0% found this document useful (0 votes)
14 views24 pages

Selfstudys Com File

The document is a mathematics question paper consisting of multiple parts, including definitions, problem-solving, and proofs. It covers various topics such as binary operations, linear programming, derivatives, integrals, and probability. Each part contains specific instructions and questions requiring detailed mathematical solutions.

Uploaded by

yashodanimitha
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
14 views24 pages

Selfstudys Com File

The document is a mathematics question paper consisting of multiple parts, including definitions, problem-solving, and proofs. It covers various topics such as binary operations, linear programming, derivatives, integrals, and probability. Each part contains specific instructions and questions requiring detailed mathematical solutions.

Uploaded by

yashodanimitha
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 24

Subject Code: 35 (NS)

MATHEMATICS
(English Version)
Instructions:
1. The question paper has five parts namely A, B, C, D, and E. Answer all the parts.
2. Use the Graph Sheet for the question on Linear Programming Problem on Part –E.

PART – A
Answer all the ten questions:
1) Define Binary Operation. 110  10
Sol.
A binary operation * on a set A is a function * : A A  A. We denote * (a,b)
By a *b.
1  1 
2) Find the principal value of cos    .
 2
Sol.
Simplify the expression,

 1  2
  cos 1        .
 2 3 3

3) Define a scalar matrix.


Sol.
Scalar matrix – Scalar matrix is a diagonal matrix in which all the diagonal elements
are equal.
3 x 3 2
4) Find a value of X for which 
x 1 4 1

Sol
Simplify the expression,
3 x 3 2

x 1 4 1

1
3  x2  3  8  x2  8
x  2 2

If y  sin  x2  5 then find


dy
5) .
dx
Sol.
Simplify the expression,
dy
sin( x 2  5)
dx
 cos( x 2  5)(2 x)

6) Find  1  x  x .dx
Sol.
Simplify the expression,
 1  x  x .dx   1  x  x  .dx
1/2

2 3/2 2 5/2
 x  x c
3 5

 
7) Find a value of x for which x iˆ  ˆj  kˆ is a unit vector.

Sol.
Simplify the expression,


x iˆ  ˆj  kˆ 
x2  x2  x2  1
 3x 2  1
1
x
3

8) If a line has direction ratios 2, -1,-2 then determine its direction cosines.
Sol.
Simplify the expression,
2 1 2
The direction cosines are , , .
3 3 3

2
9) Define objective function in Linear Programming Problem.
Sol.
A linear function Z  ax  by, where a ,b are constants which can be optimized
(maximized ) in an LPP, is called objective function.

10) If P  E   0.6, P  F   0.3 and P  E  F   0.2 then find P  F / E  .

Sol.
Simplify the expression,

PE  F  0.2
PF / E  
PE 0.6
P  F / E   0.34

PART-B
Answer any ten questions: (10x2=20)

11) Show that the function f : N  N given by f  x   2 x one-one not onto.

Sol.
Simplify the expression,

Let X 1 , X 2  N r

f  x1   f  x2   2 x1  2 x2
x1  x2  2 x1  2 x2
x1  x2  f is one-one

Let y  N and f  x   y Then

y
f  x   y  2x  y  x   N (Domain) since f is not onto.
2


12) Prove that sin 1 x  cos 1 x  , x   1,1.
2

Sol.
Prove the expression,

Let sin 1 x  y
3
Then x  sin y

 
cos   y 
2 

cos 1 x   y;
2

sin 1 x  cos 1 
2

cos 1 x  y 
2

 1 
13. Write cos 1   , x  1 in the simplest form.
 x 1 
2

Sol.
Simplify the expression,
Put x  sex

 1   1 
cot 1    cot 1  
 x 1   sec   1 
2 2

1
cot 1
tan 2 
 1 
 cot 1    cot  cot      sec x.
1 1

 tan  

14. Find the area of the triangle with vertices (2,7), (1,1) and (10,8) using determinant
method.
Sol.
Simplify the expression,
Area of triangle =

2 7 1
1
1 1 1
2
10 8 1

4
1
 2 1  8   7 1  10    8  10  
2
=
1 47
  14  63  2  sq.units
2 2

, if y   log x 
dy cos x
15. Find
dx

Sol.
Simplify the expression,

y   log x 
cos x

log y  cos x.log  log x 

 cos x  log  log x    cos x 


1 dy d d

2 dx dx dx
cos x
  log(log x) sin x
x log x
dy  cos x  dy cos x  cos x 
 y  log(log x) sin x  ;  log x    log  log x  sin x 
dx  x log x  dx  x log x 

16. if ax  by  cos y
2 2

Sol.
Simplify the expression,

ax 2  by 2  cos y
Differentiating w.r. to x
dy dy
a  2by.    sin y 
dx dx
dy dy a
  2by  sin y   a; 
dx dx 2by  sin y

5
17. Find the approximate change in the value V of a cube of side x meters caused by
increasing side by 2%.
Sol.
Simplify the expression,

V  x3
 V  3x 2  0.02 x  0.06 x 3m3

1
18. Find  cos x 1  tan x 
2 2
dx

Sol.
Simplify the expression,

Sec 2 x
I 
1  tan 2 x  dx
1  tan x  t  sec 2 dx  dt
Put 1 1 1
2 
I  dt    c
t t 1  tan x

19. Find  sin 2 x.cox3xdx.

Sol.
Simplify the expression,

 sin 2x.cox3xdx.
 sin 5 x  sin x dx  cos x 
1 1 cos 5 x 

2  2 5 
c

6
20. Find the order and degree (if defined) of the differential equation
2
 d2y   dy 
 2   cos    0
 dx   dx 
Sol.
2
 d2y   dy 
 2   cos    0
 dx   dx 

Order =2, Degree is not defined.

21. If  a  b  .  a  b   8 and a  8 b

Sol.
Simplify the expression,

 a  b . a  b   8  a  b  8
2 8 8 2 2
b   
63 63 63

22. Find the projection of the vector.


Sol.
Simplify the expression,

a  2iˆ  3 ˆj  kˆ, b  iˆ  2 ˆj  kˆ

a.b

 2iˆ  3 ˆj  2kˆ  2  6  2

b 12  22  12 6
Projection of a on b is
10 10 6 5 6
  
6 6 3

7
23. Find the distance of the point (3,-2,1) from the plane 2 x  y  2 z  3  0

Sol.
Simplify the expression,
The distance of point (3,-2,1) from the plane 2 x  y  2 z  3  0

ax1  by1  cz1


p
a 2  b2  c2
2.3  (2)  2 1  3

4 1 4
13

3

24. Probability of solving specific problem independently by A and B are ½ and 1/3
respectively. If both try to solve the problem independently. Find the probability that the
problem is solved.
Sol.
Let E: A solves the problem
F: B Solves the problem
E and F are independent events, then
1 1 1 4 2
P  EorF   P  E  F   P  E   P  F   P  E  F      
2 3 6 6 3

8
PART –C
Answer any ten questions: (10x3=30)

25. Check whether the relation R in IR of real numbers defined by R   a, b  : a  b3 is


reflexive or transitive.
Sol.

R   a, b  : a  b3

1 1  1  1 3 
R is not reflexive, for  ,   R     
2 2  2 2 

R is not symmetric, for  a, b   R, but  a, c   R

 a, b   1, 2  R 1  23 
But  b, a    2,1  R 1  13 

R is not transitive, for  a, b   R and  b, c   R, but  a, c   R

 a, b    9,3  R  9  33 
 b, c    3, 2    3  23 

But  a, c    9, 2   R 9  23 

1  4  1  12  1  33 
26. Prove that cos    cos    cos  
5  13   65 
Sol.
Prove the expression,
We know that,

 x y 
tan 1  x  y    
 1  xy 

9
 3 / 4  5 /12 
 tan 1  
 1  3 / 4  5 /12 
 56   33 
 tan 1    cos 1  
 33   65 

1 2 
27 By using elementary transformations, find the inverse of the matrix A   
 2 -1
Sol.
Simplify the matrix expression,
A =IA

1 2   1 0 
0 -5   2 1  A  R 2  R2  2 R1
   
1 0
1 2   A R 1R
   2 1
0 1  - 
2 2
5
5 5
1 2
 5 5
 A 1  
2 -1 
 5 5 

dy  
28. If x  a   sin   , y  a 1  cos   then Show that  tan   .
d 2
Sol.
dy
X  a   sin    a 1  cos    2a cos 2  / 2
d
dy
Y  a 1  cos     a  sin    2a sin  / 2 cos  / 2
d
dy dx 2a sin  / 2 cos  / 2
 /   tan  / 2
d d 2 cos 2  / 2

10
29. Verify Rolle’s for the function f  x   x  2 x  8, X   4, 2.
2

Sol.
f  x   x 2  2 x  8 is continous in  4, 2
f '  x   2 x  2  f  x  is differential in  4, 2
f  a   f  4   0; f  b   f  2   0

Conditions of Rolle’s Theorem are satisfied.


f '  c   0  2c  2
Now
c  1  (4, 2)

30. Find the intervals in which the function f given by f  x   2 x  3x  36 x  7 is strictly


3 2

increasing.
Sol.

f  x   2 x 2  3x 2  36 x  7
f '( x)  6 x 2  6 x  36  6  x 2  x  6 
 6  x  2  x  3  6  x   2    x  3  x  2,3
f  x  is strictly increasing  f'  x   0
X   , 2    3,  

31. Find  x.log xdx.


Sol.
Simplify the expression,

x2 1 x2 x2 x2
I    log e x  xdx.   log e x    . dx   log x   c
2 x 2 2 4
1  x2 x2 1
I    log e x  d  X 2  .   log e X    . dx
2  2 2 x
X2 X2
  log e X   c
2 4

11
 /2
sin x
32. Evaluate:  1  cos
0
2
x
dx.

Sol.
Simplify the expression,
 /2
sin x
 /2
d  cos x   /2
d  cos x 
I 
0 1  cos 2 x
dx.  
0 1  cos 2 x

0 1  cos 2 x
   
  tan 1  cos   tan 1  cos  0    0  
 /2
   tan 1  cos x  
0
 2 4 4

33. Find the area of the region bounded by the curve y  4 x and the line X=3.
2

Sol.
Figure
Required area,
3

 X 2
2 3/2 3
3
A  2 ydx  2 2 x1/2 dx  4 
2
0
3


3
3   8 3sq.units
8 3/2

2 x
34. Form the differential equation of the family of curves y  ae  be
3x
by eliminating
arbitrary constants a and b.
Sol.

y  ae3 x  be2 x -(1)


Multiplying both sides by e 2 x

ye2 x  ae5 x  b
Diff. w.r.t x we get,

ye2 x  2   e2 x  y '  ae5 x  5

Multiplying both sides by e 5 x

12
2 ye 2 x .e 5 x  y ' e 2 x e 5 x  5ae5 x e 5 x
2 ye 3 x  y ' e 3 x  5a
2 ye 3 x  3  2e 3 x  y '   y '  e 3 x   y ''   0
e 3 x  6 y  2 y ' 3 y ' y ''   0
 y '' y ' 6 y  0

35. Find a unit vector perpendicular to each of the vector  a  b  and  a  b  where
a  iˆ  ˆj  kˆ, b  iˆ  2 ˆj  3kˆ,
Sol

a  b   2,3, 4  '; a  b   0, 1, 2 

Required unit vectors perpendicular to both  a  b  and  a  b  are

nˆ 
a  b  a  b
a  b  a  b
i j k
a  b  a  b  2 3 4  2i  4 j  2k
0 -1 -2


 ab  ab     2 
2
 42   2   24  2 6
2

36 Show that the four points with position vectors;


4iˆ  8 ˆj  12kˆ,2iˆ  4 ˆj  6kˆ,3iˆ  5 ˆj  4kˆ and 5iˆ  8 ˆj  5kˆ are coplanar.
Sol.

13
AB  OB  OA   2, 4, 6    4,8,12    2, 4, 6 
AC  OC  OB   3,5, 4    4,8,12    1, 3, 8 
AD  OD  OA   5,8,5    4,8,12   1, 0, 7 
2 -4 -6
 
AB. AC  AD   AB, AC  AD   -1, -3 -8
1 0 -7
  2  21  4 15   6  0  3  0
 42  60  18  0 The points are coplanar

37. Find the vector equation of the plane passing through the points R(2,5,-3), S(-2,-3,5)
and T(5,3,-3).
Sol.
Required equation of the plane is

 r  a, b  a, c  a,   0
 
 r  a  .b  a    c  a   0
i j k
 b  a    c  a   -4 -8 8  16i  24 j  32k  16, 24,32 
3 -2 0

 r   2,5, 3  . 16, 24,32   0


r. 16i  24 j  32k   56
r.  2i  3 j  4k   7

38. An insurance company insured 2000 scooter drivers, 4000 car drivers and 6000 truck
drivers. The probability of an accident is 0.01,0.03 and 0.15 respectively. One of the insured
persons meets with an accident. What is the probability that he is a scooter driver?
Sol.
Let A be the event that one of the insured persons meets with an accident.
Total = 2000  4000  6000  12000

Let E1 , E2 , E3 be the events that the insured scooter, car and truck drivers meet with an
accident respectively.

14
2000 1 4000 1 6000 1
P  E1    ; P  E2    ; P  E3   
12000 6 12000 3 12000 2

P  E1  P  A | E2 
P  E1 / A  
P  E1  P  A | E1   P  E 2  P  A | E2   P  E3  P  A | E3 
1
 0.01
Now,  6
1 1 1
 0.01   0.03   0.15
6 3 2
0.01 1
 
0.52 52

PART- D
Answer any six questions: (6 x 5=30)

39. Let f ; N  Y be a function defined as f  x   4 x  3, where


y  { y  N : y  4 x  3 for some x  N}. Show that f is invertible. Find the inverse of f.

Sol.

Let X 1 , X 2 , X 1 Now, f  X1   f  X 2 

 4 X1  3  4 X 2  3  4 X1  4 X 2  X1  X 2 f is one-one
y  N and f  x   y
4x  3  y  4x  y  3
Y 3
Let X   N  domain   f is onto
4
Let f 1  y   X  Y  f  X 
Y  3 1 Y 3
Y  4X  3  X  ; f  y 
4 4

15
1 2 3
40 If A  3, -2 1 then show that A3  23 A  40l
4 2 1

Sol:
Prove the expression,

1 2 3
A  3, -2 1
4 2 1

1 2 3 1 2 3 19 4 8
A2  A  A 3, -2 1 A  3, -2 1  A  1, 12 8
4 2 1 4 2 1 14 6 15
1 2 3 19 4 8 63 46 69
A  A  A  3,
3 2
-2 1 1, 12 8  69 -6 23
4 2 1 14 6 15 92 46 63
63 46 69 1 2 3 1 0 0 0 0 0
A  23 A  40 I  69
3
-6 23  23 3, -2 1  40 0, 1 0  0, 0 0
92 46 63 4 2 1 0 0 1 0 0 0

41. Solve the following system of linear equation by matrix method.


3x  2 y  3z  8
2x  y  z  1
4x  3y  2z  4

Sol:
Let A

16
3 -2 3 X  8 
2  
1 -1 , X  Y  and B= 1 
4 -3 2  Z   4 
A  3  2  3  2  4  4   3  6  4   17
-1 -8 10 -1 -5 -1
Co  factor matrix of A= -5 -6 1  Adj  A   -8 -6 9
-1 9 7 -10 1 7
Adj  A 
X  A1 B, where, A 1 
A
-1 -5 -1 8  -8  -5   4  1 
1 
9 1   36   2   X  1, Y  2, z  3
1
1
A  = -8 -6 -64  -6 
17 17
-10 1 7  4  -80 + 1 + 28 3 

 dy 
2
show that 1  x  2  x    0 .
2 d y
1
42. If y  sin x ,
dx  dx 
Sol.

dy 1
y  sin 1 x  
dx 1  x2
dy d 2 y dy 1 2 x  d2y dy
 1  x2 1  1  x2 2
 .  0 2
x .0
dx dx dx 2 1  x 2 dx dx

17
43. The length x of a rectangle is decreasing at the rate of 3 cm/min and the width y is
increasing at the of 2 cm/min. when X=10 cm and y=6cm, find the rates of change of
i) The perimeter and
ii) The area of the rectangle.
Sol.
dy dy
 3cm / min and .  2cm / min
dx dx
(i ) The perimeter P=2  x  y 
dp  dx dy 
 2  
dt  dt dt 
=2  3  2   2cm / min
(ii ) The area A of the rectangle A=x.y
dA dy dx
 x y  10  2    6  3  2cm 2 / min
dt dx dy

1 1
44. Find the integral of
x  a2
2
With respect to x and hence evaluate x 2
 16
.dx

Sol.
1 1

x a
2 2
 x  a  x  a 
1  x  a   x  a  1  1 1 
     
2a   x  a  x  a   2a   x  a   x  a  
dx 1  dx dx  1 1 xa
 2       log x  a  log x  a   c  log c
x a 2
2a  x  4
2
x  a  2a 2a xa
dx dx 1 x4
  2  log e c
x  16
2
x 4 2
8 x4

18
45. Using the method of integration, find the smaller area enclosed by the circle x  y  4
2 2

and the line x  y  2 .

Sol.

x2  y 2  4  y 4  x2
x y  2 y  2 x

Required area =
2

 4  x 2   2  x  dx
0
2
x 4 1 x2 
  4  x  sin  2 x  
2

2 2 2 0
 0  2sin 1  4  2    0
 
 2    2    2  sq.units
2

46. Find the general solution of the differential equation


dy  
  sec x  y  tan x 0  x  
dx  2

Sol.
dy
Given,  y sec x  tan x  P =secxQ=tanx
dx

I.F = e   e
pdx sec xdx loge  sec x  tan x 
e  sec x  tan x
The general solution is

y  I .F    Q  I .F dx  c

y  sec x  tan x    tan x  sec x  tan x dx  c

  tan x sec xdx   tan 2 xdx  c  sec x    sec 2 x  1dx  c


 y  sec x  tan x   sec x  tan x  x  c

19
47. Derive the equation of a line in space passing through a given point and parallel to a
given vector in both vector and Cartesian form.
Sol.
Let ‘l’ be the line which passes through the point A and is parallel to given vector b

Let r be the position vector of any arbitrary point P on the line ‘l’

Then AP is parallel to b
That AP  b where  is some real number

AP  OA   b

r  a   b is the vector form.

Let A  x1 , y2 , z1  be the given point and  x, y, z  be the arbitrary point on the line.

Let a,b,c be the direction ratios of b

OA  a  x1iˆ  y1 ˆj  z1kˆ
OP  r  xiˆ  yjˆ  zkˆ
and b =aiˆ  bjˆ  ckˆ

Substitute these values in vector equation

We get xiˆ  yjˆ  zkˆ  x1iˆ  y1 ˆj  z1kˆ

Equating the coefficients of iˆ1 , ˆj , kˆ

We get x  x1   a, x1iˆ  y1 ˆj  z1kˆ , y  y1   b; z  z1   c

By eliminating  we get Cartesian form equation of the line.


x  x1 y  y1 zz
 
a b c

20
48. Five cards are drawn successively with replacement from a well shuffled deck of 52
cards. What is the probability that
i) All the five cards are spades?
ii) Only three cards are spades?
iii) None is a spade?
Sol.
Let ‘X’ denote the number of spade cards among the 5 cards drawn.
In a well shuffled deck of 52 cards, there are 13 spade cards.
P= p (success) = P ( a spade card drawn)
13 1 1 3
 and q=1-  and n=5
52 4 4 4

P  X  r   rCr Pr q nr , where r=0, 1, 2,3,4,5


r 5 r
1  3
P  X  r   Cr    
5

4 4
(i) P ( all the five cards are spades)
5
1 1
P  X  5  C5 P q    
5 5 0

 4  1024

(ii) P ( only 3 cards are spades ) = P (X=3)


5 43  1   3 
3 2
60 32 90 45
5
C3 P q 
3 2
       
3!  4   4  1  2  3 4 1024 512
(iii) P ( none is a spade) = P (X=0)
2

= 5C0 P0 q5    
3 243
4 1024

21
PART – E

Answer any one question: 10 1  10


a a a
cos3
49. a) Prove that  f  x dx   f  a  x dx and hence evaluate 0 sin5 x  cos5 xdx
0 0

Sol.
Prove the expression,
Consider
a
I   f  x dx
0

Put ax t
dx  dt. when x=0, t=a and when x=a, t=0

a a a

 f  a  x dx   f  t  dt    f t dt


0 0 0
a a a
  f  x dx   f  x dx   f  a  x dx
0 0 0

 /2
cos3 x
 sin 5 x  cos5 x
dx............(i )
Let 0

 /2
cos5 x
I  5   5  
dx
0
sin   x   cos   x 
2  2 
 /2
sin 5 x
 
0 cos5 x  sin 5 x
dx..........(2)

Equation (i) and (ii)


 /2  /2
sin 5 x  cos5 x  
2I  
0 sin 5 x  cos5 x
dx   dx  2
0
 I=
4

22
1 a 1 1
 1 1 1
b) Show that 1 1+b 1  abc  1    
 a b c
1 1 1+c

Sol.

1 a 1 1 a b 1
 R1  R1  R2 
1 1+b 1 0 b -c R  R  R 
1 1 1+c 1 1 1+c  2 2 3

  a  a  bc  c    b  0  c   0

50. a) Minimize and Maximise z  5 x  10 y

Subject to constraints:

x  2 y  120
x  y  60
x  2y  0
x  0 and y  0

By graphical method.
Sol.
Solution lies in region CEDA

SI.No Corner point Value of Z  5 x  10 y


1 C(60,0) 300  minimum
2 E(40,20) 400
3 D(60,30) 600  maximum
4 A (120,0) 600  maximum

Minimum value of Z is 300 which occurs at (60,0) and maximum value of Z is 600 which
Occurs at all point on the line segment joining the point A ( 120,0) and D (60,30).

23
b) Find the value of K , if f(x)

kx  1, if x  5

 is continous at x=5
3x-5. if x>5

Sol. Given function is continuous at x=5 and f  5  5k  1,

lim f  x   f  5   lim f  x 
x 5 x 5

 5k  1   3  5   5
 5k  1  10
 5k  9
9
k
5

24

You might also like