(4)                             Total No. of~stlons : 8)            {Total No.
ofPrlnred Pages : 4
                                                   e"                                                RoU No ...........- ••,.................
7. a) Find lhc poles Bild residues ot each pole of - 1- .   7
                                                   z +I                                BT-202(GS)
         t
        z +I
               ~~qi!' tR qi!'~ am)'q m           ~•                             B.Tccb., I & II Semester
                                                                                Examinalioa, December 2024
   b) Find the din:ctionnl derivative of 0 - z2yz + 4.zr at
      {I, - 2, - 1) in the din:ction of 2T - ] - if.     7                      Grading System (GS)
        27 -7-2f .fil ~ if (1,-2,- 1) ~ 0 -x2y.t+ 4.zril'iT                          Mathematics - II
        ~~ll@~I                          Ca,epr.-~.C&.::                           11me: Three Hours
                                                                                                    Maximum Marks : 70
8. VcrifyGn:cn'sthcorcmfor J [(xy+y1 )ctr+.r1~] whcrcC           Now i) Attempt any five questions.
                                  C
                                                                          ~qf.rJ!t'tftll)~~I
    is the boundruy by y - x andy - xl.                     14
                                                                       ii) All questions carry equal mlllb.
                      1
    J[ (xy+ /)ctr + x
    C
                          ~ ]   ~~Jlr-f~JJI~~~~~                           ri Rt'tf ~ ~ lAR I    f
                                                                       iii) In case of any doubt or dispute the English version
    C,y - x ~y • xl<fil~!I
                                                                            question should be treated as final.
                                ••••••                                     ~ ,n Jlffl~~ 3MT ~ <fi'I M if~ 'qllf(
                                                                          lW lfA 1ffl ~ 'll'RT ~ I
                                                                                         Co.w, -fuw.coot.
                                                                 I. a) Solvc(t+/)ctr = (Ulll- 1 y-x)~.                                     7
                                                                         (t+ /)ctr =(   tan-•y - x)~ lfi)~ ll'RI
                                                                     b) Solve (1)2 + 3D + 2)y • sink                                       7
                                                                         (D1 + 3D+2)y • sin3xlffl ~ ~
BT-202(0S)                                                       BT-202{GS)                                                            PTO
                                                                         +
                                     Ill
                                                                             S. a) Construct a pllttiAI diffcrcolinl equation &om lhc relation
2. n)     Sol\'c lhe simulllUICOus equations dx -1x + y"' 0 1111d                                                                            1
                                                    dJ
          dy 2x- Sy=0
                                                                                     f(r+ y2 u2,z2 -2.xy)"'0
          dt          .                                             1
                                                                                                      1
                                                                                     ~11 J(.r2+y +z2.z2-2xy) =O                ll 31iftlc1; 3ftR
         ~~ dx - 1x+y•                         0 am dy -2x-Sy =0 lR
                             dJ                     dt                               ~.flt~~,
         ~~·
   b) Solve by I.be method of variation of parameter
                                                                                 b) Show lhat u "' ,:-• (.uin y - ycos y) is Hannonic.        7
      (D2 + 1}y=x.                                7                                  ~f.f; u,,,e-• (xsiny-ycosy)          ~!1
         ~       (Dl + J}y• x ~ ~ ; f i l ~ ~ ~ ~ l
                                                                             6. a) Dctcnninc P such that the function
                         l   d 1y              dy                                    /(z) = ½log(x2 +y 2 )+itan-•(;) be an analytic
3. 11) SolYC (l+x) dx2 +(l+x)dx +y,,,cos log(l+x). 7
                                                                                     function.                                                7
                2d 1 y              dy
          (l +z) dx2 +(l+x) dx + Y"'coslog(l+x) ~~iffll                              P'i/il~~ll<li'R~~ti;ifffl
   b) Show lhat       1.(-z) ={- I)" J,.{r) when n is positive Of                    /{z) .. ½log(x2 +    l)+1t11n-•(;) ~ fhc\11011c11i/i
         .f.);
          negative integer.
          Pt,
                   J.(- x) ={-1)" J {r) ;)l'lf n~ l f l ~
                         ·
                                           0
                                         C!mJr ..fr,i.-r.rr;,,t
                                                               7
                                                                                     lJicf1R it I
                                                                                 b) EvalUB!CusingCauchy'slheorem
                                                                                                                           1
                                                                                                                         z· e-:
                                                                                                                       J--
                                                                                                                       ,(z-1)
                                                                                                                                dz when:cis
                                                                                                                                 1
4. a) Sol\'cbyCharpit'smclhodpr+qy• pq.                             7
      "1fil? ~ pr+qy• pq l) ~ <ffll                                                  1-tl=½-
                                                                                      1                   Catee,-imn'.eoot                    1
   b) Sol\'C lhe Partin! difTcrcntl11I equation
                                    12
          (IY-401 01 +4DD )z,,,cos(2x+ Y).                          1
                                                                                     ili'f;ft~~'i/il~~           I r>e-',dz~~~
                                                                                                                 ,(z-1)
        • 31ifffl;3ion,ifllfRVT (CY-4o>o' +4Dif)z=cos(2x+y)
         er;)~~,
BT-202(0S)                                                    Con1d•••       BT-202(0S)                                                    PTO
                               (4)             Total No. o/Quulio,is : 8)         (Toto/ No. ofPri111td Pages : ./
    b) Write short note on:                7                                      RoUNo ..................................
       i) Cauchy's intc:grul fonnuln                                  BT-202 (GS)
        ii) Solenoidal and lrrototioruil                       8 .Tcch., I & IT Semester
        ~:ire~,                                                   Examination, June 2024
        i) <ffl-.ft~~                                          G rading System (GS)
        ii) 11M-1~~ 3iR~ffi'!                                       Mnthemntics - II
                                                                    1imc: T/trce flours
                            ••••••                                                       Max/11111111 JI.larks: 10
                                               Note: i) Attempt nny five qucsdons.
                                                          ~qfvRAilf>1~~1
                                                     ii) All questions CQrT)' cqWII marks.
                                                         fl'1l R,:i'fi)r3ic!;l!'tl'ffl
                                                     iii) In cue of any doubt or dispute the English version
                                                         question should be treated llS tinnl.
                                                         ~ ,n llffl ~ ~ W i n ~ if!I ~ i f ~ "tfl'IT
                                                         ti Rt'f lffl 3ifctif "!RT~ I
                                               I. a) Solve x dy + y .. x'y 6 using Bernoulli's.                        7
                                                             dx
                                                      ~lfflffl1T~ x! +y =xJy6                    lm~<ml
                                                  b) Solve lhedifrcrcntilll cqWllion {xe""' +   2y): + ~..,. = 0
                                                      using Exact method.                                             7
                                                      Exact Fclffl ~ ffl1T   m   3llll@ Wflili·M
BT-202(GS)                                     BT-202(GS)                                                         PTO
                                12]                                                                       [3)
2. n) Solvc{D2 -60+13)y=Sc'"'sin2.r.                               7   6. n)               ,1u>(
                                                                                Evnlunte Jco.o) 3.r2 + 4.ry + t• r' ) d:: aloogy • .r2.     7
        (n2-6D+13)y=8clxsin2r            <R~1'RI
                                                                                 y • .r2~~        J(~;i(3.r2 +4.ry + i.r )dz
                                                                                                                       2
                                                                                                                               <j;f~       ~I
   b)   Showlhal ![.r"J.(.r)]=.r"J.-i(.r) .                        7       b)   Find the Poles 11J1d Residues 111 c11ch pole or
                                                                                            • 2
                                                                                 /(z): sin z 2
        ~~~       ![.r•J.(.r)]=.r"J._,(.r) I
                                                                                         (z-:) .                                            7
3. Solve (0 2 +1)y • .rsin.rusingvnria1ionofp:1rnmctcrs. 14
   ~lflt~tfi'l~fb1J;1~M (02 +1)y • .rsln.r ll1l
   ~?!RI
                                                                       7. Vc.-ify0r,:,:n•$ thc::orcm In the pl1U1c for
4. n)   Form the pllltial dUfcrcn1illl equation (By eliminating lhe
        nrbl1rnryfunclions)from Z • {.r+y);{.r - y
                                                   2     2
                                                             ) .   7
                                                                           Jc{.r2-..y)ttr+(y2- 2.ry)dy where C is II squnrc with
                                                                           venices (0. 0), (2, 0), (2, 2), (0, 2).                          14
        z .. {.r + y); (.r2 - y2)   ~ 3ITTfflll 3i"!R ~ <ll"fllA           fc(.r2- .tY')ttr+(y2 - 2.ry)dy ~ ~ <f'lira 11 J!R 1); w)ti
        ~1li)wm:r~)~I                                                      ~ ~~ ~C                   t1llil (0, 0), (2, 0), (2, 2), lO, 2) ~ ~
   b)   Solvc(D1 -DD1-6011Z• .xy.                                  7       ;pf  i,
        (02 -DD 1-6D11Z• .xy1li) ~ ~I
                                                                       S. 11)    Find the directional derivative of /(.r,y,z) = .xy2 + yz'
S. n)   Solve the partial diffcrcntio.l cquallonyp-.rp • z.        7             a1 point (2, - 1, I) In the direction of the vector
        3liftJq; ~ ~ yp- xp • z              cm~~,                               T+2] + 2f .                                                 7
   b)   Showlh01 u •c-•(.niny - y<'Osy) isHrumonic.                7             t~ T +2] +U tPl .f~tTT il ~ (2, - 1,                     I) ~
        ~ u"' e-'(.rsiny-ycosy)             ~ !1                                 I (x. y. %) =.xyl + yz' <l>T ~ ~ ~ I
BT-202(OS)                                                     ConuL   BT•202(GS)                                                          PTO
                                     (41       Total No. of Questions : 8/                 /Total No. of Primed l'ageJ : 4
                                                                                           Roll No ... - ............................ .
8. n)   Prove tlinl    curt( r"r) = 0      7
                                                                           BT-202 (GS)
        Im:~~~ curl(r"r) =O                                      B.Tccl1., I & n Semester
   b)   Wri1c short nolc on:               7                     Exwnination, Dcccmbcr2023
        I) Cauchy Riemann equations                              Grading System (GS)
        ii) S1okcs theorem
                                                                    Mathematics - fl
        Tif!m'lre~I                                                       7ime: Tlm:a /lours
        l)    tr,fil) til:! ~•frq,<111                                                              Marlmum Marks: 70
        Ii) «!f<l~I ST~                        Nora: i) Attempt nny five questions.
                                                        ~ qt.J flt'TI Ir,! l!t'I ;f.l~,
                                 ••••••                ii) All questions cnny equal mnrks .
                                                          ~Ost~~~~i!I
                                                       lll)ln case of nny doubt or dispute the English version
                                                           question i.hould be tn:ntcd os final .
                                                           A;;U ,n AlliR ~ ~ ~l!lQT ~ lfil ~ ,, 3ill-..n '11'11
                                                          ~ ln"I tr,)   3ir.til 'lFII v!Tl)-tn1
                                               I. a) Solve (t+ y1)tit=(lnn-• y-x)dy usingLcibnil.7.lincnr
                                                     method.                                           7
                                                     t'll~ 1!wn f.lfq <lil QIMTJ ~
                                                        (1+ l)tit .. (u1n- 1y-x)dy lb'~ <!RI
                                                   b) Solvc{e1 +t)cosxt.1.t+111 sinxdy=O.                                            7
                                                        (e' + I)c:osxt.1.t+111sin x dy = 0 ir,l l!t'I <!RI
                                               2. a)    Solve   (n2-4D+3)y=cos2...                                                   7
                                                           1
                                                        (0 -4D+3)y=cos2x ctlt~l'!RI
UT-202 (OS)                                    BT-202 (GS)                                                                       !'TO
                                121                                                                        131
                                                                            b) Dc1cnmnc p so that the function
     b) Showtha1Ji{,r)=      12sinx .                             7
                 "i         -.J~                                                  /(z) =½los(x2 -, y 1)+il3n- 1(          ';)
           ~~ Ji(x)=                                                              innalytic funclion.                                           7
                    ;       v-;;
                             (2sinx
                                                                                  p f.lufft., ifR mf.), $1"""
                                                                                  /(z)=½los(.r1 + i)+itan- 1(             ';)
J. Solve     (D-2 +9),, = tanJx by using method of vllrinlion of
     p:irnmeters.                                                14               ~,;i11011te1u. y;lJV•nil 1     ..                   .~Jul
                                                                                                                 ~    I
     ~ .li\ f!r-;rnJ iii) f.ttb lli1 ~ m         (01+9)1= lllnJ.r      6.   11)   Show lhllt lhe function II (.r, )') = e' cos)' is Hllflllonic.
     tlil~~I                                                                      DelCtlllinc h's 1i11JTI1onic conjugate.                     7
                              lklJte.&. -fuen.e.o;••                              ~      Rf \i;1ttA 11(r.y) :o ~•cosy 1!Pl'ff.r.l"i   ti   {fllffl
4. a) Solve the p:u-t.ial dlffercotinl equation
                                                                                  ~~ r.iumc, ~I
           (x-y)p+(.r+ y)q•2xz.                                   7
                                                                                                  Ze'     .. I
                                                                            b) F'mdlhcrcslducor (z-1)3 lllllSpOe.                               7
           ~~~ (.r-y)p+(.r+ y)q=2.rt                         <NF!
           !!RI
     b) Soh•e (p1 + ql)y =qr.by using ChllrJlh 's method.         7
                                                                                                  u'
                                                                                  ~ qlf 1R - - , iii! 3f!n°\t( S'I@ ti~ I
                                                                                                (Z-1)
           ~~ ' I l l ~ ~ (pl+<r)y=qzlffl~l!RI
                                                                       7. Verify Gauss divcsgcnec theorem for F=..-37 + y3]+t3k
                                                                          llllccn over the cube bounded by x =0 • .r =a, )' = 0, y = a,
                                  12
5.   ll)   Solve ( D2 +4 OD1-5D        )   Z=sin(2x+Jy).          7         t=O.z=a.                                                          14
                                                                            F=..-37 + il +t3"f ~ fclil ttm ~ ~ <fil·~                        ~.
                                                                            ;;ii x=O,x=a,y= 0,y=u,z=O, z =a~                RR tl9'R ~~
                                                                            t,                         .
BT-202 (GS)                                                 Contd...   BT-202 (GSJ                                                          PTO
                                 l~I                                   1btol No. of Q11c,t/011s : 8)       (Total No. ufPrlntt:d Pages : 4
                                                                                                           Roll No _.....·-·--···................
8. a) Fmd lhc dircction:11 dcriv:mvc of /(x,y, :) = ,:1-' cosy:
      01 (0, 0, 0) in the dircc1ion of 1111: 1MJ1cn1 ro lhc curve                               BT-202 (GS)
                                                                                         B.Tcch ., J & II Semes ter
         r =asint ,y=aco st, :=at 1111=!: .                                                 Eltaminntioo,Junc2023
                                               4
         / (r,y,:) • e,_, cosy: ~ (0, 0, 0) ~ u;
                                                                                         Gracting Syste m (GS)
                                                                                               M:ithc m:itics - Il
         r•asin t,>•=o cost,:a at at,.!:                                                    Timt! : Thrt!ll /lours
                                               4                                                                 !rlaxl11111n1 Marks: 70
        l)r   mm 1fi'I ~"' il ~ ~ m.t,                                 Note: i) A1tcmpt1111y five question  s.
    b) Usina Green's theorem, find the area of!ht region in lhc                 ~ 111'1 flAl cffl Wi=f ~ I
                                                          I      X
                                                                             u) AU questions cmy equal masks.
       tirst quadran t bounded by the CUl'\'1: y =x, y = - , y = - .
                                                         X       4                "'1!J1 Al$3i lf;~i,
                                                                               ul)ln case of any doubt or diJpwc the English YCBion
        ll'fm 1111 ~~~. u y•x, y•.!.,
                                  X
                                      y.~ ~AA
                                        4
        ~ 'fl1l'/lt1 rf ffif 111T ii~ m;, 1l'R I
                             ...........
                                                                                  ~ !ft SllllR ti,,~ 3l'JllT
                                                                                  $11A1"'3iffl,JlJAl;;mml
                                                                                                             -uh
                                                                                  question should be treated u final
                                                                                                                r
                                                                                                                     ~ i l 3ibvft 'llTIIT
                                                                                                                                 Iv
                                                                       I. a) Solve : :        =cos(x +y) +sin(x +y).
                     CoJUJ -fua-TT.COUl
                                                                                i•cos( x+y)+ sin(x+ y) 1"'Wi =f~I
                                                                           b) Solve: (l+ y 1)dt=(IM _, y-x)dy
                                                                                (l+ y 1)d\'•(lan-l y-x)dy lffl~ ~I
                                                                                        dly     dy
                                                                       2. a)    Solve: - + - = (l +e-tr'
                                                                                   dr1 dx
                                                                                 dldy
                                                                                ~+ dz •(l +e'r' 11!1~ ~1
BT-202 (GS)                                                            BT-202 (GS)                                                         PTO
                                 (21                                                                        Ill
                                                                         6. a)   Use Cauchy lntcgr:il fonnulo 10 solve
    b) Soh·c : dr-y=c', dy +x=si111;x(0)=l,y(0)=0
                   d1           d1                                                      •      .2     . l                   •
                                                                                 ~     SlllJl'Z + cosnz     dz whcrcC isthecirclcl~ = 3.
                                                                                   c      (z-l)(z-2)
         f!=.. - y=c'. dy +x=si111;x(0)=l,y(0) = 0
          d1           dt
                                                                                                                        •       2           2
         ili't iic1 clll~ I                                                      <mil~              l f i l ~ ~ ~ J, smnz + cos,n dz
                                                                                               <Jzl             !; 'fc (z - l)(z-2)
3. Solve the difTcrcntinl cquntion
                                                                                 tr.I~ lffi~I lifiii C ~ 1:1 =Jt
         x(l-x)y• +2(1 - 2x)y'- 2y .. o
                                                                            b)   Using complex intcgr:ition method,
    using Frobcnius method.
    ~f.nm ~ ~ 3!ilili<'r~.                                                             · Ji.    cos40 dO
                                                                                 solve:    0   5+4cos0
         x(l-x)y• +2(1 - 2x)y'- 2y = 0
    tr.I !<'I cfil~ I           ,,,. U A A                                                                                  21      cos40
                                VJJ'fl'Jt _f;;ro;i- 1>nr11                       ~ 'Mlcti<'l'l Fclft1 ~ ~ ~ 11! Jo S+◄cosO dO
4. 11)    Prove that J½(x) ..   [f     .r/1vr                                    ~~~·
                                                                         7. a) Solve: J!"(x - y+l.r2 )dr nlongthercnloxisfromz • O
         Im:~ J½(x) a /f.r111x
                                                                                 10 : •  I nnd then nlong II llne pnrnllel to !mnglnruy nxls
   b) Soh·c by Ou11pi1's method, the P.D.8 (Jr+ ql)y• q:.                        from :r • I to :r • I+ I .
         tfRfqe ~ it P.D.E(,r+,r)y• q: ili't !<'I ~ I
                                                                                 J!•' (x-y+l.r2)tb ili't ~~ a1«1mih 31~c)nm1: • O
                                                                                 ~ z• I~~~ @t,,qfi)ih;Jttit/;'WIAiffi1!lliWTc);~
5. 11) Solve : (D 2 -6DD'+9Dq)z= 12t'+36xy.
                                                                                 : = l~:c- 1+ /
       (D 2 -6DD' + 9 D.,)z = I 2x2 + 36.ry ifi't !<'I~ I
                                                                                                                    2
    b) Pro\'C tlult lUl nnolytic function with constlUlt modulus is         b) Prove that .· V2/(r) = j(r)+-
                                                                                                           r J(r)
         ConstnnL
         ~~ fcl;@R'IJQf<li(llffi ~ f.htl\ttOll<4\ih lfx'l'I @ff                                                    2
                                                                                 ~~ V 2/(r)=;(r) + -/'(r)
         ii@l ii                                                                                   r
BT-202 (GS)                                                  Coatd....   BT-202 (GS)                                                        PTO
     Total No. a/Questions: 8]           {Total Na. afPrimed Pages : J
                                         Roll No .................- ....·-··--···
                            BT-202 (GS)
                     B.Tccli., l & II Semester
                    Examination, November 2022
                     Grading System (GS)
                          MaU1cmatics- Il
                           Time: Three Honrs
                                                t}f aximum !,!arks: 70
     Nate: i) Am:mpt nny five questions.
              ~~$11:U~~~I
           ii) All questions cnrry cqunl marks.
              ~!Wfli);3rcp'flX!'Agl
           iii) In c:isc of nny doubt or dispute the English version
               question should be trentcd ns fimtl.
               ~ ,ft J!i!j'Ri);~ 3iwn f.rcllc:cfj) ~~ q 3W;;ft 'll11ll
              ~ Rt=r lfi1 ~ tJA'T ;:;rrlPITI
.-
     I. a) Sol\'C cos,.rdy = y(sin.r- y)dx using Bernoulli's.
           ~ ifil ~ ~ cos.rdy=y(sin.r-y)dx lfi1 i:cJ
            ifiil
        b) Solve lhe Linear diffcrcnlilll equntion
            sin2.r! - y= ton.r.          Cmwi- -fuc.1 r.CiJa~
            ~~~ sin2.r!-y=tan.r ~i:cl~I
     2, a) Soh•c(r+sin8-cos8)dr+r(sinO +cosO)d8=0 .
            (r+sin8-cosO)dr+r(sinO+cosO)d0=0 <!l!~~
     BT-202 (GS)                                                          PTO
                                     [21                                                                         Ill
     b) Solve the diffcrc:ntinl equation.                                                S~~v tluu /(Z) = z:z is diffcrcntinblc but not nnnlytic nl
                                                                                6. :i)
         (0 3 - 70? + 14D- 8).f' = e-' cosl.\-                                           ongin .
         ~ wft<!RCT {D 3 - 7D2 +14D - 8)y• e' cos2x ii;'t
                                                                                         ~ f.l; / (Z)     "'= 3liflliM ~ ~ ~ ~ RtHqOllc4<h
                                                                                         :rc!f !1
         ~~I
                                                                                         Show thnt 11(x,y) = c-?.r sin 2y is harmonic nnd
                                                                                         de1cnninc it's Harmonic conjugnle.
3. Solve (0 2 + 'l)y = tlln 2.r by using method of vnrintion or
     parameters.                                                                         ~f.l; 11(x,y)=<1!-lx sin2y         ~131R~F-ltlf~
     ~cfilfl'r.@Jcfil ~ < l i l ~ ~ (D +4)y= tnn2.r
                                                             2                           cm f.l; ~ ~ ~ i,
     iffl ~~I
                                   r:_ ,                                        7. D) By Residue theorem, Ewlunte if, ~nz d::, whcrcC:IZl=2.
                         r                                                                                              C   =- I
4. u) Show that 3,.           is solenoidal
                                                                                         31cltN ~ ~.       ~ cm f           t~ z     dr   ~ C:IZl=2
                                                                                                                        c       -1
                         ~
                                                                                                                            Z
         ~f.l;               solcnoidol ~I                                         b) Using Cau~y integral 11\eorem, to cvnlunte the integral
                     r
                                                                                                    .,_
     b) Show that the vector
           2     ~    2   -      2   -
                                                                                         J e- dr , where C is the circle IZI = 2.
                                                                                         c(z-1)2 (z-3)
         (x -y.:)1 +(y -=x)j +(;: -~)k
                                                                                                    2z
         is lrrolntionnl. Find it's scalar potential.
         ~         r.o      c..-2 - .v:)i+ (y2 - =.r)J+<=2 - ~>i"
                         .),re~
                                                                                         lc.-,;l(::-3)    dz   ~R'milil~~~. Cnuchy
                                                                                         3111r.!<1i1~~l);~c~~ 121 - 2t1
         lrrot:itionnl i, ~ ~" eft@l cl'il Q'ffi ~ I
                                                                                8. n) Solve x2 pl+ y 2q1 = z 2 .
s.   VcrifyGrcm'slhcort:mfor        L[3x   1
                                               - si] d.r+(4y - 6~)dy ,                   :x2pl + y lq2 .,_ ::2 ,m ~ cfil~I
     Where C is the region bounded by x • O,y • 0 nod ..-+y• I.                                                   12
                                                                                   b) Solve (0 2 - 4OOt +40 )Z =- cos(x-2y)
     Jfl::rilHIIW<mmmlira~           L[3x    2
                                                 -8y2
                                                        ]   d.r+(4y - 6.ry)dy
                                                                                                            12
                                                                                         {D 2 - 4DD1 +4D )Z•cos(x- 2y) ilTt if<'! ~ I
     ;;m C. x • O,y • O 3m         x+ y • I      1' ftm ~ ml t1
                                                                                                               ......
OT-202 (GS)                                                           Contd.-   BT-202 (GS)