me: Three Hours
Maximum Marks : 70
8. VcrifyGn:cn'sthcorcmfor J [(xy+y1 )ctr+.r1~] whcrcC Now i) Attempt any five questions.
C
~qf.rJ!t'tftll)~~I
is the boundruy by y - x andy - xl. 14
ii) All questions carry equal mlllb.
1
J[ (xy+ /)ctr + x
C
~ ] ~~Jlr-f~JJI~~~~~ ri Rt'tf ~ ~ lAR I f
iii) In case of any doubt or dispute the English version
C,y - x ~y • xl<fil~!I
question should be treated as final.
•••••• ~ ,n Jlffl~~ 3MT ~ <fi'I M if~ 'qllf(
lW lfA 1ffl ~ 'll'RT ~ I
Co.w, -fuw.coot.
I. a) Solvc(t+/)ctr = (Ulll- 1 y-x)~. 7

(t+ /)ctr =( tan-•y - x)~ lfi)~ ll'RI


b) Solve (1)2 + 3D + 2)y • sink 7
(D1 + 3D+2)y • sin3xlffl ~ ~

BT-202(0S) BT-202{GS) PTO


+
Ill
S. a) Construct a pllttiAI diffcrcolinl equation &om lhc relation
2. n) Sol\'c lhe simulllUICOus equations dx -1x + y"' 0 1111d 1
dJ

dy 2x- Sy=0
f(r+ y2 u2,z2 -2.xy)"'0
dt . 1
1
~11 J(.r2+y +z2.z2-2xy) =O ll 31iftlc1; 3ftR
~~ dx - 1x+y• 0 am dy -2x-Sy =0 lR
dJ dt ~.flt~~,
~~·
b) Solve by I.be method of variation of parameter
b) Show lhat u "' ,:-• (.uin y - ycos y) is Hannonic. 7

(D2 + 1}y=x. 7 ~f.f; u,,,e-• (xsiny-ycosy) ~!1


~ (Dl + J}y• x ~ ~ ; f i l ~ ~ ~ ~ l
6. a) Dctcnninc P such that the function

l d 1y dy /(z) = ½log(x2 +y 2 )+itan-•(;) be an analytic


3. 11) SolYC (l+x) dx2 +(l+x)dx +y,,,cos log(l+x). 7
function. 7
2d 1 y dy
(l +z) dx2 +(l+x) dx + Y"'coslog(l+x) ~~iffll P'i/il~~ll<li'R~~ti;ifffl

b) Show lhat 1.(-z) ={- I)" J,.{r) when n is positive Of /{z) .. ½log(x2 + l)+1t11n-•(;) ~ fhc\11011c11i/i
.f.);
negative integer.

Pt,
J.(- x) ={-1)" J {r) ;)l'lf n~ l f l ~
·
0

C!mJr ..fr,i.-r.rr;,,t
7
lJicf1R it I

b) EvalUB!CusingCauchy'slheorem
1
z· e-:
J--
,(z-1)
dz when:cis
1

4. a) Sol\'cbyCharpit'smclhodpr+qy• pq. 7
"1fil? ~ pr+qy• pq l) ~ <ffll 1-tl=½-
1 Catee,-imn'.eoot 1
b) Sol\'C lhe Partin! difTcrcntl11I equation
12
(IY-401 01 +4DD )z,,,cos(2x+ Y). 1
ili'f;ft~~'i/il~~ I r>e-',dz~~~
,(z-1)

• 31ifffl;3ion,ifllfRVT (CY-4o>o' +4Dif)z=cos(2x+y)


er;)~~,
BT-202(0S) Con1d••• BT-202(0S) PTO
(4) Total No. o/Quulio,is : 8) (Toto/ No. ofPri111td Pages : ./

b) Write short note on: 7 RoUNo ..................................


i) Cauchy's intc:grul fonnuln BT-202 (GS)
ii) Solenoidal and lrrototioruil 8 .Tcch., I & IT Semester
~:ire~, Examination, June 2024
i) <ffl-.ft~~ G rading System (GS)
ii) 11M-1~~ 3iR~ffi'! Mnthemntics - II
1imc: T/trce flours
•••••• Max/11111111 JI.larks: 10
Note: i) Attempt nny five qucsdons.
~qfvRAilf>1~~1
ii) All questions CQrT)' cqWII marks.
fl'1l R,:i'fi)r3ic!;l!'tl'ffl
iii) In cue of any doubt or dispute the English version
question should be treated llS tinnl.
~ ,n llffl ~ ~ W i n ~ if!I ~ i f ~ "tfl'IT
ti Rt'f lffl 3ifctif "!RT~ I

I. a) Solve x dy + y .. x'y 6 using Bernoulli's. 7


dx

~lfflffl1T~ x! +y =xJy6 lm~<ml

b) Solve lhedifrcrcntilll cqWllion {xe""' + 2y): + ~..,. = 0


using Exact method. 7
Exact Fclffl ~ ffl1T m 3llll@ Wflili·M

BT-202(GS) BT-202(GS) PTO


12] [3)

2. n) Solvc{D2 -60+13)y=Sc'"'sin2.r. 7 6. n) ,1u>(


Evnlunte Jco.o) 3.r2 + 4.ry + t• r' ) d:: aloogy • .r2. 7

(n2-6D+13)y=8clxsin2r <R~1'RI
y • .r2~~ J(~;i(3.r2 +4.ry + i.r )dz
2
<j;f~ ~I
b) Showlhal ![.r"J.(.r)]=.r"J.-i(.r) . 7 b) Find the Poles 11J1d Residues 111 c11ch pole or
• 2
/(z): sin z 2
~~~ ![.r•J.(.r)]=.r"J._,(.r) I
(z-:) . 7

3. Solve (0 2 +1)y • .rsin.rusingvnria1ionofp:1rnmctcrs. 14

~lflt~tfi'l~fb1J;1~M (02 +1)y • .rsln.r ll1l


~?!RI
7. Vc.-ify0r,:,:n•$ thc::orcm In the pl1U1c for
4. n) Form the pllltial dUfcrcn1illl equation (By eliminating lhe
nrbl1rnryfunclions)from Z • {.r+y);{.r - y
2 2
) . 7
Jc{.r2-..y)ttr+(y2- 2.ry)dy where C is II squnrc with
venices (0. 0), (2, 0), (2, 2), (0, 2). 14
z .. {.r + y); (.r2 - y2) ~ 3ITTfflll 3i"!R ~ <ll"fllA fc(.r2- .tY')ttr+(y2 - 2.ry)dy ~ ~ <f'lira 11 J!R 1); w)ti
~1li)wm:r~)~I ~ ~~ ~C t1llil (0, 0), (2, 0), (2, 2), lO, 2) ~ ~
b) Solvc(D1 -DD1-6011Z• .xy. 7 ;pf i,
(02 -DD 1-6D11Z• .xy1li) ~ ~I
S. 11) Find the directional derivative of /(.r,y,z) = .xy2 + yz'
S. n) Solve the partial diffcrcntio.l cquallonyp-.rp • z. 7 a1 point (2, - 1, I) In the direction of the vector
3liftJq; ~ ~ yp- xp • z cm~~, T+2] + 2f . 7
b) Showlh01 u •c-•(.niny - y<'Osy) isHrumonic. 7 t~ T +2] +U tPl .f~tTT il ~ (2, - 1, I) ~
~ u"' e-'(.rsiny-ycosy) ~ !1 I (x. y. %) =.xyl + yz' <l>T ~ ~ ~ I
BT-202(OS) ConuL BT•202(GS) PTO
(41 Total No. of Questions : 8/ /Total No. of Primed l'ageJ : 4

Roll No ... - ............................ .


8. n) Prove tlinl curt( r"r) = 0 7
BT-202 (GS)
Im:~~~ curl(r"r) =O B.Tccl1., I & n Semester
b) Wri1c short nolc on: 7 Exwnination, Dcccmbcr2023
I) Cauchy Riemann equations Grading System (GS)
ii) S1okcs theorem
Mathematics - fl
Tif!m'lre~I 7ime: Tlm:a /lours
l) tr,fil) til:! ~•frq,<111 Marlmum Marks: 70
Ii) «!f<l~I ST~ Nora: i) Attempt nny five questions.
~ qt.J flt'TI Ir,! l!t'I ;f.l~,
•••••• ii) All questions cnny equal mnrks .
~Ost~~~~i!I
lll)ln case of nny doubt or dispute the English version
question i.hould be tn:ntcd os final .
A;;U ,n AlliR ~ ~ ~l!lQT ~ lfil ~ ,, 3ill-..n '11'11
~ ln"I tr,) 3ir.til 'lFII v!Tl)-tn1

I. a) Solve (t+ y1)tit=(lnn-• y-x)dy usingLcibnil.7.lincnr


method. 7
t'll~ 1!wn f.lfq <lil QIMTJ ~
(1+ l)tit .. (u1n- 1y-x)dy lb'~ <!RI

b) Solvc{e1 +t)cosxt.1.t+111 sinxdy=O. 7

(e' + I)c:osxt.1.t+111sin x dy = 0 ir,l l!t'I <!RI


2. a) Solve (n2-4D+3)y=cos2... 7
1
(0 -4D+3)y=cos2x ctlt~l'!RI
UT-202 (OS) BT-202 (GS) !'TO
121 131

b) Dc1cnmnc p so that the function


b) Showtha1Ji{,r)= 12sinx . 7
"i -.J~ /(z) =½los(x2 -, y 1)+il3n- 1( ';)

~~ Ji(x)= innalytic funclion. 7


; v-;;
(2sinx
p f.lufft., ifR mf.), $1"""

/(z)=½los(.r1 + i)+itan- 1( ';)


J. Solve (D-2 +9),, = tanJx by using method of vllrinlion of
p:irnmeters. 14 ~,;i11011te1u. y;lJV•nil 1 .. .~Jul
~ I
~ .li\ f!r-;rnJ iii) f.ttb lli1 ~ m (01+9)1= lllnJ.r 6. 11) Show lhllt lhe function II (.r, )') = e' cos)' is Hllflllonic.
tlil~~I DelCtlllinc h's 1i11JTI1onic conjugate. 7
lklJte.&. -fuen.e.o;•• ~ Rf \i;1ttA 11(r.y) :o ~•cosy 1!Pl'ff.r.l"i ti {fllffl
4. a) Solve the p:u-t.ial dlffercotinl equation
~~ r.iumc, ~I
(x-y)p+(.r+ y)q•2xz. 7
Ze' .. I
b) F'mdlhcrcslducor (z-1)3 lllllSpOe. 7
~~~ (.r-y)p+(.r+ y)q=2.rt <NF!
!!RI
b) Soh•e (p1 + ql)y =qr.by using ChllrJlh 's method. 7
u'
~ qlf 1R - - , iii! 3f!n°\t( S'I@ ti~ I
(Z-1)
~~ ' I l l ~ ~ (pl+<r)y=qzlffl~l!RI

7. Verify Gauss divcsgcnec theorem for F=..-37 + y3]+t3k


llllccn over the cube bounded by x =0 • .r =a, )' = 0, y = a,
12
5. ll) Solve ( D2 +4 OD1-5D ) Z=sin(2x+Jy). 7 t=O.z=a. 14
F=..-37 + il +t3"f ~ fclil ttm ~ ~ <fil·~ ~.
;;ii x=O,x=a,y= 0,y=u,z=O, z =a~ RR tl9'R ~~
t, .
BT-202 (GS) Contd... BT-202 (GSJ PTO
l~I 1btol No. of Q11c,t/011s : 8) (Total No. ufPrlntt:d Pages : 4

Roll No _.....·-·--···................
8. a) Fmd lhc dircction:11 dcriv:mvc of /(x,y, :) = ,:1-' cosy:
01 (0, 0, 0) in the dircc1ion of 1111: 1MJ1cn1 ro lhc curve BT-202 (GS)
B.Tcch ., J & II Semes ter
r =asint ,y=aco st, :=at 1111=!: . Eltaminntioo,Junc2023
4

/ (r,y,:) • e,_, cosy: ~ (0, 0, 0) ~ u;


Gracting Syste m (GS)
M:ithc m:itics - Il
r•asin t,>•=o cost,:a at at,.!: Timt! : Thrt!ll /lours
4 !rlaxl11111n1 Marks: 70
l)r mm 1fi'I ~"' il ~ ~ m.t, Note: i) A1tcmpt1111y five question s.
b) Usina Green's theorem, find the area of!ht region in lhc ~ 111'1 flAl cffl Wi=f ~ I
I X
u) AU questions cmy equal masks.
tirst quadran t bounded by the CUl'\'1: y =x, y = - , y = - .
X 4 "'1!J1 Al$3i lf;~i,
ul)ln case of any doubt or diJpwc the English YCBion
ll'fm 1111 ~~~. u y•x, y•.!.,
X
y.~ ~AA
4
~ 'fl1l'/lt1 rf ffif 111T ii~ m;, 1l'R I
...........
~ !ft SllllR ti,,~ 3l'JllT
$11A1"'3iffl,JlJAl;;mml
-uh
question should be treated u final

r
~ i l 3ibvft 'llTIIT
Iv

I. a) Solve : : =cos(x +y) +sin(x +y).


CoJUJ -fua-TT.COUl
i•cos( x+y)+ sin(x+ y) 1"'Wi =f~I

b) Solve: (l+ y 1)dt=(IM _, y-x)dy


(l+ y 1)d\'•(lan-l y-x)dy lffl~ ~I

dly dy
2. a) Solve: - + - = (l +e-tr'
dr1 dx
dldy
~+ dz •(l +e'r' 11!1~ ~1

BT-202 (GS) BT-202 (GS) PTO


(21 Ill
6. a) Use Cauchy lntcgr:il fonnulo 10 solve
b) Soh·c : dr-y=c', dy +x=si111;x(0)=l,y(0)=0
d1 d1 • .2 . l •
~ SlllJl'Z + cosnz dz whcrcC isthecirclcl~ = 3.
c (z-l)(z-2)
f!=.. - y=c'. dy +x=si111;x(0)=l,y(0) = 0
d1 dt
• 2 2
ili't iic1 clll~ I <mil~ l f i l ~ ~ ~ J, smnz + cos,n dz
<Jzl !; 'fc (z - l)(z-2)
3. Solve the difTcrcntinl cquntion
tr.I~ lffi~I lifiii C ~ 1:1 =Jt
x(l-x)y• +2(1 - 2x)y'- 2y .. o
b) Using complex intcgr:ition method,
using Frobcnius method.
~f.nm ~ ~ 3!ilili<'r~. · Ji. cos40 dO
solve: 0 5+4cos0
x(l-x)y• +2(1 - 2x)y'- 2y = 0
tr.I !<'I cfil~ I ,,,. U A A 21 cos40
VJJ'fl'Jt _f;;ro;i- 1>nr11 ~ 'Mlcti<'l'l Fclft1 ~ ~ ~ 11! Jo S+◄cosO dO

4. 11) Prove that J½(x) .. [f .r/1vr ~~~·

7. a) Solve: J!"(x - y+l.r2 )dr nlongthercnloxisfromz • O


Im:~ J½(x) a /f.r111x
10 : • I nnd then nlong II llne pnrnllel to !mnglnruy nxls
b) Soh·c by Ou11pi1's method, the P.D.8 (Jr+ ql)y• q:. from :r • I to :r • I+ I .
tfRfqe ~ it P.D.E(,r+,r)y• q: ili't !<'I ~ I
J!•' (x-y+l.r2)tb ili't ~~ a1«1mih 31~c)nm1: • O
~ z• I~~~ @t,,qfi)ih;Jttit/;'WIAiffi1!lliWTc);~
5. 11) Solve : (D 2 -6DD'+9Dq)z= 12t'+36xy.
: = l~:c- 1+ /
(D 2 -6DD' + 9 D.,)z = I 2x2 + 36.ry ifi't !<'I~ I
2
b) Pro\'C tlult lUl nnolytic function with constlUlt modulus is b) Prove that .· V2/(r) = j(r)+-
r J(r)
ConstnnL
~~ fcl;@R'IJQf<li(llffi ~ f.htl\ttOll<4\ih lfx'l'I @ff 2
~~ V 2/(r)=;(r) + -/'(r)
ii@l ii r

BT-202 (GS) Coatd.... BT-202 (GS) PTO


Total No. a/Questions: 8] {Total Na. afPrimed Pages : J

Roll No .................- ....·-··--···


BT-202 (GS)
B.Tccli., l & II Semester
Examination, November 2022
Grading System (GS)
MaU1cmatics- Il
Time: Three Honrs
t}f aximum !,!arks: 70
Nate: i) Am:mpt nny five questions.
~~$11:U~~~I
ii) All questions cnrry cqunl marks.
~!Wfli);3rcp'flX!'Agl
iii) In c:isc of nny doubt or dispute the English version
question should be trentcd ns fimtl.
~ ,ft J!i!j'Ri);~ 3iwn f.rcllc:cfj) ~~ q 3W;;ft 'll11ll
~ Rt=r lfi1 ~ tJA'T ;:;rrlPITI
.-
I. a) Sol\'C cos,.rdy = y(sin.r- y)dx using Bernoulli's.
~ ifil ~ ~ cos.rdy=y(sin.r-y)dx lfi1 i:cJ
ifiil
b) Solve lhe Linear diffcrcnlilll equntion

sin2.r! - y= ton.r. Cmwi- -fuc.1 r.CiJa~


~~~ sin2.r!-y=tan.r ~i:cl~I

2, a) Soh•c(r+sin8-cos8)dr+r(sinO +cosO)d8=0 .
(r+sin8-cosO)dr+r(sinO+cosO)d0=0 <!l!~~

BT-202 (GS) PTO


[21 Ill
b) Solve the diffcrc:ntinl equation. S~~v tluu /(Z) = z:z is diffcrcntinblc but not nnnlytic nl
6. :i)
(0 3 - 70? + 14D- 8).f' = e-' cosl.\- ongin .

~ wft<!RCT {D 3 - 7D2 +14D - 8)y• e' cos2x ii;'t


~ f.l; / (Z) "'= 3liflliM ~ ~ ~ ~ RtHqOllc4<h
:rc!f !1
~~I
Show thnt 11(x,y) = c-?.r sin 2y is harmonic nnd
de1cnninc it's Harmonic conjugnle.
3. Solve (0 2 + 'l)y = tlln 2.r by using method of vnrintion or
parameters. ~f.l; 11(x,y)=<1!-lx sin2y ~131R~F-ltlf~
~cfilfl'r.@Jcfil ~ < l i l ~ ~ (D +4)y= tnn2.r
2 cm f.l; ~ ~ ~ i,
iffl ~~I
r:_ , 7. D) By Residue theorem, Ewlunte if, ~nz d::, whcrcC:IZl=2.
r C =- I
4. u) Show that 3,. is solenoidal
31cltN ~ ~. ~ cm f t~ z dr ~ C:IZl=2
c -1
~
Z
~f.l; solcnoidol ~I b) Using Cau~y integral 11\eorem, to cvnlunte the integral
r
.,_
b) Show that the vector
2 ~ 2 - 2 -
J e- dr , where C is the circle IZI = 2.
c(z-1)2 (z-3)
(x -y.:)1 +(y -=x)j +(;: -~)k
2z
is lrrolntionnl. Find it's scalar potential.
~ r.o c..-2 - .v:)i+ (y2 - =.r)J+<=2 - ~>i"
.),re~
lc.-,;l(::-3) dz ~R'milil~~~. Cnuchy
3111r.!<1i1~~l);~c~~ 121 - 2t1
lrrot:itionnl i, ~ ~" eft@l cl'il Q'ffi ~ I

8. n) Solve x2 pl+ y 2q1 = z 2 .


s. VcrifyGrcm'slhcort:mfor L[3x 1
- si] d.r+(4y - 6~)dy , :x2pl + y lq2 .,_ ::2 ,m ~ cfil~I
Where C is the region bounded by x • O,y • 0 nod ..-+y• I. 12
b) Solve (0 2 - 4OOt +40 )Z =- cos(x-2y)
Jfl::rilHIIW<mmmlira~ L[3x 2
-8y2
] d.r+(4y - 6.ry)dy
12
{D 2 - 4DD1 +4D )Z•cos(x- 2y) ilTt if<'! ~ I
;;m C. x • O,y • O 3m x+ y • I 1' ftm ~ ml t1
......
OT-202 (GS) Contd.- BT-202 (GS)

You might also like