0% found this document useful (0 votes)
11 views4 pages

Mat + Sea

The document outlines a 30-day roadmap for mastering Matplotlib and Seaborn together, focusing on both low-level and high-level visualizations. Each day includes specific tasks for practicing Matplotlib and Seaborn, along with essential resources and tips for effective data visualization. The plan emphasizes building beautiful exploratory plots, customized visuals, and smart data insights using these libraries.

Uploaded by

anuragpatil060
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
11 views4 pages

Mat + Sea

The document outlines a 30-day roadmap for mastering Matplotlib and Seaborn together, focusing on both low-level and high-level visualizations. Each day includes specific tasks for practicing Matplotlib and Seaborn, along with essential resources and tips for effective data visualization. The plan emphasizes building beautiful exploratory plots, customized visuals, and smart data insights using these libraries.

Uploaded by

anuragpatil060
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 4

Excellent.

That’s a powerful move — mastering Matplotlib + Seaborn together gives you complete
control over both low-level (custom) and high-level (statistical) visualizations, making you look like
a data storytelling pro.

30-Day Combined Matplotlib + Seaborn Mastery Roadmap

This will train you to build:


Beautiful exploratory plots (Seaborn)
Highly customized visuals (Matplotlib)
Smart data insights (with Pandas/NumPy underneath)

30-Day Plan

Day Matplotlib Focus Seaborn Focus

1 Install & import matplotlib.pyplot Install & import seaborn as sns

2 Simple plt.plot() line plot sns.set_theme() basic styling

3 plt.scatter() scatter plots sns.scatterplot()

4 plt.bar(), plt.barh() sns.barplot() with estimator=mean

5 plt.hist() histograms sns.histplot()

6 plt.boxplot() boxplots sns.boxplot()

7 Titles, labels, grid sns.set_style() (white, dark)

8 plt.legend() Seaborn built-in legend control

9 Ticks: xticks, yticks Seaborn smart tick management

10 Colors, markers, linestyles palette, hue for color separation

11 Multiple lines on same axes sns.lineplot() with hue

12 Subplots: plt.subplot() FacetGrid basics

13 plt.subplots() & ax sns.catplot() multiple facets

14 Grid layouts + figure size sns.FacetGrid with col or row

15 plt.style.use() Seaborn themes: darkgrid, ticks

16 Annotate points: plt.annotate() Seaborn point annotations via ax

17 Save figures: plt.savefig() Same with Seaborn plots


Day Matplotlib Focus Seaborn Focus

18 plt.imshow() heatmaps sns.heatmap()

19 Advanced annotations on plots sns.heatmap(annot=True)

20 plt.errorbar() sns.pointplot() with CI

21 Hist2D & contour plots sns.kdeplot()

22 Axes limits: plt.xlim, ylim Seaborn auto-limits

23 Twin axes: ax.twinx() Layer Seaborn on Matplotlib axes

24 Seaborn pairplots for EDA sns.pairplot()

25 Seaborn correlation plots sns.heatmap(df.corr())

26 Advanced FacetGrid customization

27 Matplotlib custom ticks & rotation Seaborn + ax.set_xticklabels()

28 Build a complex dashboard plot grid Mix Seaborn inside plt.subplots()

29 Small case study on dataset (Titanic) Combined Matplotlib + Seaborn EDA

30 Review + build your own style template Create a “signature style” template

Smart daily structure

Each day:

• 20 min Matplotlib practice (try 3 plots)

• 20 min Seaborn practice (use same dataset)

• 20 min experiment: customize style, add annotations, mix the two.

Essential free resources

Matplotlib

• Official Pyplot Tutorial

• Matplotlib Cheatsheets

Seaborn

• Seaborn Tutorial

• Seaborn API reference

• Kaggle Seaborn Micro-course


Both Together

• Python Graph Gallery — brilliant examples.

• Python Data Science Handbook by Jake VanderPlas

Cheat code mini notes

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

df = sns.load_dataset('tips')

# Matplotlib

plt.figure(figsize=(8,5))

plt.plot(df['total_bill'])

plt.title("Total Bills Over Index")

plt.xlabel("Index")

plt.ylabel("Total Bill")

plt.grid(True)

plt.show()

# Seaborn

sns.set_style("darkgrid")

sns.scatterplot(x='total_bill', y='tip', data=df, hue='time', style='time')

plt.title("Tip vs Total Bill by Time")

plt.show()

Forward-thinking power tips

Use:

• Matplotlib for ultimate control (e.g. multi-axis plots, exact ticks, manual annotations).

• Seaborn for quick statistical plots (boxplots, violinplots, FacetGrid EDA).


Always bind Seaborn plots to Matplotlib axes if you want fine control:

fig, ax = plt.subplots()

sns.boxplot(x='day', y='total_bill', data=df, ax=ax)

ax.set_title("Boxplot with Custom Title")

Build your signature style sheet by tweaking:

plt.style.use('seaborn-darkgrid')

sns.set_context("talk", font_scale=1.2)

Want me to prepare:

• A printable one-page combined roadmap for Matplotlib + Seaborn,

• Or a CSV daily checklist to track your progress?

Just tell me which you’d prefer — I can instantly make it for you.

You might also like