0 2 Vineselection
0 2 Vineselection
Universitetet i Oslo
ingrihaf@math.uio.no
Copulae
Regular vines
Copulae
Copulae
Sklar’s theorem
∂ d C1...d
c1...d = ,
∂u1 . . . ∂ud
and f1...d the pdf corresponding to F1...d .
Illustration
0.4
0.4
0.25
0.3
0.3
0.2
density
density
0.2
0.2
0.15
Z
0.1
0.1
0.1
0.05
0.0
0.0
-4 -2 0 2 4 -4 -2 0 2 4
0
X X
4
2
4 Univariate standard normal densities
0 2
Y
0
-2 X
-2
-4
Bivariate standard normal density -4
…we get…
5
0.8
1
0.6
0.8
Y 0.4 0.6
0.4 X
0.2
0.2
0 0
Illustration
Kreditt Operasjonell
0.0006
0.0014
5
0.0012
0.0005
4
0.0010
0.0004
3
0.0008
Z
Tetthet
Tetthet
0.0003
2
0.0006
0.0002
1
0.0004
0
0.0001
0.0002
1
0.8
0.0
0.0
1
0.6 0 5000 10000 15000 0 2000 4000 6000 8000
0.8
Verdi Verdi
Y 0.4
0.2
0.4 X
0.6
beta-density lognormal density
0.2
0 0
we get…
3
2.5
lognormal margins.
0.5
0
0.8
0.6 20
15
0.4
Y
10
X
0.2
5
Pair-copula constructions
⋯
Gu
F
Ga
C t
M
⋯ Copula ⋯
t F
Gu
Gu
C
Ga
Building blocks
• The bivariate copulae constituting the construction need not
belong to the same family. The resulting multivariate
distribution will still be valid.
• One may for instance combine the following types of
pair-copulae Gumbel Clayton
1.0
1.0
0.8
0.8
0.6
0.6
V
v
0.4
0.4
0.2
0.2
0.0
0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
u U
Gaussian Student
1.0
1.0
0.8
0.8
0.6
0.6
V
V
0.4
0.4
0.2
0.2
0.0
0.0
f123 (x1 , x2 , x3 ) =f3 (x3 )f2|3 (x2 |x3 )f1|23 (x1 |x2 , x3 ). (2)
• More specifically,
c123 (F1 (x1 ), F2 (x2 ), F3 (x3 )) =c13 (F1 (x1 ), F3 (x3 ))c23 (F2 (x2 ), F3 (x3 ))
(3)
·c12|3 (F1|3 (x1 |x3 ), F2|3 (x2 |x3 )),
where c13 , c23 and c12|3 are the copula densities corresponding
to F13 , F23 and F12|3 , respectively.
Vines in 5 dimensions
2 3
12 13 4
1 2 3 4 5 T1 1 14 T1
12 23 34 45 5
15
23|1 13 24|1 14
12 23 34 45 T2
13|2 24|3 35|4 12 T2
25|1 15
D-vine C-vine
Regular vine
6 5 1 2
6,5 5,1 2,1
1,7|5 4,1| 3
7,5 4,3 T2
6,3| 15 5,2| 31
6,1| 5 5,3| 1 3,2| 1
7,3| 15 4,2| 13
7,1| 5 4,1| 3 T3
7,2| 315
7,3| 15 T4
7,4| 62315
7,6| 2315 6,4| 2315 T6
Regular vines
Vine matrix
Vine inference
Parameter estimation
Parameter estimation
Structure selection
Structure selection
Structure selection
We wish to construct an R-vine on five variables.
3 − 5 − 2 − 4
• Level 1 : For all 15 pairs {i, j}, we estimate τij .
|
There are 125 possible spanning trees. Assume
1
that this is the winner tree:
• Level 2 : There are now 3 possible spanning trees
15 − 25 − 24
and 4 conditional Kendall’s τ s to estimate:
τ12|5 , τ13|5 , τ23|5 , τ45|2 . Assume that this is the |
winner tree: 35
Structure selection
Model reduction
Model reduction
• Pruning consists in testing each of the copulae in the
construction for independence.
• Typically, Cij|v is tested for independence by testing whether
τij|v is significantly different from 0.
• Truncation consists in finding a level after which all copulae
can be set to independence.
• Starting with a one-level vine, truncation is performed as
follows:
1. test whether one extra level of copulae makes the model
significantly better
2. if yes and the number of levels is < d − 1, return to 1
3. else return the truncation level.
• The log-likelihood ratio test of Vuong [1989] for non-nested
hypotheses is used as a criterion in step 1.
• The structure of each new level is selected using the algorithm
of Dißmann et al. [2013].
Ingrid Hobæk Haff How to select a good vine
Outline Copulae R-vines Model selection Limitations and challenges References
Model reduction
Pruning
c12 · c23 · c34 · c45
·c13|2 · c24|3 · c35|4
·c14|23 · c25|34
·c15|234
Model reduction
Pruning Truncation
c12 · c23 · c34 · c45 c12 · c23 · c34 · c45
·c13|2 · c24|3 · c35|4 ·c13|2 · c24|3 · c35|4
·c14|23 · c25|34 − − − − −−
·c15|234 ·c14|23 · c25|34
·c15|234
Model reduction
Pruning Truncation
c12 · c23 · c34 · c45 c12 · c23 · c34 · c45
·c13|2 · c24|3 · c35|4 ·c13|2 · c24|3 · c35|4
·c14|23 · c25|34 − − − − −−
·c15|234 ·c14|23 · c25|34
·c15|234
& .
Limitations
Challenges
Challenges