Selfstudys Com File
Selfstudys Com File
MATHEMATICS
(English Version)
Instructions:
1. The question paper has five parts namely A, B, C, D, and E. Answer all the parts.
2. Use the Graph Sheet for the question on Linear Programming Problem on Part –E.
PART – A
Answer all the ten questions:
1) Define Binary Operation. 110 10
Sol.
A binary operation * on a set A is a function * : A A A. We denote * (a,b)
By a *b.
1 1
2) Find the principal value of cos .
2
Sol.
Simplify the expression,
1 2
cos 1 .
2 3 3
Sol
Simplify the expression,
3 x 3 2
x 1 4 1
1
3 x2 3 8 x2 8
x 2 2
6) Find 1 x x .dx
Sol.
Simplify the expression,
1 x x .dx 1 x x .dx
1/2
2 3/2 2 5/2
x x c
3 5
7) Find a value of x for which x iˆ ˆj kˆ is a unit vector.
Sol.
Simplify the expression,
x iˆ ˆj kˆ
x2 x2 x2 1
3x 2 1
1
x
3
8) If a line has direction ratios 2, -1,-2 then determine its direction cosines.
Sol.
Simplify the expression,
2 1 2
The direction cosines are , , .
3 3 3
2
9) Define objective function in Linear Programming Problem.
Sol.
A linear function Z ax by, where a ,b are constants which can be optimized
(maximized ) in an LPP, is called objective function.
Sol.
Simplify the expression,
PE F 0.2
PF / E
PE 0.6
P F / E 0.34
PART-B
Answer any ten questions: (10x2=20)
Sol.
Simplify the expression,
Let X 1 , X 2 N r
f x1 f x2 2 x1 2 x2
x1 x2 2 x1 2 x2
x1 x2 f is one-one
y
f x y 2x y x N (Domain) since f is not onto.
2
12) Prove that sin 1 x cos 1 x , x 1,1.
2
Sol.
Prove the expression,
Let sin 1 x y
3
Then x sin y
cos y
2
cos 1 x y;
2
sin 1 x cos 1
2
cos 1 x y
2
1
13. Write cos 1 , x 1 in the simplest form.
x 1
2
Sol.
Simplify the expression,
Put x sex
1 1
cot 1 cot 1
x 1 sec 1
2 2
1
cot 1
tan 2
1
cot 1 cot cot sec x.
1 1
tan
14. Find the area of the triangle with vertices (2,7), (1,1) and (10,8) using determinant
method.
Sol.
Simplify the expression,
Area of triangle =
2 7 1
1
1 1 1
2
10 8 1
4
1
2 1 8 7 1 10 8 10
2
=
1 47
14 63 2 sq.units
2 2
, if y log x
dy cos x
15. Find
dx
Sol.
Simplify the expression,
y log x
cos x
16. if ax by cos y
2 2
Sol.
Simplify the expression,
ax 2 by 2 cos y
Differentiating w.r. to x
dy dy
a 2by. sin y
dx dx
dy dy a
2by sin y a;
dx dx 2by sin y
5
17. Find the approximate change in the value V of a cube of side x meters caused by
increasing side by 2%.
Sol.
Simplify the expression,
V x3
V 3x 2 0.02 x 0.06 x 3m3
1
18. Find cos x 1 tan x
2 2
dx
Sol.
Simplify the expression,
Sec 2 x
I
1 tan 2 x dx
1 tan x t sec 2 dx dt
Put 1 1 1
2
I dt c
t t 1 tan x
Sol.
Simplify the expression,
sin 2x.cox3xdx.
sin 5 x sin x dx cos x
1 1 cos 5 x
2 2 5
c
6
20. Find the order and degree (if defined) of the differential equation
2
d2y dy
2 cos 0
dx dx
Sol.
2
d2y dy
2 cos 0
dx dx
21. If a b . a b 8 and a 8 b
Sol.
Simplify the expression,
a b . a b 8 a b 8
2 8 8 2 2
b
63 63 63
a 2iˆ 3 ˆj kˆ, b iˆ 2 ˆj kˆ
a.b
2iˆ 3 ˆj 2kˆ 2 6 2
b 12 22 12 6
Projection of a on b is
10 10 6 5 6
6 6 3
7
23. Find the distance of the point (3,-2,1) from the plane 2 x y 2 z 3 0
Sol.
Simplify the expression,
The distance of point (3,-2,1) from the plane 2 x y 2 z 3 0
24. Probability of solving specific problem independently by A and B are ½ and 1/3
respectively. If both try to solve the problem independently. Find the probability that the
problem is solved.
Sol.
Let E: A solves the problem
F: B Solves the problem
E and F are independent events, then
1 1 1 4 2
P EorF P E F P E P F P E F
2 3 6 6 3
8
PART –C
Answer any ten questions: (10x3=30)
R a, b : a b3
1 1 1 1 3
R is not reflexive, for , R
2 2 2 2
a, b 1, 2 R 1 23
But b, a 2,1 R 1 13
a, b 9,3 R 9 33
b, c 3, 2 3 23
But a, c 9, 2 R 9 23
1 4 1 12 1 33
26. Prove that cos cos cos
5 13 65
Sol.
Prove the expression,
We know that,
x y
tan 1 x y
1 xy
9
3 / 4 5 /12
tan 1
1 3 / 4 5 /12
56 33
tan 1 cos 1
33 65
1 2
27 By using elementary transformations, find the inverse of the matrix A
2 -1
Sol.
Simplify the matrix expression,
A =IA
1 2 1 0
0 -5 2 1 A R 2 R2 2 R1
1 0
1 2 A R 1R
2 1
0 1 -
2 2
5
5 5
1 2
5 5
A 1
2 -1
5 5
dy
28. If x a sin , y a 1 cos then Show that tan .
d 2
Sol.
dy
X a sin a 1 cos 2a cos 2 / 2
d
dy
Y a 1 cos a sin 2a sin / 2 cos / 2
d
dy dx 2a sin / 2 cos / 2
/ tan / 2
d d 2 cos 2 / 2
10
29. Verify Rolle’s for the function f x x 2 x 8, X 4, 2.
2
Sol.
f x x 2 2 x 8 is continous in 4, 2
f ' x 2 x 2 f x is differential in 4, 2
f a f 4 0; f b f 2 0
increasing.
Sol.
f x 2 x 2 3x 2 36 x 7
f '( x) 6 x 2 6 x 36 6 x 2 x 6
6 x 2 x 3 6 x 2 x 3 x 2,3
f x is strictly increasing f' x 0
X , 2 3,
x2 1 x2 x2 x2
I log e x xdx. log e x . dx log x c
2 x 2 2 4
1 x2 x2 1
I log e x d X 2 . log e X . dx
2 2 2 x
X2 X2
log e X c
2 4
11
/2
sin x
32. Evaluate: 1 cos
0
2
x
dx.
Sol.
Simplify the expression,
/2
sin x
/2
d cos x /2
d cos x
I
0 1 cos 2 x
dx.
0 1 cos 2 x
0 1 cos 2 x
tan 1 cos tan 1 cos 0 0
/2
tan 1 cos x
0
2 4 4
33. Find the area of the region bounded by the curve y 4 x and the line X=3.
2
Sol.
Figure
Required area,
3
X 2
2 3/2 3
3
A 2 ydx 2 2 x1/2 dx 4
2
0
3
3
3 8 3sq.units
8 3/2
2 x
34. Form the differential equation of the family of curves y ae be
3x
by eliminating
arbitrary constants a and b.
Sol.
ye2 x ae5 x b
Diff. w.r.t x we get,
12
2 ye 2 x .e 5 x y ' e 2 x e 5 x 5ae5 x e 5 x
2 ye 3 x y ' e 3 x 5a
2 ye 3 x 3 2e 3 x y ' y ' e 3 x y '' 0
e 3 x 6 y 2 y ' 3 y ' y '' 0
y '' y ' 6 y 0
35. Find a unit vector perpendicular to each of the vector a b and a b where
a iˆ ˆj kˆ, b iˆ 2 ˆj 3kˆ,
Sol
nˆ
a b a b
a b a b
i j k
a b a b 2 3 4 2i 4 j 2k
0 -1 -2
ab ab 2
2
42 2 24 2 6
2
13
AB OB OA 2, 4, 6 4,8,12 2, 4, 6
AC OC OB 3,5, 4 4,8,12 1, 3, 8
AD OD OA 5,8,5 4,8,12 1, 0, 7
2 -4 -6
AB. AC AD AB, AC AD -1, -3 -8
1 0 -7
2 21 4 15 6 0 3 0
42 60 18 0 The points are coplanar
37. Find the vector equation of the plane passing through the points R(2,5,-3), S(-2,-3,5)
and T(5,3,-3).
Sol.
Required equation of the plane is
r a, b a, c a, 0
r a .b a c a 0
i j k
b a c a -4 -8 8 16i 24 j 32k 16, 24,32
3 -2 0
38. An insurance company insured 2000 scooter drivers, 4000 car drivers and 6000 truck
drivers. The probability of an accident is 0.01,0.03 and 0.15 respectively. One of the insured
persons meets with an accident. What is the probability that he is a scooter driver?
Sol.
Let A be the event that one of the insured persons meets with an accident.
Total = 2000 4000 6000 12000
Let E1 , E2 , E3 be the events that the insured scooter, car and truck drivers meet with an
accident respectively.
14
2000 1 4000 1 6000 1
P E1 ; P E2 ; P E3
12000 6 12000 3 12000 2
P E1 P A | E2
P E1 / A
P E1 P A | E1 P E 2 P A | E2 P E3 P A | E3
1
0.01
Now, 6
1 1 1
0.01 0.03 0.15
6 3 2
0.01 1
0.52 52
PART- D
Answer any six questions: (6 x 5=30)
Sol.
Let X 1 , X 2 , X 1 Now, f X1 f X 2
4 X1 3 4 X 2 3 4 X1 4 X 2 X1 X 2 f is one-one
y N and f x y
4x 3 y 4x y 3
Y 3
Let X N domain f is onto
4
Let f 1 y X Y f X
Y 3 1 Y 3
Y 4X 3 X ; f y
4 4
15
1 2 3
40 If A 3, -2 1 then show that A3 23 A 40l
4 2 1
Sol:
Prove the expression,
1 2 3
A 3, -2 1
4 2 1
1 2 3 1 2 3 19 4 8
A2 A A 3, -2 1 A 3, -2 1 A 1, 12 8
4 2 1 4 2 1 14 6 15
1 2 3 19 4 8 63 46 69
A A A 3,
3 2
-2 1 1, 12 8 69 -6 23
4 2 1 14 6 15 92 46 63
63 46 69 1 2 3 1 0 0 0 0 0
A 23 A 40 I 69
3
-6 23 23 3, -2 1 40 0, 1 0 0, 0 0
92 46 63 4 2 1 0 0 1 0 0 0
Sol:
Let A
16
3 -2 3 X 8
2
1 -1 , X Y and B= 1
4 -3 2 Z 4
A 3 2 3 2 4 4 3 6 4 17
-1 -8 10 -1 -5 -1
Co factor matrix of A= -5 -6 1 Adj A -8 -6 9
-1 9 7 -10 1 7
Adj A
X A1 B, where, A 1
A
-1 -5 -1 8 -8 -5 4 1
1
9 1 36 2 X 1, Y 2, z 3
1
1
A = -8 -6 -64 -6
17 17
-10 1 7 4 -80 + 1 + 28 3
dy
2
show that 1 x 2 x 0 .
2 d y
1
42. If y sin x ,
dx dx
Sol.
dy 1
y sin 1 x
dx 1 x2
dy d 2 y dy 1 2 x d2y dy
1 x2 1 1 x2 2
. 0 2
x .0
dx dx dx 2 1 x 2 dx dx
17
43. The length x of a rectangle is decreasing at the rate of 3 cm/min and the width y is
increasing at the of 2 cm/min. when X=10 cm and y=6cm, find the rates of change of
i) The perimeter and
ii) The area of the rectangle.
Sol.
dy dy
3cm / min and . 2cm / min
dx dx
(i ) The perimeter P=2 x y
dp dx dy
2
dt dt dt
=2 3 2 2cm / min
(ii ) The area A of the rectangle A=x.y
dA dy dx
x y 10 2 6 3 2cm 2 / min
dt dx dy
1 1
44. Find the integral of
x a2
2
With respect to x and hence evaluate x 2
16
.dx
Sol.
1 1
x a
2 2
x a x a
1 x a x a 1 1 1
2a x a x a 2a x a x a
dx 1 dx dx 1 1 xa
2 log x a log x a c log c
x a 2
2a x 4
2
x a 2a 2a xa
dx dx 1 x4
2 log e c
x 16
2
x 4 2
8 x4
18
45. Using the method of integration, find the smaller area enclosed by the circle x y 4
2 2
Sol.
x2 y 2 4 y 4 x2
x y 2 y 2 x
Required area =
2
4 x 2 2 x dx
0
2
x 4 1 x2
4 x sin 2 x
2
2 2 2 0
0 2sin 1 4 2 0
2 2 2 sq.units
2
Sol.
dy
Given, y sec x tan x P =secxQ=tanx
dx
I.F = e e
pdx sec xdx loge sec x tan x
e sec x tan x
The general solution is
y I .F Q I .F dx c
19
47. Derive the equation of a line in space passing through a given point and parallel to a
given vector in both vector and Cartesian form.
Sol.
Let ‘l’ be the line which passes through the point A and is parallel to given vector b
Let r be the position vector of any arbitrary point P on the line ‘l’
Then AP is parallel to b
That AP b where is some real number
AP OA b
Let A x1 , y2 , z1 be the given point and x, y, z be the arbitrary point on the line.
OA a x1iˆ y1 ˆj z1kˆ
OP r xiˆ yjˆ zkˆ
and b =aiˆ bjˆ ckˆ
20
48. Five cards are drawn successively with replacement from a well shuffled deck of 52
cards. What is the probability that
i) All the five cards are spades?
ii) Only three cards are spades?
iii) None is a spade?
Sol.
Let ‘X’ denote the number of spade cards among the 5 cards drawn.
In a well shuffled deck of 52 cards, there are 13 spade cards.
P= p (success) = P ( a spade card drawn)
13 1 1 3
and q=1- and n=5
52 4 4 4
4 4
(i) P ( all the five cards are spades)
5
1 1
P X 5 C5 P q
5 5 0
4 1024
= 5C0 P0 q5
3 243
4 1024
21
PART – E
Sol.
Prove the expression,
Consider
a
I f x dx
0
Put ax t
dx dt. when x=0, t=a and when x=a, t=0
a a a
/2
cos3 x
sin 5 x cos5 x
dx............(i )
Let 0
/2
cos5 x
I 5 5
dx
0
sin x cos x
2 2
/2
sin 5 x
0 cos5 x sin 5 x
dx..........(2)
22
1 a 1 1
1 1 1
b) Show that 1 1+b 1 abc 1
a b c
1 1 1+c
Sol.
1 a 1 1 a b 1
R1 R1 R2
1 1+b 1 0 b -c R R R
1 1 1+c 1 1 1+c 2 2 3
a a bc c b 0 c 0
Subject to constraints:
x 2 y 120
x y 60
x 2y 0
x 0 and y 0
By graphical method.
Sol.
Solution lies in region CEDA
Minimum value of Z is 300 which occurs at (60,0) and maximum value of Z is 600 which
Occurs at all point on the line segment joining the point A ( 120,0) and D (60,30).
23
b) Find the value of K , if f(x)
kx 1, if x 5
is continous at x=5
3x-5. if x>5
lim f x f 5 lim f x
x 5 x 5
5k 1 3 5 5
5k 1 10
5k 9
9
k
5
24