0% found this document useful (0 votes)
7 views45 pages

Hao Ticket

The document discusses various concepts related to probability, random processes, and noise in communication systems. It covers topics such as joint distributions, error correction, and the impact of noise on signal quality. Additionally, it highlights the importance of source coding and the effects of different types of noise on communication systems.

Uploaded by

tempmailforme123
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
0% found this document useful (0 votes)
7 views45 pages

Hao Ticket

The document discusses various concepts related to probability, random processes, and noise in communication systems. It covers topics such as joint distributions, error correction, and the impact of noise on signal quality. Additionally, it highlights the importance of source coding and the effects of different types of noise on communication systems.

Uploaded by

tempmailforme123
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
You are on page 1/ 45
mcg » “hen the possible ous comes of an e x ‘ are easly lisely Sot seedy erate aw - sapiely auch y| asdcal paobubsitry gis) a _aendom “proces with Hime uveruged eu +o engemble averdges TS called uf Ergodic 8) | Two independent aerdom proces wih hav Ahelx CSS conve ton seg of individu) mewh’ 7) sero product 4) | Auto comrelotion of lag zero of amy -parocegs ts SCee ome 7 | | variance oF Process. sy | oise eS Jingle) eave) [Match hw he sume power spectral density 2 eee VWinize noise | DtAnen x uml J} ove shanspealiy iad ependen [hen TT Ug is P So | odof* 4 ¥ ¥ e's gy || Wok foo™ coding sechnig' man - j con struck ny phe Gousc & cedundaney — | mM inimuch code we presents oa consi stS Ser rush 3) Which mong Ae Forrowin [ame code ||_ sus a yey) rhe Cupactty eelukomsbip 18 gj Pea gl c= Winga C +S ee, | N 12) | \Ahidh of 5 almvabatt of ne Follo | OF speech eas Se AN pe \A uve Foam collec eel aan me cod ors, @ v E = yWelle a note on! . : Uigtribution of +o van varie) eg_| Joint Ne aman] Hon £ wo ondom Na jb) eg. J \imit theorem cenrre v Wd Rundo ry vumchl 4 of +wo Tamdory ace olbcr tot V4 behavior 4 ny Pegether it 1 ord ‘ \ue _ v r L orp\ 4 meas. Q yy x un Hen oF ee ‘ ne & ens, Onan wo dimensional spare The joinF parobevbt Hit On " t Py j Czy) dood MHon of 480 render vari! eg, +heorem » censral \ieit Joint pistrbution of TTwo Rundom vuriah! 4 —the ean Uetri bution of +wo Fondo variwbles descnrbeg ane probate ity behavior c€ born vusirblep © cura y yegtther . z For oiscreke Romdom variables =the joint paobobiity mags Fanon CPIM) FC ag ee paroberbrl! ty Or keep tne. Wulace ree ee | awe values 4d SO ap ee ecm ap ees ss) : for Continuouty Romdom vuriedel ay» =} che Joint pavbobi Ripe den Sip Funchion POF) f Ges) dive Ache Lemsity Over 2 two dimensional _Spaives « othe Joine parcbecht tity = a — Over a _reainn A 1S 5 eee PCCK Sa cara Tian Cad ® derive e com ~ ° faom the joint Yarn ween t = ~ + [marginal dtsrei buttons ——— 4 IvprosDaliitia paar den seit a [Nasi wble Gndependemy r = enlivional ais TeoHne Usriburion of one varie) & Defim Hon - + | pesertber, the poobuliliry Lvurtobieg occurring together. ee aera Discrete cae! wl. Jens, pes fie Worse Niels) mom ey PCx =x) Yay hed continuong coe! © | Joint POF. fa@re|)) We Fiefeoeh Ceig) i doc, dy = "s Fron Joint DiS+aib UHR @ conrre] Limit “Theorem CCtT) - the cemirel Limit theorem 36 a fundumented ’ wesudt In probability sheen] umd shatistiey, sah ement Kae 2Xn ore indepundemt end RUE colly Narviuured C14 crendorn _Vurieubl worn mean WU ewnd Finite varl\ omte thenth ne inal diataribution ynibuion of Yee Sample eneeun distrivaton of the +e Mcrae j read vse of the 2, AnrNSEHiG uae 4cal Inference \ ump de 8 al . Gon Fidemce, Inteyvuls WAP oxne sis seeing nieriwihel Pepi meee ag Natiance Oo > —— ae e sumple mewn we ss Xen Gupte) Es eee stundurdized Form : z= X—-r — Nod) Cae ENED \mpov tence * Wore) approximation of Sample meunsg [works mequrdless of origina) diadaibutton lor lorqeo 7 Applicettons - con @idente Ynteweale wyromesis Aes n forecustiny od quality como) | . Me Mises be ps : i ees [rhe mondo verriahre sna} — eae men) y Goalies Wastlen aie Ver bio eat Hp Y pede Odi erfepoh iG. Squared — ~ value fo 7 Salk -alalaehes ee aE box, > | ——_ = — eee “3p Pa 1 a -rervran-dem variable % ey uni fea (o ib B® creendom protege defined vu |vCe\= ex Ta * Since V4) = 6e% depends only on & “end Be | ot on ty ny 6 effectively a tendom ~ [variable crother then o ime = varying b. | process Sane problem edKS For: Meon oF v(t) - “Mean squared value - i F ews oseae ee | Ven" or Vice yeice= @ 50 fierexa =), ie maleate “2 1 (ers Dea 2 2) Mewn Squared value of VC) We Compose | 7 Eel Wet Rhee Fal Gbierk Die dari aa, Gul Sage) —— A eee ae a a ee ae le je Saipan) S90: ARTES ena) ERD) q “Fined ans - Peet eee eee L ' © 7 sinple explanalion = = Boi Carl ere DBE sch ST arp) vay i + Te sw wromdem varied e pun for die bebveen 0 ord 2. pt i fl ‘on) : ie on eee as depends 2?) CN net Secon basically just a i condom vurio-ble. B ae Memnrof vA) - we wont +e Find the average Cmeen ) vedue of * Pe Ere | | r _fet A niform digitibution between o§ 2, {Mle of V Ct) = 6. average of ex “From | oO +> a | <6) ft eee | as = es) CRF 6 e oad Men Syvaded value of Sr Now Squume VCE) v CEE 2 Cie $0 heii Final Ans | yew of ee a a wate O Nore on ebay iow 0f wncloy end digitel Gemeuni cation Eashern s\n enone T oF noise. ees Coram wilco! on . Ye Onvloy sysrem 1 Signals ure contiwou. «(owe © pnwented signale 9 Uisecty eftects Ato ee Biqnedl quality. = : | Even smell amovn: oF noise can distort [Ane aignel , mulcing it harden Ao wetover [ Are oniginal messu ae | + | PS _noige incteager , sre Signal becomes ters clear ond more difficult +e sand evateund - Exumpie - \n an old vudio ; stetitor cruckl{n Sounds huppens due © noise - “ae Anvloy Communication syayem renemit MUSTO using ComMMous ayous ead very ios ampiieded Frequency, on. phages 1h thee cresence of mois || e Date | = ots 4 ae \ envoy: 3g poise Sugcep nds eae various syp2s gre Wighly Sur cep mon 9 a. of Hoise C therm | wie en distort 4 Exon eral Ot ones 4 “ Helee eg an eck Yow “signed lease - a reduction jm fiddity Cer4 > hissing in Orwdio or Show in video). S Cumootove efFeetr : gloise accumulateg over long Ustence ond through mult ple | Sk8 93 of amplification or pro cegejng | | Further -degeading the signal U {, = a Error Correction + cored 8 INS tems + om [Awe vodyanved enron f2teeton pase worrechon mechunigms , | digital) — communfaction — H ~ Afgitol Systems, Coinury’) | a Signal, Snes Gre Sent af os Ug 1 1S \ OY 9 exh ath @natniatiaten \evel e Teceiveyr - cam ST dk aur noise becomes Nem, Strong Poceur: bul error dedection \ ond korte cron — tesinniques como} Phen un EEK ane ample : Amobiie Phone call muy wemain \ Gs en \ s r aa aa dan: even vol some baekyround ™ polee . ee cone oa pighal communication system rangeit (nor motion \ binary From CO and =) won y Aig crete aged \evels : 2 Woise mmounihy = oigired oiqnals ave— ey . | more robugt Fo Mose. AS Yong oy the wvise dors not exceed av Centein thresholl, ane original deadu com be perfec} | ewevovertd Signe) _Reqeneretion = pigntnl systems: cen ceqenerobe Signal ot (nt erveda , eliminating accumuloared Heise end emalnraning signal Ler egaity over long dtasemtes. Erno, petection ond correcton 7 pavenced Feclniq ued IKE parity ce neetxs 4 a L_albectksouma : and enror — conve CHINY cod et un) pstd hn ese uchymesst s-€* gamma by noise. —————x&—<<, s LY | weed of Sourte Coding 1 t Sourte wiiny is+ne Poocefs oF converting iInformution™ from & Source inte a formal thet fe efficient for storage ov +vUNEMission _ peedad - + | Reduce Redundorey |» IRhwe duuliniopiion - contuing medun Sounrte Coding _dleent-nutey nis xed nduncy to heduce_ che sive. od) Efficient —Teansmission iamatler duty sizes mewn Foster baransinigalon “i 6vey communicétta Bie. | channels, r Efficient storage - \35 Storage Sp | pros @ (=) “eoding = ool ereproc# ee codin p 4h 1 = acs _ Punter encodin G oo ” cana cen or Wes oe On ei eS chanr & .——_____—— ec Hon | I Ex- \nakead OF Sending pererse Bic ith cS OT EMIO TS eae CN [oourrce ling compresses t4_ Udi tredhed! AKO) oteiraeim teen Y 1 erainnel es aaa OES of bits. we) w ory RW aot numb y_ | Coding “EFF cheney 7 es I coding efficiency oa measure of how Close. ug || Ye “average ~ \engiy of a code Cutter - compression) %6 to Fhe enbopy of 4h eL Sourte, Formuda EFFicieney 2 WG) = Entaop | eretdenc poo!') Wavy fas) ees Dols tuba ionic TT ne MY eG 9 og ao, alae othe average coding = Erenu erty, ottusriny ; aynbo\ yer sino prea -saiiex “iyi oe tg. be “ae a) demdiny merneds +© paewent © | Requires _ Speck —jarmniaig vi ty (ey Preete: coder) ___ je = _CHuetmen “ealing) _ Given Symbol \ “u i ple with “di Frerent probubili Fee’ a Lmost Frequent) =O a =i : c= $h0 pe 4th end hela _ probe shy aynbols epedys = Ue, So IS seeelieed lalena Sy = 16 NANG 1 Se =) | 16 sy 64 = Se Soir ae oes *— SS esal So eker mine _ | ound. LeendOa Gece LEninopy We - Pyloya PZ pveruge Wade enyth L= > Pili EFF Geant Va ‘ Sort symbols by proioobi lity Sort Yc given symbols in descendiny order Cer pee [Poe een Sp se oo i on sl a Conssrust — shannon- Fano tode_ Owide he War inte Moo qeoure with sume of proba pilittes sai sof Sot Flip -Fop pe vietenctontnep ll Varela) This 16 the slumber of input bite per needing M grep. ——- Code rare Ck\n) i weber of inpurs brie Aivided by ™ of outpue: ite py Saree Krom "She Ate nit + \ngi y ee Ut bite ans Codemete = | a my The Constraint engin 18 sche pamber of ince YS thet ofFert the outpud , hich ig cayel te % 7 K = GCnumber of memory elements) 1 = a4 = 9 con S4rcun4 \engih =z Sy) Glen contealies Seyuenced «|| Binet 6lpy + seo of cumment olf M4) mit Gleam SV hem rotor polynomined Gye Debit} + ecco: eben: MOP obinemndry heer tor pero Cie = ED ot Creme Tox ng Seyuency Cin ocial) ai! 3 Gucee (OAs S01 Generoting sey ences = C1 sin ot { wv) | ole Seyuened for Meseeje Seguenve me}, + ye es i) Concupeniel the o|P 35 olP Sequ ence = tv Likjo to, O90, uh os 6 @ P| fer 2 eae aS" Linewr i ee ke jigite pike cher 4 he he ies hee \. Pe eecee ee We i ie “yous code oiet Wives U 1s ewdent thet Ge. |i ee Oe ence &) C) | athe minimum -distence between any tod || codeword is 9, Hence, this je Gingle errey cortentiny Code. Sinte herd cre |_ _6 single esa cond 7 $4ndaemed ____ | wwe cam “Comreat el! _gingle “@acors emd ___ one + dowhle. e-paper Putter . | Peewee ane ne obtained from - | 62 eat g ee, : el Jolo}_|o |e] a rhe ' codewords in oa iene ltocls code are | locks of gyeniboolg hut are. encoded wing more gyro} Atown oe original velue Ao be Sent. : 2 Ac \neur Code of Vengtn Arong mits sblocks containing n symbols. for ‘example , she (114.3) Hamming code bu Viner binuny code whith repre okt 4 bit message | wing 4-14 wdewords q | \+is aasimele exror condeo| coding terhnique_ | used Gor erroy detection Od covrertion. [inform ution data is partitioned into rioeks of jenyrh Pier Fo~ exumple L Informution woord 6 Athen coded into eo lou | of lenyth n bits cotled a codeword. | etbytg dota D byt 4 codeword ed et a Encoder J ; Vinewr__Brouls tl sys ems: vey “pei L\inewe : =the wde Follows gimple. math rudy | 6 codes ate O- code vsed in agiel abun maid corme ering Sond comet dota ig sens Bice code + The messoye Bork _t Fixed = sire qerous tke eddiny bis “ina KOR. i codeword - Cosh message plore (5 ebunged inte a longer block Ccotled w codeword) i ‘es by addin exiva bite called purity bits atoege help Bind and ie errors ~ Apolicubion - oigvel communication 1 St et G@HON 8 used In mobile ghoneg ) Susel\ite omm: af iz Tine . Tec ond wrrelas net orks to Aetert ond + FR Awansfey , ee (3) y | compurey sledwortes + Yelps ensure thet duta ge o Cee ae ee Tanternet Gite emaiia on § jeg igri aan _enecveety Gpate | Communication vor useful | 9 sending detu to emd .feom cudel\\*tS or Spacecraft 4 where enrors ean €asily oceum, S)_ | Broadeust Sygrem , 3 used in digit) ory ond. radio beoudcastin +o gaovide cleay slynals even In bud weethe ot poor Signal acends, Wow a vocoder coors Analysis Modulation signe) (voice) ny re eS FARIaNS LN Co Commer sinnel (ayntnesizer) aN Step -2 winduleition Modulation signoh Coren) Coin tnestoey) Votoders Avowser analyre the spectral churueledoe | —~ oof a meodulster aignel vogtenp speculaas | — get thet 19 7 Fommetion 40, S9ePe -acanmier a | etsood ' sa picolly Synthesired Soumd , oe ereoulhoy \n a synthetztd sound segue with the “ATA bre! OF the moduluter , [=-k5 Perocess essemMully ena lyre jal _gpeech , Compreses the Information into ope cites) eney envdooes , end then epolics hose evelooes to a different sound Soudce » s anakygis the Votodey omulycey the WMeodulutor gi anc Cen a voice) by dividing 4 Into mutiple_ medueat loands using a ei\ter ben. Q. Emevelope Gdrothon _ fer coon Freyuem4 bond athe vocoder nal ache txiruched amplitude envelopes arte The used jv condro\ ashe amplitude of cormsponding frequency lownds in he cuarien signal Cera , : y a I My 2 nett wep — wd 5 nati See sh gunrenized eee 35 ia aia antaee silane © 7 of tre 7 ee ae the sound” she Sphase! aigne) we are imposed sn Hie cus Le ©4_poncepis - x] Medal stor jet Gi aaa thot paovides the spectre The di gine chuvactemsHeu -Cusualty geeeh) ; 7 ¥ | cuwrler - = | vine Gitined tet ge, Shaped py Whe | Cu i ound S0uere D. a = Filter Bun : A__Collectinon of band “poss Fiitera hed Viuide the cudis (gna Jato APE bere foreq umes Oe, = Arp\\tude En ope - AEP then LH OD CS ee of Anos Ahe. amplig d ovis me Fae uanuy ix ™M Ghend for oaobal Syatremn fer mobsi\e_ commaniconion . Hi a Syfael moe Newark | common wati\ized by mobile Prone users amoung the world. at sscini he head yw fs Whe most Populus of the thece dfgtiah wire legs a elpinony SAsrems CTT DMA 1_GiSs9 , ond epmA) ond vag rhe combination of FOMA) ond “Toma \e we 4 different Frequensy bends | 85D Pte, Goomts , \g00 MIN, ond Woo Mie. GSM converts ond tompresseds duta before endiny it alony a chunnd with two other a 7 f arenmnG of user: dota, each with it, +ime Shot asm 4 Uffernt Sizey of cells Moen - 7 \n_+nig give of dhe cell a ‘Bee Staton antenna 16 ingtulled, \n tnge size of Cali Gmtenna height 5 Neg Yum tne WwveTuge Poe \eveh af palin’ oureet ee 5 ' ‘ _| spect il eta Oone es el eee 7 7. rece Win Sr = _ hy Lo® power? aad deAces- : Invernational 604 compen st SY: 4 \ La? bem Le Lost’ ss + & New feuture omd setNicedi a the Aroniecrure of HS) = [trate phetworte Compras of ry |. Fav clteel cwentks swonich combe boodly os divided into . © —- ‘ | The Mobile Station (M43) =a Sucne Stesrion Subogystem (855) e Network gwoiihing, || —the operuh 07) ae Sub aistem me) H Bip port Subs ateen , ohers Calso cabled Morr speeeth Grey are the algorthms used (A Lge as yem for mobile Communication) Networks Fo See on, decor (ee a “exe coders ploy, a cumcied nol ios Ligited inenemission oF eso oak S . a enablin cP. ct ent é woice: oven mobile x | a tar coder ts a voice rode Lioder ~dewodsr ) shut ae convets onaloy volte signals into digi te formes - © | compresses he dain for efficient Jeunimission ‘ pe compress {4 od the TeeeiVer'6 and for pluyburk . oak «Tips - analog Voice feom the User, 7 S| digitizexon Ff converts vomuley voice to digit a aoe oh eT Converter), : Compmessions + Apes speed ‘compression Wing _ospefie -valgortthm «ike Q@PE -LTP. . caonsmission - sendy thes comprased -dade sve the Gisrt vhedoont , Receiver decodiene r | 9 I = Auyoam « \ve << a ye eis Deca ete ne oaks oat = ne — oo ptt I “Tree disyaum ———— og) represen ee it ee Se | Bhows ol\ po Gs ed aeadture, euab lise, pe “decision ene hyers F _| 1416 + commonly 2A in 1 babii gomnd toding Aneo™ » Pure L_convelwHonal enioding tak I key Geatuorey * L . | Stents fom wstey sinyle soot Ande (int! Syeute ) s! a Loon level conresponds to a nevus Hme rep or input “pi+ Bruched represent Possible bosed on tne inpur Eorh pan Prom he vooe as AN ey Re a one WG Maren stay i Ms Example We cose’ Bi in_convolutionw Codiny , oo ree Ae. ure cle can, Awe ow Ai fe an input “lpite. ¢ Meee ourpur Se ff A aint on over tim _aTralig ia yarn 19 wo -Compuct goa e'n a meprtgentution of ne shade Lewooietbne of La finite = stute machine over time + Yt commonly used in convolutional cd Virewt decoding sand Siynal processing ‘Ss a OG Le Features | Bibione pce Vigua erie ache hace cred wndcaney hy reusing poles “(sha4e3) ever swe. Modes Cueviriter) represent -Gsores ot ore Aime Gre-p ce dyer [ioe eagle ghee opel Arungitions ered on Sip bfx and show olp bite, | key Features | Sivat low hoo Aveo. Ava yerarn + PE seu aittbc ih aed nduniy loa _vtusing nodes ( chates onent cli Modes ( vertices) Fepretent Shares at | eon -diene shep Bags Cbeonctnes ) Le paee§ eon arn: Hone eI yoru pret did . p Nicwd! ow aes oe ercicivo® oe spo le dots ok Aue || gen ances 4p Syed | Gey t S Ip Sonn jos Se amie inblagtest * | eonvoluHonnl coded »—_— pr enialirgs miele eS maciwat sm anaes pa 2 ch Coxyuunre of ghades.) —— $= — ‘ cfu plles (RUA yan. cuore Ce na Um? communi Cotton jac = x, Use Cte! - Lm dewdiny o convolutional cade, the_ a ArOis_- Ainqram helps ind the mos — Vikedy sAwune mitted bite See} hee Nin ; dy amie (Pov yorumenin 3 | Gucnmar ee | se Lead re, Tee (Agen ee H Srvguce Stanoniny growin Sy uce Qepertient puss | 2 luge Sede. amderrd Sending —______che codin 1 encodinu Ponisi wi bewbtralge iS ear For aul = Scale exumple4 bay & Stod geste tes es lice decoding Sree piuyrum for convoluHonw code. So) Grras |_mepine P0e ond Shee The pow petit) oe | at of deal ad 3 re {east ee ded ae ee el ocean opvinnal) stile a | ona. past lon Vue. comers o0e jetn)e ¥ ak denoted up f (x) 1 gubrati ep : \ ptasx Palo “subsystem Cage }+ Network end Gwitching Gub- : 39S A a Spen-otioN sulbay tern 8: BeneFi te 4) tnhwned decrerity 9) Vice cublind 3) intemetton Roming Serwe b\ Tweet mesoye Si 5) guste -mobile- Internet Seance 4 Corto Whoert Hor 4 Yves = ppionit Por signed) Pe ccedion i) torre + of e394 wad in broduced in 13k | wboarderied LANG Geos i Wid uisra ee comp,

You might also like