EE All Formula
EE All Formula
GATE …..
PSU …..
IES ….
Formula Sheet
(EE Department)
Matrix :-
• If |A| = 0 → Singular matrix ; |A| ≠ 0 Non singular matrix
• Scalar Matrix is a Diagonal matrix with all diagonal elements are equal
• Unitary Matrix is a scalar matrix with Diagonal element as ‘1’ (AQ = (A∗ )T = A−1 )
• If the product of 2 matrices are zero matrix then at least one of the matrix has det zero
• Orthogonal Matrix if AAT = AT .A = I ⇒ AT = A−1
• A = AT → Symmetric
A = - AT → Skew symmetric
Consistency of Equations :-
• r(A, B) ≠ r(A) is consistent
• r(A, B) = r(A) consistent &
if r(A) = no. of unknowns then unique solution
r(A) < no. of unknowns then ∞ solutions .
• AT = A∗ → then Hermition
• AT = −A∗ → then Hermition
• Diagonal elements of Skew Hermition Matrix must be purely imaginary or zero
• Diagonal elements of Hermition matrix always real .
• A real Hermition matrix is a symmetric matrix.
• |KA| = K n |A|
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 1 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Mathematics Formula Sheet
KA → K λ1 , K λ2 ……..K λn
Am → λ1m , λm m
2 ………….. λn .
A + KI → λ1 + k , λ2 + k , …….. λn + k
(A − KI)2 → (λ1 − k)2 , ……… (λn − k)2
Complex Algebra :-
2πi
• ∫c f(z)/(Z − a)n+1 dz = n!
[ f n (a) ] if f(z) is analytic in region ‘C’ & Z =a is single point
(z−z0 ) (z−z0 )2 (z−z )n
• f(z) = f(z0 ) + f ′ (z0 ) + f ′′ (z0)
+ …… + f n (z0 ) n!0 + ………. Taylor Series
1! 2!
⇓
fn (z0 )
if z0 = 0 then it is called Mclauren Series f(z) = ∑∞ n
0 a n (z − z0 ) ; when a n = n !
• If f(z) analytic in closed curve ‘C’ except @ finite no. of poles then
= Φ(a) / φ′ (a)
1 𝑑𝑑 𝑛𝑛−1
= lim (𝑛𝑛−1)! 𝑑𝑑𝑧𝑧 𝑛𝑛−1
((Z − a)n f(z) )
𝑍𝑍→𝑎𝑎
Calculus :-
Rolle’s theorem :-
If f(x) is
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 2 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Mathematics Formula Sheet
(b) Differentiable in (a, b)
(c) f(a) = f(b) then there exists at least one value C ϵ (a, b) such that f ′ (c) = 0 .
If f(x) is continuous in [a, b] and differentiable in (a, b) then there exists atleast one value ‘C’ in (a, b)
f(b)−f(a)
such that f ′ (c) =
b−a
f(b)−f(a)
f ′ (c) / g ′ (c) =
g(b)−g(a)
a a
• ∫−a f(x). dx = 2 ∫0 f(x)dx f(x) is even
= 0 f(x) is odd
a a
• ∫0 f(x). dx = 2 ∫0 f(x)dx if f(x) = f(2a- x)
• = 0 if f(x) = - f(2a – x)
na a
• ∫0 f(x). dx = n ∫0 f(x)dx if f(x) = f(x + a)
b b
• ∫a f(x). dx = ∫a f(a + b − x). dx
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 3 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Mathematics Formula Sheet
a a a
• ∫0 x f(x). dx = ∫0 f(x). dx if f(a - x) = f(x)
2
(n−1)(n−3)……1 𝜋𝜋
= . � � if ‘n’ even
n (n−2)(n−4)……….2 2
Working Rule :-
(ii) Obtain Fx = 0, Fy = 0 , Fz = 0
Laplace Transform :-
𝑑𝑑 𝑛𝑛
• L �𝑑𝑑𝑑𝑑 𝑛𝑛 𝑓𝑓(𝑠𝑠)� = s n f(s) - s n−1 f(0) - s n−2 f ′ (0) …… f n−1 (0)
dn
• L { t n f(t) } = (−1)n dsn
f(s)
f(t) ∞
• ⇔ ∫s f(s) ds
t
t
• ∫0 f(u) du ⇔ f(s) / s .
Inverse Transforms :-
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 4 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Mathematics Formula Sheet
s 1
• 2 2 2 = t sin at
(s +a ) 2a
s2 1
• (s2 +a2 )2
= [ sin at + at cos at]
2a
1 1
• = [ sin at - at cos at]
(s2 +a2 )2 2a3
s
• = Cos hat
s 2 − a2
a
• = Sin hat
s 2 − a2
T
∫0 e−st f(t)dt
Laplace Transform of periodic function : L { f(t) } = 1−e−sT
Numerical Methods :-
Bisection Method :-
x1 +x2
(1) Take two values of x1 & x2 such that f(x1 ) is +ve & f(x2 ) is –ve then x3 = find f(x3 ) if f(x3 )
2
+ve then root lies between x3 & x2 otherwise it lies between x1 & x3 .
Pi cards Method :-
x dy
yn+1 = y0 + ∫x f(x, yn ) ← = f(x, y)
0 dx
dy (x− x0 )2 (x− x0 )n
= f(x, y) y = y0 + (x- x0 ) (y ′ )0 + (y)′′
0 + …………. (y)n0
dx 2! n!
Euler’s method :-
dy
y1 = y0 + h f(x0 , y0 ) ← = f(x, y
dx
(1) h
y1 = y0 + [f(x0 , y0 ) + f(x0 + h, y1 )
2
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 5 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Mathematics Formula Sheet
(2) h (1)
y1 = y0 + [f(x0 , y0 ) + f(x0+h, y1 ) ]
2
y2 = y1 + h f(x0 + h, y1 )
(1) h
y2 = y0 + [f(x0 + h, y1 ) + f(x0 + 2h, y2 )
2
………………
Runge’s Method :-
k1 = h f(x0 , y0 )
h k1 1
k 2 = h f( x0 + , y0 + ) finally compute K = (K1 + 4K 2 + K 3 )
2 2 6
k ′ = h f(x0 +h , y0 + k1 )
k 3 = h ( f (x0 +h , y0 + k ′ ))
h k2
k 3 = h f(x0 + , y0 + ) ∴ approximation vale y1 = y0 + K .
2 2
k 3 = h f (x0 +h , y0 + k 3 )
Trapezoidal Rule :-
x +nh h
∫x 0 f(x). dx =
2
[ ( y0 + yn ) + 2 (y1 + y2 + ……. yn−1 )]
0
@ x0 , x1 , x2 ……..
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 6 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Mathematics Formula Sheet
x +nh h
∫x 0 f(x). dx =
3
[ ( y0 + yn ) + 4 (y1 + y3 + ……. yn−1 ) + 2 (y2 + y4 + ⋯ … . + yn−2 )]
0
Differential Equations :-
dy dv
Sol : Put y = Vx ⇒ =V+x & solve
dx dx
Reducible to Homogeneous :-
dy ax+by+c
General form =
dx a′ x+b′ y+c′
a b
(i) ≠
a′ b′
a b
(ii) =
a′ b′
a b 1
Sol : Let = =
a′ b′ m
dy ax+by+c
=
dx m(ax+by)+c
dy 𝑑𝑑𝑑𝑑
Put ax + by = t ⇒ =� − 𝑎𝑎�/b
dx 𝑑𝑑𝑑𝑑
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 7 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Mathematics Formula Sheet
Then by variable & seperable solve the equation .
I.F = e∫ p.dx
N → f(x, y)
∂M ∂N
If ∂y
= ∂x
then
( y constant )
1
= x eax if f (a) = 0
f′ (a)
1
= x2 eax if f ′ (a) = 0
f′′ (a)
1 1
sin (ax + b) = sin (ax + b) f(- a2 ) ≠ 0
f(b2 ) f(−a2 )
1
= x sin (ax + b) f(- a2 ) = 0 Same applicable for cos (ax + b)
f′ (−a2 )
1
= x2 sin (ax + b)
f′′ (−a2 )
1
x m = [f(D)]y x m
f(D)
1 1
eax f(x) = eax f(x)
f(D) f(D+a)
Vector Calculus :-
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 8 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Mathematics Formula Sheet
Green’s Theorem :-
∂Ψ ∂ϕ
∫C (ϕ dx + φ dy) = ∫ ∫ � ∂x − ∂y � dx dy
This theorem converts a line integral around a closed curve into Double integral which is special case of
Stokes theorem .
Series expansion :-
Taylor Series :-
n(n−1)
(1 + x)n = 1+ nx + x 2 + …… | nx| < 1
2
x2
ex = 1 + x + 2 ! + ……..
x3 x5
Sin x = x - 3!
+ 5!
- ……..
x2 x4
Cos x = 1 - 2!
+ 4 ! - ……..
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 9 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Electro-Magnetic Theory Formula Sheet
Electromagnetic Fields
Vector Calculus:-
→ A. (B × C) = C. (A × B) = B. (C × A)
→ A×(B×C) = B(A.C) – C(A.B) → Bac – Cab rule
(A.B)
→ Scalar component of A along B is AB = A Cos θAB = A . aB =
|B|
(A.B) B
� B = A Cos θAB . aB =
→ Vector component of A along B is A
|B|2
Laplacian of scalars :-
• ∮ A. ds = 𝑣𝑣 ∫(∇.𝐴𝐴)𝑑𝑑𝑑𝑑 → Divergence theorem
• L∮ A.dI = 𝑠𝑠 ∫(∇× 𝐴𝐴)𝑑𝑑𝑑𝑑 → Stokes theorem
• ∇2 A = ∇ (∇ .A) - ∇ × ∇ × A
• ∇ .A = 0 → solenoidal / Divergence loss ; ∇ .A > 0 → source ; ∇ .A < 0 ⇒ sink
• ∇ × A = 0 → irrotational / conservative/potential.
• ∇2 A = 0 → Harmonic .
Electrostatics :-
Q Qk (r−rk ) Q Q
• Force on charge ‘Q’ located @ r F = ∑N
k=1
� 12
; F12 = 4πε1 R23 . R
4πε0 |r−rk |3 0
1 (r−rk )
• E @ point ‘r’ due to charge located @ 𝑟𝑟 𝑠𝑠 ′
𝐸𝐸� = ∑N Q
4πε0 K=1 |r−rk 3 k
ρL
• E due to ∞ line charge @ distance ‘ ρ ‘ E = 2πε ρ
. aρ (depends on distance)
0
ρ
• E due to surface charge ρs is E = 2εs an . an → unit normal to surface (independent of distance)
0
• For parallel plate capacitor @ point ‘P’ b/w 2 plates of 2 opposite charges is
ρ ρ
E = s an - � s � (−𝑎𝑎𝑛𝑛 )
2ε0 2ε0
Q
• ‘E’ due to volume charge E = ar .
4πε0 R2
→ Electric flux density D = ε0 E D → independent of medium
Flux Ψ = s ∫ D .ds
Gauss Law :-
→ Total flux coming out of any closed surface is equal to total charge enclosed by surface .
Ψ = Q enclosed ⇒ ∫ D . ds = Q enclosed = ∫ ρv . dv
ρv = ∇. D
w B
→ Electric potential VAB = = - ∫A E. dI (independent of path)
Q
B Q
VAB = - ∫A ar . dr ar = VB - VA (for point charge )
4πε0 r2
• Potential @ any point (distance = r), where Q is located same where , whose position is vector @ r ′
Q
V= |r−r′ |
4πε0
Q
→ V(r) = + C . [ if ‘C’ taken as ref potential ]
4πε0 r
→ ∇ × E = 0, E = - ∇V
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 10 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Electro-Magnetic Theory Formula Sheet
1 1
→ For monopole E ∝ 2 ; Dipole E ∝ 3 .
r r
1 1
V∝ ; V ∝ 2
r r
• Electric lines of force/ flux /direction of E always normal to equipotential lines .
1 1 1
• Energy Density WE = ∑N Q V = ∫ D. E dv = ∫ ε0 E 2 dv
2 k=1 k k 2 2
∂ρv
• Continuity Equation ∇.J = - ∂t
.
−t/Tr
• ρv = ρ v 0 e where Tr = Relaxation / regeneration time = ε/σ (less for good conductor )
µ2
B1n = B2n H1n = H2n
µ1
Maxwell’s Equations :-
d
→ faraday law Vemf = ∮ E. dI = - ∫ B. ds
dt
∂B ∂B
→ Transformer emf = ∮ E. dI = - ∫ ds ⇒ ∇ × E = -
∂t ∂t
s
∂D
→∇×H=J+
∂t
µϵ σ 2
α = ω � ��1 + � � − 1�
2 ωϵ
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 11 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Electro-Magnetic Theory Formula Sheet
µϵ σ 2
β = ω � ��1 + � � + 1�
2 ωϵ
Free space :- (σ = 0, μ = µ0 , ε = ε0 )
• α = 0 , β = ω �µ0 ε0 ; u = 1/ �µ0 ε0 , λ = 2π/β ; η = �µ0 /ε0 < 0 = 120π ∠0
Here also E & H in phase .
Good Conductor :-
σ > > ωϵ σ/ωϵ → ∞ ⇒ σ = ∞ ε = ε0 ; μ = µ0 µr
Wµ
• α = β = �πfµσ ; u = �2ω/µσ ; λ = 2π / β ; η = � ∠450
σ
• Skin depth δ = 1/α
1 1+j
• η = √2 ejπ/4 =
σδ σδ
1 πfµ
• Skin resistance R s = =�
σδ σ
Rs .l
• R ac =
w
l
• R dc = .
σs
Poynting Vector :-
∂ 1
• ∫ (E × H) ds = - ∫ [ εE 2 + μH 2 ] dv – ∫ σ E 2 dv
dt 2
S v
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 12 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Electro-Magnetic Theory Formula Sheet
1 E20 −2αz
• δave (z) = e cos θη az
2 |η|
• Total time avge power crossing given area Pavge = ∫ Pave (s) ds
S
aE × aH = ak
→ Both E & H are normal to direction of propagation
→ Means they form EM wave that has no E or H component along direction of propagation .
−nπ −nλ1
β1 Zmin = nπ ⇒ Zmin = =
β1 2
H1 min occurs when there is |t1 |max
|E | |H | 1+|Γ| s−1
S = |E1 |max = |H1 |max = ;|Γ|=
1 min 1 min 1−|Γ| s+1
Since |Γ| < 1 ⇒ 1 ≤ δ ≤ ∞
Transmission Lines :-
• Supports only TEM mode
• LC = με ; G/C = σ /ε .
d2 Vs d2 Is
• dz2
- r 2 Vs = 0 ; dz2
- r 2 Is = 0
• Γ = �(R + jωL)(G + jωC) = α + jβ
• V(z, t) = V0+ e−αz cos (ωt- βz) + V0− eαz cos (ωt + βz)
V− R+jωL γ R+jωL
• Z0 = − I−0 = = =�
0 γ G+jωC G+jωC
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 13 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Electro-Magnetic Theory Formula Sheet
→ γ = α + jβ = jω√LC ; α = 0, β = w √LC ; λ = 1/ f √LC , u = 1/ √LC
Z0 = �L/C
i/p impedance :-
𝑍𝑍 + Z tan hl
Zin = Z0 � 𝐿𝐿+ Z 0 tan hl� for lossless line γ = jβ ⇒ tan hjβl = j tan βl
𝑍𝑍0 L
𝑍𝑍𝐿𝐿 + 𝑗𝑗Z0 tan βl
Zin = Z0 � + Z tan βl �
𝑍𝑍0 L
Z −Z
• VSWR = ΓL = ZL+Z0
L 0
• CSWR = - ΓL
• Transmission coefficient S = 1 + Γ
V I 1+| ΓL | Z Z0
• SWR = Vmax = Imax = = ZL =
min min | 1−|ΓL 0 ZL
(ZL > Z0 ) (ZL < Z0 )
Vmax
• |Zin |max = Imin
= SZ0
Vmin
• |Zin |min = = Z0 /S
Imax
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 14 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Electro-Magnetic Theory Formula Sheet
Behaviour of Transmission Line for Different lengths :-
𝑍𝑍𝑠𝑠𝑠𝑠 =∞
l = λ /4 → 𝑍𝑍𝑜𝑜𝑜𝑜 =0
� → impedance inverter @ l = λ /4
𝑍𝑍𝑠𝑠𝑠𝑠 =0
l = λ /2 : Zin = Z0 ⇒ 𝑍𝑍𝑜𝑜𝑜𝑜 =∞
� impedance reflector @ l = λ /2
Wave Guides :-
TM modes : (Hz = 0)
𝑚𝑚𝑚𝑚 𝑛𝑛𝑛𝑛
Ez = E0 sin � �x sin � � y e−nz
𝑎𝑎 𝑏𝑏
mπ 2 nπ 2
h2 = k 2x + k 2y ∴ γ = �� � + � � − ω2 µε where k = ω √µϵ
a b
m→ no. of half cycle variation in X-direction
n→ no. of half cycle variation in Y- direction .
1 2 2
Cut off frequency ωC = ��mπ� + �nπ� γ = 0; α = 0 = β
√µϵ a b
mπ 2 nπ 2
• k2 < � � + � � → Evanscent mode ; γ=α; β=0
a b
mπ 2 nπ 2
• k2 > � � + � � → Propegation mode γ = jβ α = 0
a b
mπ 2 nπ 2
β = �k 2 − � � −� �
a b
u′p 2 2
• fc = ��m� + �n� u′p = phase velocity = 1
is lossless dielectric medium
2 a b √µϵ
2
• λc = u′ /fc = m n
�( a )2 +(b)2
f 2
• β = β′ �1 − � c � β′ = ω/ W β′ = phase constant in dielectric medium.
f
• up = ω/β λ = 2π/β = up /f → phase velocity & wave length in side wave guide
E E β µ f 2
• ηTM = Hx = - Hy = = � �1 − � fc �
y x ωϵ ε
f 2
ηTM = η′ �1 − � fc � η′ → impedance of UPW in medium
TE Modes :- (𝐄𝐄𝐳𝐳 = 0)
𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛𝑛𝑛𝑛𝑛
→ Hz = H0 cos � � cos � � e−nz
𝑎𝑎 𝑏𝑏
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 15 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Electro-Magnetic Theory Formula Sheet
wµ f 2
→ ηTE = = η′ / �1 − � fc �
β
Antennas :-
jI β dl
Hertzian Dipole :- HΦs = 0 sin θ e−jβγ Eθs = ηHΦs
4πr
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 16 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Signals & Systems Formula Sheet
1 T 1
→ Power of a signal P = lim ∫−T |x(t)|2 dt = lim ∑N
n=−N |x[n]|
2
𝑇𝑇→∞ 2𝑇𝑇 𝑁𝑁→∞ 2𝑁𝑁+1
→ x1 (t) → P1 ; x2 (t) → P2
x1 (t) + x2 (t) → P1 + P2 iff x1 (t) & x2 (t) orthogonal
→ Shifting & Time scaling won’t effect power . Frequency content doesn’t effect power.
𝑡𝑡−𝑏𝑏
→ x(at +b) = y(t) ⇒ x(t) = y � �
𝑎𝑎
t
• Step response s(t) = h(t) * u(t) = ∫−∞ h(t)dt S’ (t) = h(t)
𝑛𝑛
S[n] = ∑𝑘𝑘=0 ℎ[𝑛𝑛] h[n] = s[n] – s[n-1]
1
• e−at u(t) * e−bt u(t) = [ e−at - e−bt ] u(t) .
b−a
• A1 Rect (t / 2T1 ) * A2 Rect(t / 2T2 ) = 2 A1 A2 min (T1 , T2 ) trapezoid (T1 , T2 )
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 17 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Signals & Systems Formula Sheet
Laplace Transform :-
1 σ+j∞
x(t) = ∫ X(s) est ds
2πj σ−j∞
∞
X(s) = ∫−∞ x(t) e−st ds
x( 0+ ) = lim 𝑠𝑠 𝑋𝑋(𝑠𝑠)
𝑠𝑠→∞
Properties of ROC :-
3. x(t) → finite duration & absolutely integrable then ROC entire s-plane
4. x(t) → Right sided then ROC right side of right most pole excluding pole s = ∞
5. x(t) → left sided ROC left side of left most pole excluding s= - ∞
Z-transform :-
1
x[n] =
2πj
∮ x(z) z n−1 dz
X(z) = ∑∞
n=−∞ x[n] z
−n
Properties of ROC :-
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 18 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Signals & Systems Formula Sheet
CDF :-
Cumulative Distribution function Fx (x) = P { X ≤ x }
Properties of CDF :
• Fx (∞) = P { X ≤ ∞ } = 1
• Fx (- ∞) = 0
• Fx (x1 ≤ X ≤ x2 ) = Fx (x2 ) - Fx (x1 )
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 19 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Signals & Systems Formula Sheet
• Its Non decreasing function
• P{ X > x} = 1 – P { X ≤ x} = 1- Fx (x)
PDF :-
d
Pdf = fx (x) = Fx (x)
dx
Pmf = fx (x) = ∑∞
i=−∞ P{X = xi } δ(x = xi )
Properties:-
• fx (x) ≥ 0
x
• Fx (x) = fx (x) * u(x) = ∫−∞ fx (x) dx
∞
• Fx (∞) = ∫−∞ fx (x) dx =1 so, area under PDF = 1
x
• P { x1 < X ≤ x2 } = ∫x 2 fx (x)dx
1
Variance σ2 = E { (X − µx )2 } = E {x 2 } - µ2x
∞
→ E{g(x)} = ∫−∞ g(x) fx (x) dx
1 ; 𝑥𝑥 > 𝑏𝑏
𝑥𝑥−𝑎𝑎
Fx (x) = �𝑏𝑏−𝑎𝑎 ; 𝑎𝑎 < 𝑥𝑥 < 𝑏𝑏
0 ; 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
a+b
Mean =
2
a2 + ab+ b2
Variance = (b − a)2 / 12 E{ x 2 } = 3
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 20 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Signals & Systems Formula Sheet
1 2 2
fx (x) = 2
e−(x−µ) /2σ
√2πσ
X ~ N (µ1 σ2)
∞ 1 2 /2σ2
Mean = ∫−∞ x e−(x−µ) dx = μ
√2πσ2
1 ∞ 2 /2σ2
Variance =
√2πσ2
∫−∞ x 2 e−(x−µ) dx = σ2
Exponential Distribution :-
Laplacian Distribution :-
λ
fx (x) = e−λ |x|
2
• FXY (x , y) = P { X ≤ x , Y ≤ y }
• FXY (x , ∞) = P { X ≤ x } = Fx (x) ; Fxy (∞ , y) = P { Y < y } = FY (y)
• Fxy (-∞, y) = Fxy (x, - ∞) = Fxy (-∞, -∞) = 0
∞ ∞
• fx (x) = ∫−∞ fxy (x, y) dy ; fY (y) = ∫−∞ fxy (x, y) dx
fxy (x,y)
• fY/X (y/x) = fx (x)
Independence :-
• X & Y are said to be independent if FXY (x , y) = FX (x) FY (y)
⇒ fXY (x, y) = fX (x) . fX (y) P { X ≤ x, Y ≤ y} = P { X ≤ x} . P{Y ≤ y}
Correlation:
∞ ∞
Corr{ XY} = E {XY} = ∫−∞ ∫−∞ fxy (x, y). xy. dx dy
If E { XY} = 0 then X & Y are orthogonal .
Uncorrelated :-
Covariance = Cov {XY} = E { (X - µx ) (Y- µy }
= E {xy} – E {x} E{y}.
If covariance = 0 ⇒ E{xy} = E{x} E{y}
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 21 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Signals & Systems Formula Sheet
• Independence → uncorrelated but converse is not true.
Random Process:-
Take 2 random process X(t) & Y(t) and sampled @ t1 , t 2
• R x (0) = E { x 2 }
• R x (τ) = R x (-τ) → even
• | R x (τ) | ≤ R x (0)
Cross Correlation
• R xy(τ) = R yx(-τ)
• R2xy(τ) ≤ R x (0) . R y (0)
• 2 | R xy(τ)| ≤ R x (0) + R y (0)
1 ∞
R x (τ) = ∫ 𝑆𝑆 (jω)ejωτ dω
2π −∞ 𝑥𝑥
2
• Sy (jω) = Sx (jω) |H(jω)|
1 ∞
• Power = R x (0) = ∫ 𝑆𝑆 (jω) dω
2π −∞ 𝑥𝑥
• R x (τ) = k δ(τ) → white process
Properties :
• Sx (jω) even
• Sx (jω) ≥ 0
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 22 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Electrical Machines Formula Sheet
DC MACHINES : -
• S = No of commutator segments
• P = No of poles
2C
• U = No of coil sides / No of poles = S
• C = No of coils on the rotor
• A = No of armature parallel paths
• Ia = Armature current
ZI pole arc
→ AT (Compensating Winding) = 2AP
a
* pole pitch
B
→ AT(Inter pole) = ATa + µ i lgi
0
Where Bi = Flux density in inter pole airgap
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 23 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Electrical Machines Formula Sheet
lgi = length of inter pole airgap , µ0 = 4π ∗ 10−7
AT(Inter pole)
→ No of turns in each interpole , Ninterpole = Ia
Z pole arc
→ The no of compensating conductor per pole, Ncw /pole = 2 A P (pole pitch )
→ The Mechanical power that is converted is given by Pconv = Tind ωm
Where T = Induced torque
Shunt Generator:
→ For a shunt generator with armature induced voltage Ea, armature current Ia and
armature resistance Ra, the terminal voltage V is:
V = Ea - IaRa
→ The field current I f for a field resistance R f is:
If = V / Rf
→ The armature induced voltage Ea and torque T with magnetic flux Φ at angular
speed ω are:
Ea = k fΦω = kmω
T = k fΦIa = kmIa
where k f and km are design coefficients of the machine.
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 24 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Electrical Machines Formula Sheet
Series Generator:
→ For a series generator with armature induced voltage Ea, armature current Ia,
armature resistance Ra and field resistance R f, the terminal voltage V is:
V = Ea - ( IaRa + IaR f )= Ea - Ia(Ra + R f)
The field current is equal to the armature current.
→ The armature induced voltage Ea and torque T with magnetic flux Φ at angular
speed ω are:
Ea = k fΦω Ia = kmω Ia
T = k fΦIa2 = kmIa2
where k f and km are design coefficients of the machine.
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 25 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Electrical Machines Formula Sheet
→ Differentially compounded DC generator : - ( long shunt)
(a) Ia = If + IL
(b) Vt = Ea - Ia (R a + R s )
V
(c) Isf = Rx = shunt field current
f
(d) The equivalent effective shunt field current for this machine is given by
Nse Armature reaction MMF
Isf =Isf - Ia - ( )
Nf Nf
Shunt Motor:
→ For a shunt motor with armature induced voltage Ea, armature current Ia and
armature resistance Ra, the terminal voltage V is:
V = Ea + IaRa
The field current I f for a field resistance R f is:
If = V / Rf
→ The armature induced voltage Ea and torque T with magnetic flux Φ at angular
speed ω are:
Ea = k fΦω = kmω
T = k fΦIa = kmIa
where k f and km are design coefficients of the machine.
PZ
Where K = 2πA
Series Motor :
→ For a series motor with armature induced voltage Ea, armature current Ia,
armature resistance Ra and field resistance R f, the terminal voltage V is:
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 26 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Electrical Machines Formula Sheet
V = Ea + IaRa + IaR f = Ea + Ia(Ra + R f)
The field current is equal to the armature current.
→ The armature induced voltage Ea and torque T with magnetic flux Φ at angular
speed ω are:
Ea = k fΦω Ia = kmω Ia
T = k fΦIa2 = kmIa2
where k f and km are design coefficients of the machine.
Losses:
→ constant losses (P k) = Pw f + Pi o
Efficiency
→ The per-unit efficiency η of an electrical machine with input power Pin, output
power Pout and power loss Ploss is:
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 27 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Electrical Machines Formula Sheet
Temperature Rise:
→ The average temperature rise ∆θ of a winding under load may be estimated from
measured values of the cold winding resistance R1 at temperature θ1 (usually
ambient temperature) and the hot winding resistance R2 at temperature θ2, using:
∆θ = θ2 - θ1 = (θ1 - θ0) (R2 - R1) / R1
.Copper Windings:
→ If θ1 is 20 °C and ∆θ is 1 degC:
∆Rpu = (R2 - R1) / R1 = ∆θ / (θ1 - θ0) = 1 / 254.5 = 0.00393
Aluminium Windings:
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 28 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Electrical Machines Formula Sheet
→ The value of θ0 for aluminium is - 228 °C, so that:
∆θ = θ2 - θ1 = (θ1 + 228) (R2 - R1) / R1
→ If θ1 is 20 °C and ∆θ is 1 degC:
∆Rpu = (R2 - R1) / R1 = ∆θ / (θ1 - θ0) = 1 / 248 = 0.00403
→ The dielectric dissipation factor of the insulation system is the tangent of the
dielectric loss angle δ between VC and V:
tanδ = VR / VC = RS / XC = 2πfCRS
RS = XCtanδ = tanδ / 2πfC
→ The dielectric power loss P is related to the capacitive reactive power QC by:
P = I2RS = I2XCtanδ = QCtanδ
→ The power factor of the insulation system is the cosine of the phase
angle φ between VR and V:
cosφ = VR / V
so that δ and φ are related by:
δ + φ = 90°
TRANSFORMERS:
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 29 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Electrical Machines Formula Sheet
→ Net cross sectional area = Area occupied by only magnetic material excluding area
of insulation material.
→ Hence for all calculations, net cross sectional area is taken since ϕ (flux) majorly
flows in magnetic material.
ϕ = BAn
t
Weight of
→ Specific weight of t/f = f
t
KVA rating of
f
E
→ Emf per turn in Iry = N1 = 4.44 Bmax An f
1
ry E2
→ Emf per turn in II = = 4.44 Bmax An f
N2
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 30 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Electrical Machines Formula Sheet
N2
N1
1
Turns ratio = K = N1 ∶ N2
→ For an ideal two-winding transformer with primary voltage V1 applied
across N1 primary turns and secondary voltage V2 appearing across N2 secondary
turns:
V1 / V2 = N1 / N2
→ The primary current I1 and secondary current I2 are related by:
I1 / I2 = N2 / N1 = V2 / V1
→ For an ideal step-down auto-transformer with primary voltage V1 applied
across (N1 + N2) primary turns and secondary voltage V2 appearing
across N2 secondary turns:
V1 / V2 = (N1 + N2) / N2
→ The primary (input) current I1 and secondary (output) current I2 are related by:
I1 / I2 = N2 / (N1 + N2) = V2 / V1.
→ For a single-phase transformer with rated primary voltage V1, rated primary
current I1, rated secondary voltage V2 and rated secondary current I2, the voltampere
rating S is:
S = V1I1 = V2I2
→ For a balanced m-phase transformer with rated primary phase voltage V1, rated
primary current I1, rated secondary phase voltage V2 and rated secondary current I2,
the voltampere rating S is:
S = mV1I1 = mV2I2
→ The primary circuit impedance Z1 referred to the secondary circuit for an ideal
transformer with N1 primary turns and N2 secondary turns is:
Z12 = Z1(N2 / N1)2
E1 V1
Bm ∝ ∝
f f
V1
Bmax = constant ⟹ = constant
f
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 31 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Electrical Machines Formula Sheet
N1 N2
I0
Iw Iµ
V1 R0 X0 E1 E2
I22 R 2 = I12 R 21
I 2
R 21 = R 2 �I2 �
1
R
= 22
K
∴ 1 R
R 2 = K22
ry
→ P. U resistance drop ref to I � =
I1 R01 I1
×
or E1 I1
P. U resistance ref to Iry
I12 R01
= E1 I1
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 33 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Electrical Machines Formula Sheet
∴ P.U Resistance drop = P.U FL cu loss
1. Hysteresis loss :
Steinmetz formula :-
x
Wh = η Bmax . f . v Area under one hysteresis loop.
Where
η = stienmetz coefficient
Bmax = max. flux density in transformer core.
f = frequency of magnetic reversal = supply freq.
v = volume of core material
x = Hysteresis coeff (or) stienmetz exponent
= 1.6 (Si or CRGo steel)
2. Eddycurrent loss:
Eddy current loss ,(We ) ∝ R ce × Ie2
As area decreases in laminated core resistance increases as a result conductivity decreases.
2
We = K. Bmax f 2. t2
thickness of laminations.
Supply freq
Constant
(it is a function of σ )
During operation of transformer :-
V1
Bm ∝ f
V1
Case (i) :- f
= constant, Bmax = const.
we ∝ f 2
we = B f 2
Const.
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 34 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Electrical Machines Formula Sheet
V1
Case (ii) :- f
≠ constant, Bm ≠ const.
V 2
we ∝ � f1 � . f 2
we ∝ V1 2
wi = wh + we
A V11.6
wi = f0.6
+ BV1 2
→ As VA rating is choosen as base then the P.U iron loss are also constant at all load conditions.
O.C test :-
V1 rated → Wi
S.C test :-
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 35 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Electrical Machines Formula Sheet
→ Under the assumption that small amount of iron losses corresponds to VSC and stray load
losses are neglected the wattmeter reading in S.C test can be approximately taken as F.L
Cu losses in the transformer.
→ Wse ≃ F.L Cu loss
≃ ISC2 . R 01
WSC
R 01 = 2
ISC
Efficiency :-
output power
Efficiency of transformer is given by η =
input power
output power
=
output power+losses
E2 I2 cos ϕ2
=E
2 I2 cos ϕ2 + F.L cu losses+Iron losses
E2 I2 cos ϕ2
ηF.L =
E2 I2 cos ϕ2 + I22 R02 + Wi
x (E2 I2 ) cos ϕ2
ηx of F.L =
x (E2 I2 ) cos ϕ2 + x 2 (I2 2 R 02 ) + Wi
KVA × cos ϕ
→ Transformer efficiency =
KVA × cos ϕ + wi + Cu losses
x × MVA × Pf
→ Efficiency = η =
x × MVA × Pf + wcu × x2 + wi
1
→ Total losses in transformer = � − 1� output
η
Iron loss
→ KVA corresponding to ηmax = F.L KVA �
F.L culoss
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 36 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Electrical Machines Formula Sheet
Output energy in kwh
Input energy in kwh
→ ηall day = 24
hrs
I R02 I X02
=�2 � cos ϕ2 ± � 2 � sin ϕ2
V1′ V1′
↓ ↓
P.U resistance P.U reactance
% Regulation = �(P. U R) cos ϕ2 + (P. U X) sin ϕ2 � × 100
X
At maximum regulation ϕ2 = Tan−1 �RL �
L
X
= Tan−1 �R02 �
02
XL X02
RL
= R02
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 37 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Electrical Machines Formula Sheet
Condition for zero regulation :-
→ If the voltage regulation in the t/f is zero, the t/f voltages are maintained at their nominal
values even under load condition
% Regn = (% R) cos ϕ2 ± (% X) sin ϕ2
For zero regulation ⇒ occurs at leading p.f’s
(% R) cos ϕ2 − (% X) sin ϕ2 = 0
%R
Tan ϕ2 =
%X
%R R
ϕ2 = Tan−1 �% X� = Tan−1 �X02 �
02
leading.
X R02
→ At zero regulation condition : ϕ2 = Tan−1 � C � = Tan−1 � �
RL X02
XC R02
RL
= X02
= x × F.L regn
Regulation at U.P.F:-
Regulation at UPF = % R
= % F.L Cu loss
Scott Connection:
ia
Ia 86.6%
A 0.866
� �
√3
V1 0.866
0.577 V1 2 Va
N :
1
0.289 IA
IA�
IB 2 M 2
B
Vb
V1 IBC ib
IC
C
VAM = 0.866 V1
V
VAN = � 31 � = 0.577 V1
√
VMN = 0.866 V1 − 0.577 V1 = 0.289 V1
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 38 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Electrical Machines Formula Sheet
VAN ∶ VMN = 0.577 V1 ∶ 0.289 V1
=2:1
→ If a neutral pt is located on 3ϕ side, such that, voltage between any terminal to that neutral
point is 0.577 V1 then such neutral point divides the primary of teaser transformer in the ratio
of 2 : 1
2
→ Location of neutral point from top = 0.866 N1 ×
3
1
→ Location of neutral point from bottom = 0.866 N1 ×
3
Operation of Scott Connection with 2ϕ balanced load at UPF :-
Teaser t/f :-
Ia N2
ia
= 0.866 N1
N2
Ia = × ia
0.866 N1
Let N1 ∶ N2 = 1 ∶ 1
IA = 1.15 ia
Main t/f
IBC N
ib
= N2
1
N2
IBC = × ib
N1
Let N1 : N2 = 1 ∶ 1
IBC = ib
IB = IBC − IA� IC = −IBC − IA�
2 2
→ Capacity of Scott Connection :-
(KVA)Scott = √3 VL IL
V2 = V1 IL = I1
↙ ↓
→ Vol. rating of 1 – ϕ t/f Current rating of 1 – ϕ t/f
(KVA)Scotf = √3 V1 I1
(KVA)Scott = √3 (KVA)1− ϕ
(KVA)
→ Utilization factor = availableScott
KVA
√3 V1 I1
= 2V1 I1
= 0.866
→ Utilization factor of Scott connection with 2 identical 1 – ϕ t/f’s is 86.6%
AUTO TRANSFORMER:
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 39 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Electrical Machines Formula Sheet
→ Primary applied voltage, Vab = Secondary voltage V2 referred to primary + primary leakage impedance
drop + secondary leakage impedance drop ref. to primary.
N1 −N2 N1 − N2
Vab = � N2
� V2 + I1 (r1 + jx1 ) + (I2 − I1 )(r2 + j x2 ) � N2
�
LV
→ K of auto transformer =
HV
(KVA)induction = (V1 − V2 ) I1
I/P KVA = V1 I1
(KVA)induction (V1 − V2 ) I1
i/p KVA
= V1 I1
LV
=1–
HV
=1–K
∴ (KVA) induction = (1 – K) i/p KVA
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 40 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Electrical Machines Formula Sheet
SYNCHRONOUS MACHINES:
→ Principle of operation :-
Whenever a conductor cuts the magnetic flux, an emf is induced in that conductor”
→ Coil span (β) :- It is the distance between two sides of the coil. It is expressed in terms of
degrees, pole pitch, no. of slots / pole etc
→ Pole pitch :- It is the distance between two identical points on two adjacent poles.
Pole pitch is always 180° e = slots / pole.
P
→ θelec = θmech
2
→ Slot pitch or slot angle :- (T)Slot angle is the angle for each slot.
P(180°)
→ For a machine with ‘P’ poles and ‘s’ no. of slots, the slot angle = γ = d
180°
γ= s
� �
p
2E cos∝/2
KP =
2E
K p = cos ∝/2
180°
→ chording angle to eliminate nth harmonics (α)=
n
n−1
→ coil spam to eliminate nth harmonics ,(β) = 180 � �
n
→ Distribution factor | spread factor | belt factor | breadth factor(kd) :-
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 41 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Electrical Machines Formula Sheet
mγ
sin
2
Kd = γ
m sin
2
→ The distribution factor for uniformly distributed winding is
mr
sim
kd4 = mr
2
π
×
2 180
mnγ
sin
For nth harmonic, kdn = 2
nγ
m sin
2
360°
→ To eliminate nth harmonics ,phase spread (mγ) =
n
→ Generally, KVA rating, power output ∝ kd and Eph (induce emf) ∝ k d . Tph .
60
KVA60 (3− ϕ) Pout60 (3 ϕ) kd60 sin m120 sin 30° 120
∴ = = = 2
120 × = × = 1.15
KVA120 (3− ϕ) Pout120 (3ϕ) kd120 sin m60 sin 60° 60
2
60
KVA60 (3ϕ) Pout60 (3ϕ) kd60 sin 90
KVA90 (2ϕ)
= Pout90° (2ϕ)
= kd90
= 2
90 × = 1.06
sin 60
2
60
KVA60 (3ϕ) Pout60 (3ϕ) kd60 sin 180
= = = 2
180 × = 1.5
KVA180 (1ϕ) Pout180 (1− ϕ) kd180 sin 60
2
1
→ Speed of space harmonics of order (6k ± 1) is (6k . Ns
±1)
120 f
where Ns = synchronous speed =
p
2S
The order of slot harmonics is � ± 1�
P
→ Slot harmonics can be eliminated by skewing the armature slots and fractional slot winding.
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 42 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Electrical Machines Formula Sheet
mγ
sin
Is kd1 = 2
γ i.e., same that of fundamental
m sin
2
2s
→ Pith factor for slot harmonics, k p � ± 1� = k p1 = cos ∝�2
p
→ The synchronous speed Ns and synchronous angular speed s of a machine with p pole
pairs running on a supply of frequency fs are:
ωs = 2πfs / p
NS − N
→ Slip S =
NS
120 f
Where NS = = synchronous speed
p
→ The magnitude of voltage induced in a given stator phase is Ea = √2 π Nc ∅ f = K∅ω
Where K = constant
Pm = ωsTm
Synchronous Generator:
→ For a synchronous generator with stator induced voltage Es, stator current Is and
synchronous impedance Zs, the terminal voltage V is:
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 43 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Electrical Machines Formula Sheet
Synchronous Motor:
→ For a synchronous motor with stator induced voltage Es, stator current Is and synchronous
impedance Zs, the terminal voltage V is:
Voltage regulation :
|E|− |V|
→ % regulation = |V|
×100
E – V = Ia Zs
E−V
∴ % regulation =
V
Ia Zs
= × 100
V
∴ regulation ∝ Zs
∴ As Zs increases, voltages regulation increases.
Ia Zs
→ Condition for zero | min. voltage regulation is, Cos (θ + ϕ) = − 2V
→ Condition for max. Voltage regulation is, ϕ = θ
Ifm 1 1
→ Short circuit ratio (SCR) = = =
Ifa Zs (adjusted)|unit Xs (adjusted)|unit
1 1
SCR ∝ ∝
Xa Armature reaction
armature mmf
ϕa =
reluctance
armature mmf
∴ ϕa =
airgap
1
ϕa ∝
Air gap length
1
Armature reaction ∝ ϕa ∝
Airgap length
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 44 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Electrical Machines Formula Sheet
1
∴ SCR ∝ ∝ Airgap length
Armature reaction
1
⇒P∝ ∝ SCR
Xs
Power ∝ SCR
∴ Large value of SCR represent more power output.
→ Synchronizing power coefficient or stability factor Psy is given as
dp d EV
Psy = = � sin δ�
dδ dδ Xs
EV
= cos δ
Xs
Psy is a measure of stability
∴ stability ∝ Psy
1
But Psy ∝ ∝ SCR
Xs
∴ Stability ∝ SCR
Stability ∝ SCR ∝ Air gap length
→ When the stator mmf is aligned with the d – axis of field poles then flux ϕd perpole is set up
and the effective reactance offered by the alternator is X d .
→ When the stator mmf is aligned with the q – axis of field poles then flux ϕq per pole is set up
and the effective reactance offered by the alternator is X q.
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 45 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Electrical Machines Formula Sheet
→ Cylindrical rotor Synchronous machine ,
Ef Vt
The per phase power delivered to the infinite bus is given by P = Xs
sin δ
Ef Vt Vt2 1 1
P= Xd
sin δ + 2
�X − � sin 2δ
q Xd
dp
→ For salient – pole synchronous machine :- =0
dδ
Vt Ef 1 1
⇒ cos δ + Vt 2 � − � cos 2δ =0
Xd Xq Xd
2
Ef Xq 1 E Xq
± � + �4V
f
Cos δ = − 4V �
t �Xd − Xq � 2 �X t d − Xq �
EV V2
Where Active power flow (P) = cos(θ − δ) − cos θ ;
Zs Zs
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 46 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Electrical Machines Formula Sheet
EV V2
Reactive power flow (Q) = sin(θ − δ) − sin θ ;
Z2 Zs
→ Condition for max. power output :-
EV V2
P= cos(θ − δ) − cos θ
Zs Z2
dp
= 0 for max power condition
dδ
ie θ – δ = 0
θ=δ
EV V2
Pmax = Zs
− Z cos θ
s
SYNCHRONOUS MOTORS:
NN.L − NF.L
→ Speed regulation = × 100
NF.L
N −N
= S S × 100 = 0%
NS
NS − N NS − NS
⇒ Slip S = = N = 0%
NS S
120 f
NS =
p
→ The speed can be controlled by varying the frequency
V↑
↓ϕ ∝
f↑
v
ratio control is preferred for rated torque operation
F
:
⇒ If R a = 0 ; ZS = X S ; θ 90°
EV V
Pin = X sin δ Q = X [V − E cos δ]
S S
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 47 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Electrical Machines Formula Sheet
V2 EV
Pin = cos θ − cos(θ + δ)
Z2 ZS
d Pin EV
dδ
= 0 ⇒ 0 + sin(θ + δ) = 0
ZS
Sin (θ + δ) = 0 = sin 180°
δ = 180° − 0
V2 EV
Pmax = ZS
cos θ + ZS
This is the expression for the mechanical power developed interms of load angle and the
internal machine angle θ, for constant voltage Vph and constant E i.e., excitation
Pm
→ Gross Torque =
w
Pm
= 2π Ns
60
Ns = synchronous speed in r.p.m
60 Pm
∴ Tg = .
2π NS
9.55 Pm
Tg = Ns
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 48 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Electrical Machines Formula Sheet
The corresponding value of max. power is
V2 V2
Pmax = 2R − 4Ra
a
Tg = Pin
2π Ns
60
INDUCTION MACHINES:
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 49 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Electrical Machines Formula Sheet
Power i/p to stator
Rotor i/p power Mechanical power
from mains
= airgap power Pg developed, Pm
Power of
rotor shaft
ns − nr
The slip of induction machine is (S) = ns
Ns − Nr
= Ns
Where Ns is synchronous speed in rpm
ns is synchronous speed in rps
⇒ Nr = Ns (1 − s)
⇒ Ns − Nr = SNs
P . SNs PNs
∴ Rotor frequency, f2 = =S = Sf1
120 120
For an induction machine with rotor resistance Rr and locked rotor leakage reactance Xr, the
rotor impedance Zr at slip s is:Zr = Rr + jsXr
The stator circuit equivalent impedance Zrf for a rotor / stator frequency ratio s is:
Zrf = Rrs / s + jXrs
For an induction motor with synchronous angular speed ωs running at angular speed ωm and
slip s, the airgap transfer power Pt, rotor copper loss Pr and gross output power Pm for a
gross output torque Tm are related by:
Pt = ωsTm = Pr / s = Pm / (1 - s)
Pr = sPt = sPm / (1 - s)
Pm = ωmTm = (1 - s)Pt
The power ratios are:
Pt : Pr : Pm = 1 : s : (1 - s)
The gross motor efficiency ηm (neglecting stator and mechanical losses) is:
ηm = Pm / Pt = 1 - s
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 50 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Electrical Machines Formula Sheet
K wr = Rotor winding factor
→ But during running conditions the frequency of the rotor becomes, running with speed Nr
P(Ns − Nr ) P SNs
120
= 120
= Sf1
∴ fr = Sf1
∴ Emf under running conditions is
E = √2 π fr Kw2 Nphr ϕ1
= SE2
= sx2 Ω
= �r22 + x22
= �r22 + (sx2 )2
E
=
�r22 + x22
→ The rotor current I2 lags the rotor voltage E2 by rotor power factor angle θ2 given by
sx
θ2 = tan−1 r 2
2
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 51 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Electrical Machines Formula Sheet
→ Per phase power input to rotor is
Pg = F2 I2 cos θ2
Per phase rotor resistance
cos θ2 =
Per phase rotor impedance
r2 /s
=
�(r2 /s)2 + (x2 )2
r2 /s
∴ Pg = E2 I2 ×
�(r2 /s)2 + (x2 )2
`
E2 r2
= × I2
�(r2 /s)2 + (x2 )2 s
r2
= I22 s
→ Pg is the power transferred from stator to rotor across the air gap. There fore Pg is called air
gap power
r
Pg = I22 s2
1−S
= I22 r2 + I22 r2 � �
S
1−S
∴ Pm = (1 − S) Pg = I22 r2 � �
S
S
Rotor ohmic loss = � � Pm = SPg
1−S
Pm (1−S)Pg Pg
Te = ωr
= (1−S)ωs
= ωs
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 52 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Electrical Machines Formula Sheet
→ Ratio of Rotor input power, rotor copper losses and gross mechanical output is
1
Ir2 R 2 /s : Ir2 R 2 : Ir2 R 2 � − 1�
s
⇒ 1 : S : (1 – S)
∴ Rotor copper losses = S × Rotor input
Gross mechanical output =(1 – S) × Rotor input.
S
Rotor copper losses = (Gross Mechanical output) ×
1−S
Efficiency of the rotor is approximately
Gross mechanical power output
Equal to ηrotor =
Rotor input
(1−S) Rotor input
=
Rotor input
=1–S
NS − N
=1−
NS
N
=
Ns
N
ηrotor ≃ Ns
Total torque is
m Ve2 r2
Te = × r2 2
× Nm
ωs �Re + � + (x2 + Xe )2 s
s
m is the number of stator phases.
Torque equation can be written as
m r
Te = × I22 × s2
ωs
m
Te = × rotor input per phase.
ωs
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 53 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Electrical Machines Formula Sheet
Thus the slip SmT at which maximum torque occurs is given by
r2
SmT =
�Re2 + X2
Substituting the value of maximum slip in the torque equation, gives maximum torque
m Ve2
Tem = ωs
×
2�Re + �Re2 + X22 �
r2
If stator parameters are neglected then applying maximum transfer theorem to r2 /s then s
=x2
Nm = Ns (1 − Sm )
⇒ Nm = Ns (1 − R 2 /x2 )
Starting torque:-
At starting, slip S = 1.00, starting torque is given by
m Ve2 r2
Test = × (Re + r2 )2 + X2
ωs
→ Since r1 or Re is neglected
Te 2X r2
Tem
= r 2
× s
� 2� + X2
s
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 54 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Electrical Machines Formula Sheet
2Tem
Te = SmT S
+
S SmT
In order to get maximum power output from an induction generator, the rotor must be deiven
at a speed given by
r2
ns �1 + �
�(R e + r2 )2 + X 2 + r2
∴ Ph ∝ f and Pe ∝ f 2
Case (ii) : If the ratio of voltage to frequency is not constant and flux is also not constant
v
⇒ ≠ const ϕ ≠ const
f
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 55 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Electrical Machines Formula Sheet
Ph = K h f Bm1.6 Pe = K e f 2 Bm
2
∴ Ph ∝ v1.6 f −0.6 Pe ∝ v 2
v 1.6
= Kh f � �
f
Ph ∝ v1.6 Pe ∝ v12
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 56 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Electrical Machines Formula Sheet
GD Psc − 3 Isc2 r1
∴ =
GF 3 Isc2 r1
Wound rotor
GD I22 r2 r2 I 2
= I12 r1
= �I2 �
GF r1 1
I 2
= � I2 st � × Sfl
2 fl
The above equation valids of rotor resistance remains constant.
Te.st I 2
Te.fl
= � Ist� × Sfl
fl
T I 2
∴ Test = � Isc � Sfl .
esf fl
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 57 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Electrical Machines Formula Sheet
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 58 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Systems Formula Sheet
Power systems:
Power Systems Generation and Distribution and Concepts of HVDC:
WQH × η
Metric output = (H.P)
75
1H.P = 75 kg-m/sec
WQH × η
Metric output in watt = × 735.5
75
WQH
Output = × η kw
102
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 59 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Systems Formula Sheet
ηoverall
Engine efficiency ηengines = ηalt
ηengine
Thermal efficiency ηthey = mech.η of englnd
Heat produced by fuel per day = coal consumption / day × caloritic value
1. Connected load :-
It is the sum of ratings in kilo watts of equipment installed in the consumer’s premises
2. Demand :-
It is the load or power drawn from the source of supply at the receiving end averaged over a
specified period.
3. Maximum Demand :-
Maximum demand (M.D) of a power station is the maximum load on the power station in a given
period.
4. Average load:-
If the number of KWH supplied by a station in one day is divided by 24 hours, then the value so
obtained is known as daily average load.
KWH deliverd in one day
Daily average load =
24
KWH delivered in one month
Monthly average load =
30 ×24
KWH delivered in one year
Yearly average load =
365 ×24
5. Plant capacity :-
It is the capacity or power for which a plant or station is designed. It should be slightly more than
M.D. it is equal to sum of the ratings of all the generators in a power station.
6. Firm Power :-
It is the power which should be always be available even under emergency
7. Prime Power :-
It is the maximum power (may be thermal or hydraulic or mechanical) continuously available for
conversion into electrical power.
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 60 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Systems Formula Sheet
8. Dump power :-
This is the term usually used in hydro electric plants and it represents the power in excess of the
load requirements. It is made available by surplus water.
9. Spill Power :-
Is that power which is produced during floods in a hydro power station.
10. Cold reserve :-
Is that reserve generating capacity which is not in operation but can be made available for service.
11. Hot reserve :-
It that reserve generating capacity which is in operation but not in service
12. Spinning reserve :-
Is that reserve generating capacity which is connected to bus-bars and is ready to take the load.
Load factor :-
It is defined as the ratio of number of units actually generated in a given period to the number
of units that could have been generated with maximum demand.
Average load or Average Demand
Load factor =
Maximum Demand.
Diversity Factor :-
Diversity factor may be defined as “the sum of individual maximum demand to the station
to the maximum demand on the power station”.
Sum of individual consumers maximum demand
Diversity factor =
Maximum demand on the station.
Its value will be always greater than one (> 1)
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 61 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Systems Formula Sheet
Capacity Factor or plant capacity factor or capability factor :-
→ It is defined as the ratio of average demand on the station to the maximum installed capacity.
→ Coincidence factor:-
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 62 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Systems Formula Sheet
r𝑙𝑙 = R, the total resistance of the distributor.
𝑙𝑙
x dx
A B
C
V C
i i i i i
ir
→ Voltage drop upto point C = (𝑙𝑙x − x 2 ).
2
1
→ Max. voltage drop = IR
8
IR
→ Min. voltage =V– volts
8
(ii) Distributor fed at both ends with unequal voltages :-
The point of minimum potential C is situated at a distance x meters from the feeding point A.
irx2
Voltage drop in section AC = volts.
2
x 𝑙𝑙 - x
C
A B
VA VB
i i i i i
VA − VB 𝑙𝑙
→ x= ir𝑙𝑙
+
2
The area of cross – section of neutral is half the cross – section of outers in 3 – wire system.
If the neutral has the same cross – section as the outer, then.
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 63 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Systems Formula Sheet
volume of w for 3−wire system 3 1 3
= a𝑙𝑙 × = =5
volume of w for 2−wire system 4 2a𝑙𝑙 8
= 37.5%
Transmission Lines:
𝑙𝑙 3P
→ The empirical formula for the economical voltage line to line is V = 5.5 � +
1.6 100
where ‘V’ = line pressure in KV, l = distance of transmission in KM,
P = estimated max.KW per phase to be delivered over one pole or tower line
Performance of Lines
Vr′ − Vr
→ % regulation = Vr
× 100
Where Vr ′ is the receiving end voltage under no load condition and Vr the
Receiving end voltage under full load condition.
S. No Line Description R L XL C XC
1. Length Increases Increases Increases Increases Increases Decreases
2. Distance of separation No change Increases Increases Decreases Increases
increases
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 64 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Systems Formula Sheet
3. Radius of conductor Decreases Decreases Decreases Increases Decreases
increases
4. Symmetrical spacing. Does not Decreases Decreases Increases Decreases
depend
5. Unsymmetrical spacing. Does not Increases Increases Decreases Increases
depend.
6. Effect of earth is taken No change No change No change Increases Decreases
into account
7. Height of the conductor No change No change No change Decreases Increases.
increases
2 πε0
C= F/metre
ln �2h�r�
Daa′
a′ b′
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 65 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Systems Formula Sheet
P
ρL −ρL
r
h
1 – 𝛟𝛟 transmission line
π ε0
→ C= 2
F/metre.
h h
+� 2
r r
ρL π ε0
→ C= = F/metre.
V ln h�r
Vertical Spacing:-
h
a c′ c b′ b a′
d g
b f b′ a a′ c c′
c a′ b c′ a b′
1 2 3
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 66 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Systems Formula Sheet
→ For Vertical Spacing conductors, The capacitance C per phase of the system is
4 πε0
C= 2� F/metre/phase.
3 d g 3
ln √2 � �
r f
ρ 2πε0
C = Va = √3D
F/metre/coloumb
a ln
2
Bundled conductors:-
→ For a two conductor bundle, the equation for maximum gradient at the surface of a
sub-conductor is
2r
V�1+ �
s
g= d
2r ln
√rs
where ‘s’ is the seperation between the sub – conductors.
→ Let the equivalent radius or geometric mean radius be P0 then for two conductors
1 1 1
P0 = (rd) �2 = r �2 d �2
→ When there are 3 conductors
1�
1� 1� 2� 3 3
P0 = (r d′ d′ ) 3 = r 3 d 3 � �
4
→ For 4 conductors
1� 1�
d d 4 1� 3� 1 4
P0 = �r . d� = r 4 d 4 � � .
√2 √2 2
5 1�
1� d �6 1� d 5 6
→ For six conductors , P0 = r 6� � 6 6 = �6r � � �
2 2
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 67 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Systems Formula Sheet
h
a c′ c b′ b a′
d g
b f b′ a a′ c c′
c a′ b c′ a b′
1 2 3
Transposed double circuit line.
→ Inductance per phase =
1� 1�
1� d 2 g 3
2 × 10−7 ln 2 6 � 1� � � H/metre/phase
r f
A B
A
The m2 th root of m2 distances i.e., the distance of the various strands from one of the strands
and the radius of the same strand, the distances of such m groupings constitute m2 terms
in the denominator, is called the geometric mean radius (GMR) of self GMD and is denoted
as Ds .
Dm
→ LA = 2 × 10−7 ln Ds
Henry/metre.
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 68 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Systems Formula Sheet
Composite Conductors,
b c
Ic a Ib
3 – ϕ transmission with
Unsymmetrical spacing
La + Lb + Lc
→ L=
3
−3
√abc
= 2 × 10−7 ln R′
Henry/metre.
→ The equivalent circuit and vector diagram for a short transmission line are shown in fig.
Vr 2Ir R cos ϕr 2Ir X sin ϕr Ir2
VS = �1 + + + (R2 + X 2 )
Vr Vr Vr2
→ In practice the last term under the square root sign is generally negligible; therefore.
1�
2Ir R 2Ir X 2
VS = Vr �1 + � cos ϕr + sin ϕr ��
Vr Vr
R + JX
vS
Ir jIrX
IS
vS vr
vr IrR
ϕr ϕa
Ir
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 69 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Systems Formula Sheet
The terms within the simple brackets is small as compared to unity. Using binomial expansion and
limiting only to second term,
Vs ≃ Vr + Ir Rcos ϕr + Ir X sin ϕr
→ The receiving end voltage under no load Vr ′ is the same as the sending end voltage under full
load condition.
VS − Vr
%regulation = Vr
× 100
I R I X
= � r cos ϕr + r sin ϕr � × 100
Vr Vr
Ir R Ir X
Regulation per unit = cos ϕr + sin ϕr
Vr Vr
= Vr cos ϕr + Vx sin ϕr
→ Where Vr and Vx are the per unit values of resistance and reactance of the line.
Vs = AVr + BIr
Is = CVr + DIr
V
A = Vs � Ir = 0
r
This means A is the voltage impressed at the sending end per volt at the receiving end when
receiving end is open. It is dimensionless.
Vs
B= � Vr = 0
Ir
B is the voltage impressed at the sending end to have one ampere at the short circuited receiving
end. This is known as transfer impedence in network theory.
I
C = Vs � Ir = 0
r
C is the current in amperes into the sending end per volt on the open – circuited receiving end. It
has the dimension of admittance.
I
D = s � Vr = 0
I r
D is the current at the sending end for one ampere of current at the short circuited receiving end
.
The constants A, B, C, and D are related for a passive network as follows
AD – BC = 1
→ The sending end voltage and current can be written from the equivalent network as,
Vs = Vr + Ir Z
Is = I r
→ The constants for short transmission lines are,
A=1
B=Z
C=0
D=1
VS� − Vr
→ % regulation = A
Vr
×100
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 70 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Systems Formula Sheet
Power received at the receiving end
→ %η= × 100
Power received at the receiving end+losses
Where R is the resistance per phase of the line.
Nominal – T
vS
X
jIS 2
vc
R
IS 2
vr
jIr X/2
IS
IC
Ir
−j
|VS |� �
Vr ′ = R jX
wc
j
+ −
2 2 wc
Vr′ − Vr
% of regulation = Vr
× 100
P
%η= R × 100
P+3 �I 2 + I52 �
2 r
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 71 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Systems Formula Sheet
IS Z = R + jx I𝑙𝑙 Ir vS
IC & IC
IC2 jI𝑙𝑙X
IC1
Y jwc Y jwc vr
vS = = vr IS
2 2 2 2 I𝑙𝑙R
I𝑙𝑙
Ir
→
−2j
|VS |� �
Vr ′ = ωC
j
R+jX− ωC
�2
Vr LVr
% regulation = × 100
Vr
P
%η= ×100
P+3 I2𝑙𝑙 R
A, B, C, D constants for nominal – 𝛑𝛑
Y𝑍𝑍
A=1+
2
B=Z
YZ
C = Y �1 + �
4
YZ
D = �1 + �
2
Long Transmission Lines:-
→ In case the lines are more than 160 km long
I + ∆I I V + ∆ V1 I + ∆I Z∆X
V1 I
vS V + ∆V V vr Y∆X
C∆X
∆X X ∆X
→ Let Z = series impedence per unit length
Y = shunt admittance per unit length
𝑙𝑙 = length of line
Z = zl = total series impedence
Y = yl = total shunt admittance.
V = Aerx + Be−rx
I
I= (Aerx − Be−rx )
ZC
V +I Z V −I Z
V = r 2 r c erx + r 2r C e−rx
1 V +I Z V −I Z
I = � r 2 r C erx − r 2 r C e−rx �
ZC
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 72 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Systems Formula Sheet
z r+jωL
ZC = �y = �g+jωC
→ The propagation constant r = ∝ + jβ ; the real part is known as attenuation constant and the
quadrature component β the phase constant and is measured in radians per unit length.
Vr + Ir ZC Vr −Ir ZC
V= 2
e∝x . ejβx + 2
e−∝x . e−jβx
Vs = Vr cos hrl + Ir Zc sin hrl
sin hrl
IS = Vr + Ir cos hrl
Zc
A = cosh rl
B = Zc sinh rl
sinh rl
C=
Zc
D = cosh rl
Z sinhr𝑙𝑙
Z1 =
r𝑙𝑙
y1 y1 y Tanhr𝑙𝑙/2
VS =
2 2 2 r𝑙𝑙/2
Z′ Z Tanhr𝑙𝑙/2
=
2 2 r𝑙𝑙/2
IS
sinh r𝑙𝑙
VS Y1 = Y r𝑙𝑙
Vr
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 73 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Systems Formula Sheet
IS I Ir
A1 , B1 A2 , B2
vS V vr
C1 , D1 C 2 , D2
A B A B1 A2 B2
equivalent � �=� 1 �� �
C D C1 D1 C2 D2
vS vr
IS 2
A2 , B2
C 3 , D2
A1 B2 + A2 B1
A=
B1 + B2
Equivalent B .B
B = B 1+ B2
Single 1 2
Network A1 B2 + A2 B1 D1 B2 + D2 B1
A=D= B1 + B2
= B1 + B2
Parameters
(A1 − A2 )(D2 − D1 )
C = C1 + C2 +
B1 + B2
dielectric occurs
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 74 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Systems Formula Sheet
The final expression for the critical disruptive voltage after taking into account
the atmospheric conditions and the surface of the conductor is given by
d
→ V ′ = rg 0 δ m0 ln kV
r
Where m0 = average value for the ratio of breakdown voltage and smooth conductor
Polished wires −1
Roughened or weathered wires − 0.98 to 0.93
Seven strand cable − 0.87 to 0.83
Large cables with more then seven strands − 0.90 approx
The distance between g v and g 0 is called energy distance. According to peek this distance
is equal to (r + 0.301√r) for coaxial conductors.
0.3
→ g v = g 0 δ �1 + � kv/cm for two wires in parallel
√rδ
0.3 d
→ vv = rg 0 δ �1 + � ln kV
√rδ r
→ In case the irregularity factor is taken into account,
0.3 d
Vv = 21.1 mv δr �1 + � ln r kV rms
√rδ
Where r is the radius in cms.
The irregularity factor mv has the following values:
mv = 1.0 for polished wires
= 0.98 to 0.93 for rough conductor exposed to atmospheric severities
= 0.72 for local corona on stranded conductors.
Peek made a number of experiments to study the effect of various parameters on the
corona loss and he deduced an empirical relation
(f+25) r 2
P = 241 × 10−5 δ
�d �Vp − V0 � kw/km/phase
Where f = frequency of supply
δ = The air density correction factor
Vp = The operating voltage in kV
V0 = the critical disruptive voltage
wl2
→ When the Supports are at the Same Level , Sag = s = 2T
→ Where w = weight in kg/m run
𝑙𝑙 = half the span length in metre
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 75 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Systems Formula Sheet
T = Tension in kg
Effect of wind and ice
Wl2
∴ Sag = m
2T
Factor of Safety
Max. Stress
→ factor of safety =
permissible stress
→ Vertical sag = S cos θ
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 76 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Systems Formula Sheet
→ ∴ most economical conductor diameter is
D
d=
2.718
2V
→ ∴ and the value of g max under this condition is g max = volts/m
d
→ If Pi and Q i are scheduled electrical generation, PDi and Q Di are the respective load demands,
Pi − PDi − P𝑙𝑙 = Mi = 0
Q i − Q Di − Q 𝑙𝑙 = Ni = 0 where
Mi and Ni represent the power residuals at bus i and P𝑙𝑙 and Q 𝑙𝑙 the power flow to the neighbouring
system given by
P𝑙𝑙 = ∑Nj=1 Vi Vj Yij cos�δij − θij �
Q 𝑙𝑙 = ∑N
j=1 Vi Vj Yij �δij − θij �
→ For proper operation, each generator should have a minimum and maximum permissible output
and the unit production should be constrained to ensure that
Pimin ≤ Pi ≤ Pimax , i = 1, 2, … … , NP
Q imin ≤ Q i ≤ Q imax , i = 1, 2, … … , Na
Np and NQ being total number of real and reactive sources in the system
→ The incremental production cost of a given plant over a limited range is represented by
dFn
dPn
= Fnn Pn + fn
Where Fnn = slope of incremental production cost curve.
fn = intercept of incremental production cost curve.
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 77 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Systems Formula Sheet
d Fn ∂PL
d Pn
+λ ∂ Pn
=λ
∂ PL
→ Here the term ∂ Pn
is known as the incremental transmission loss at plant n and λ is
known as the incremental cost of received power in RS per MW
The solution of coordination equation requires the calculation of ∂PL / ∂Pn which
is obtained from equation as
∂ PL d Fn
∂ Pn
= 2 ∑m Bmn Pm also d Pn
= Fnn Pn + fn
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 78 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Systems Formula Sheet
FAULTS:
𝐼𝐼𝐼𝐼
→ Percentage reactance %𝑋𝑋 = × 100 I=full load current
𝑉𝑉
V= phase voltage
→ Alternatively percentage reactance (%X) (an also be expressed in terms of KVA and KV
under
(𝐾𝐾𝐾𝐾𝐾𝐾)𝑋𝑋
%X=
10(𝐾𝐾𝐾𝐾)2
→ If X is the only reactance element in the circuit then short circuit currenr is given by
𝑉𝑉 100
Isc= = I × ( )
𝑋𝑋 %𝑋𝑋
i.e short circuit current is obtained by multiplying the full load current by 100/%X
100
Short- circuit KVA=Base KVA ×
%𝑋𝑋
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 79 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Systems Formula Sheet
Zero phase sequence currents ( 𝐼𝐼���� ���� ����
𝑅𝑅0 , 𝐼𝐼𝑌𝑌0 , &𝐼𝐼𝐵𝐵0 )
→ The operator ‘a’is one, which when multiplied to a vector rotates the vector through 1200
in the anticlockwise direction.
→ A=-0.5+j 0.866 ; a2=-0.5- j 0.866
a3=1
������⃗1
= 3𝐼𝐼𝑅𝑅
1
∴ 𝐼𝐼⃗R1 = = [ 𝐼𝐼���⃗ ���⃗ 2 ���⃗
𝑅𝑅 +a 𝐼𝐼𝑌𝑌 +a 𝐼𝐼𝐵𝐵 ]
3
→ Negative sequence current:-
𝐼𝐼���⃗ 2 ���⃗ ���⃗ �����⃗ �����⃗ �����⃗
𝑅𝑅 +a 𝐼𝐼𝑌𝑌 +a 𝐼𝐼𝐵𝐵 = 𝐼𝐼𝑅𝑅1 (1+a +a ) + 𝐼𝐼𝑅𝑅2 (1+a +a ) + 𝐼𝐼𝑅𝑅0 (1+a +a)
4 2 3 3 2
������⃗2
= 3 𝐼𝐼𝑅𝑅
1
∴ 𝐼𝐼⃗R2 = [ 𝐼𝐼���⃗ 2 ���⃗ ���⃗
𝑅𝑅 +a 𝐼𝐼𝑌𝑌 +a𝐼𝐼𝐵𝐵 ]
3
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 80 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Systems Formula Sheet
Single Line to –Ground Fault:-
The sequence currents in the red phase in terms of line currents shall be :-
3 𝐸𝐸𝑅𝑅 �����⃗
→ Fault current:- Fault current, 𝐼𝐼���⃗ ���⃗
𝑅𝑅 =3 𝐼𝐼0 =����⃗+𝑍𝑍
�������������⃗
𝑧𝑧0 1 +��
𝑍𝑍2
Since the generated emf system is of positive sequence only ,the sequence
The sequence voltage at the fault for R-phase are: This is ecpected because R-phase is
shorted to ground.
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 81 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Systems Formula Sheet
The condition created by this fault lead to:
→
Again taking R-phase as the reference, we have
Also,
Fault current:
→ Phase voltages: - since the generated emf system is of positive phase sequence only,the
sequence components of emf in R-phase are:
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 82 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Systems Formula Sheet
→ The phase voltages at the fault are:
Also,
→ Fault current:-
Now
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 83 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Systems Formula Sheet
1. D.C sources
a) Resistance only: - As soon as switch is closed, the current in the circuit will be
determined according to ohms law.
𝑉𝑉
𝐼𝐼 =
𝑅𝑅
b) Inductance only:- when switch s is closed, the current in the circuit will be given by
𝑉𝑉(𝑠𝑠) 𝑉𝑉 1 𝑉𝑉 1
𝐼𝐼(𝑠𝑠) = = . = .
𝑍𝑍(𝑠𝑠) 𝑆𝑆 𝐿𝐿𝐿𝐿 𝐿𝐿 𝑆𝑆 2
𝑉𝑉
𝑖𝑖(𝑡𝑡) = t
𝐿𝐿
c) Capacitance only:- when switch s is closed, the current in the circuit is given
𝑉𝑉(𝑠𝑠) 𝑉𝑉
I(s) = = .CS =VC
𝑍𝑍(𝑠𝑠) 𝑆𝑆
Which is an impulse of strength (magnitude)VC
d) R-L circuit: when switch s is closed, the current in the circuit is given by
𝑉𝑉(𝑠𝑠) 𝑉𝑉 1 𝑉𝑉 1/𝐿𝐿
I(s) = = . = .
𝑍𝑍(𝑠𝑠) 𝑆𝑆 𝑅𝑅+𝐿𝐿𝐿𝐿 𝑆𝑆 𝑆𝑆+𝑅𝑅/𝐿𝐿
𝑉𝑉 1 1 𝐿𝐿
= � − �.
𝐿𝐿 𝑆𝑆 𝑆𝑆+𝑅𝑅/𝐿𝐿 𝑅𝑅
𝑉𝑉 1 1
= � − �
𝑅𝑅 𝑆𝑆 𝑆𝑆+𝑅𝑅/𝐿𝐿
𝑉𝑉 −𝑅𝑅
𝑖𝑖(𝑡𝑡) = �1 − 𝑒𝑒𝑒𝑒𝑒𝑒 � 𝑡𝑡��
𝑅𝑅 𝐿𝐿
e) R-L circuit: After the switch s is closed, current in the circuit is given by
𝑉𝑉(𝑠𝑠) 𝑉𝑉 1
I(s) = = .
𝑍𝑍(𝑠𝑠) 𝑆𝑆 𝑅𝑅+1/𝐶𝐶𝐶𝐶
1
𝑉𝑉 �𝑅𝑅𝑅𝑅�𝐶𝐶𝐶𝐶 𝑉𝑉 1
= = .
𝑆𝑆 𝑆𝑆+1/𝑅𝑅𝑅𝑅 𝑅𝑅 𝑆𝑆+1/𝑅𝑅𝐶𝐶
𝑉𝑉
i (t)= .𝑒𝑒 −𝑡𝑡/𝐶𝐶𝐶𝐶
𝑅𝑅
→ R-L-C circuit: - After the switch S is closed, the current in the circuit is given by
𝑉𝑉 1
Type equation here. I(s) =
𝑆𝑆 𝑅𝑅+𝐿𝐿𝐿𝐿+1𝐶𝐶𝐶𝐶
𝑉𝑉 1
I(s) = .(𝑆𝑆+𝑎𝑎−𝑏𝑏)(𝑆𝑆+𝑎𝑎+𝑏𝑏)
𝐿𝐿
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 84 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Systems Formula Sheet
𝑉𝑉 −(𝑎𝑎−𝑏𝑏)+ −(𝑎𝑎+𝑏𝑏)𝑡𝑡
i(t) = �𝑒𝑒 − 𝑒𝑒 �
2𝑏𝑏𝑏𝑏
𝑅𝑅 𝑅𝑅2 1
where = a and � − = b; then
2𝐿𝐿 4𝐿𝐿2 𝐿𝐿𝐿𝐿
𝑉𝑉 𝑅𝑅 𝑅𝑅2 1 𝑅𝑅 𝑅𝑅2 1
→ i(t) = �𝑒𝑒𝑒𝑒𝑒𝑒 �− �2𝐿𝐿 + �4𝐿𝐿2 − 𝐿𝐿𝐿𝐿 � +� − 𝑒𝑒𝑒𝑒𝑒𝑒 �− �2𝐿𝐿 − �4𝐿𝐿2 − 𝐿𝐿𝐿𝐿 � 𝑡𝑡� �
𝑅𝑅2 1
2� 2 − .𝐿𝐿
4𝐿𝐿 𝐿𝐿𝐿𝐿
→ Now at b=0
𝑉𝑉 𝑉𝑉𝑉𝑉𝑒𝑒
i (t) = 𝑡𝑡 𝑒𝑒 −𝑎𝑎𝑎𝑎 = − (𝑅𝑅/2𝐿𝐿)𝑡𝑡
𝐿𝐿 𝐿𝐿
𝑉𝑉 −𝑅𝑅2 1
= 𝑒𝑒 −𝑎𝑎𝑎𝑎 .2 sin�� 4𝐿𝐿2 + � t
𝑅𝑅2 1 𝐿𝐿𝐿𝐿
2𝐿𝐿� 2 −
4𝐿𝐿 𝐿𝐿𝐿𝐿
A.C source:
→ R-L circuit: when switch is is closed, the current in the circuit is given by
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 85 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Systems Formula Sheet
𝜔𝜔𝜔𝜔
Where θ= 𝑡𝑡𝑡𝑡𝑡𝑡−1 𝑅𝑅
→ The value of resistor required to be connected across the breaker contacts which will
𝐿𝐿
give no transient oscillations, is R= 0.5�
𝐶𝐶
Where L,C are the inductance and capacitance upto the circuit breaker
2Vr
→ The average RRRV =
π√Lc
→ Where wn = 2πfn ,
1 1
→ Natural frequency of oscillations, fn = �
2π LC
Where L , C are the reactance and capacitance up to the location of circuit breaker
1 1 1
→ Frequency of demand oscillations, f = � − 2 2
2π LC 4R C
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 86 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Systems Formula Sheet
Breaking capacity:
→ Is the rated service line voltage in volts, then for 3-phae circuit? Breaking capacity = √3 ×
V × I × 10−6 MVA
Making capacity :-
impedance relays :
From the universal torque equation putting 𝐾𝐾3 = 0 and giving negative sign to voltage term,
it becomes
→ T = K1 I 2 − K 2 V 2 (Neglecting spring torque)
For the operation of the relay the operating toque should be greater than the
restraining torque i.e
K1 I 2 > K 2 V 2
→ Here V and I are the voltage and current quantities fed to the relay.
V2 K
→ I2 < 1�K
2
K1
→ Z<� �K
2
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 87 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Systems Formula Sheet
→ Z < constant (design impedance)
This means that the impedance relay will operate only if the impedance seen by the relay
is less than a pre-specified value (design impedance). At threshold condition,
K1
Z=� �K
2
Reactance Relay:
The directional element is so designed that its maximum torque angle is 900
i.e. in the universal torque equation.
T = K1 I 2 − K 3 VI cos(θ − τ)
= K1 I 2 − K 3 VI cos(θ − 90)
= K1 I 2 − K 3 VI sin θ
For the operation of the relay
KI 2 > K 3 VI sinθ
VI
sinθ < K1 /K 3
I2
K
Z sinθ < 1�K
3
K1
X < �K
3
→ In the relay the operating torque is obtained by the V – I element and restraining torque due
tot the voltage elemen
T = K 3 VI cos(θ − τ) − K 2 V 2
→ For relay to operate
K 3 VI cos (θ − τ) > K 2 V 2
V2 K
< 3�K cos(θ − τ)
VI 2
K3
Z < �K cos(θ − τ)
2
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 88 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Systems Formula Sheet
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 89 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Control Systems Formula Sheet
Control Systems
Step i/P :
e− ζωn t �1−ζ2
• C(t) = 1- (sin ωn �1 − ζ2 t ± tan−1 � � )
�1−ζ2 ζ
e− ζωn t �1−ζ2
• e(t) = �sin 𝜔𝜔𝑑𝑑 𝑡𝑡 ± tan−1 � ��
�1−ζ2 ζ
e− ζωn t �1−ζ2
• ess = lim �sin 𝜔𝜔𝑑𝑑 𝑡𝑡 ± tan−1 � ��
𝑡𝑡→∞ �1−ζ2 ζ
e− ζωn t �1−ζ2
C(t) = 1- = Sin �𝜔𝜔𝑑𝑑 𝑡𝑡 ± tan−1 � ��
�1−ζ2 ζ
ζ = 0 (un damped) :-
c(t) = 1- cos ωn t
ζ = 1 (Critically damped ) :-
C(t) = 1 - e−ωn t (1 + ωn t)
1
T=
�𝛇𝛇− �𝛇𝛇𝟐𝟐 −𝟏𝟏�ωn
Tundamped > Toverdamped > Tunderdamped > Tcriticaldamp
π−∅ �1−ζ2
• Rise time t r = ∅ = tan−1 � �
ωn �1−ζ2 ζ
nπ
• Peak time t p =
ωd
2
• Max over shoot % Mp = e−ζωn/�1−ζ × 100
• Settling time t s = 3T 5% tolerance
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 90 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Control Systems Formula Sheet
= 4T 2% tolerance
1+0.7ζ
• Delay time t d =
ωn
(ln Mp )2
• Damping factor 2 ζ2 = π2 + (ln Mp )2
2π
• Time period of oscillations T =
ωd
t t ×ω
• No of oscillations = s = s d
2π/ωd 2π
• t r ≈ 1.5 t d t r = 2.2 T
1 𝜔𝜔𝑛𝑛 > 𝜔𝜔𝑟𝑟
• Resonant peak Mr = ; ωr = ωn �1 − 2ζ2 � ωr < ωn < ωb
2ζ�1−ζ2 𝜔𝜔𝑏𝑏 >𝜔𝜔𝑛𝑛
• Bandwidth ωb = ωn (1 − 2ζ2 + �4𝜁𝜁 4 − 4𝜁𝜁 2 + 2)1/2
𝑆𝑆𝑆𝑆(𝑠𝑠)
• Step i/p : ess = lim 𝑒𝑒(𝑡𝑡) = lim 𝑠𝑠 𝐸𝐸(𝑠𝑠) = lim
t→∞ 𝑠𝑠→0 𝑠𝑠→0 1+𝐺𝐺𝐺𝐺
1
ess = (positional error) K p = lim 𝐺𝐺(𝑠𝑠) 𝐻𝐻(𝑠𝑠)
1+KP 𝑠𝑠→0
1
• Ramp i/p (t) : ess = K v = lim 𝑆𝑆 𝐺𝐺(𝑠𝑠)𝐻𝐻(𝑠𝑠)
Kv 𝑠𝑠→0
∂A/A
• Sensitivity S = sensitivity of A w.r.to K.
∂K/K
• Sensitivity of over all T/F w.r.t forward path T/F G(s) :
Open loop: S =1
1
Closed loop : S=
1+G(s)H(s)
Stability
RH Criterion :-
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 91 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Control Systems Formula Sheet
• If char. Equation contains either only odd/even terms indicates roots have no real part & posses only
imag parts there fore sustained oscillations in response.
• Row of all zeroes occur if
(a) Equation has at least one pair of real roots with equal image but opposite sign
(b) has one or more pair of imaginary roots
(c) has pair of complex conjugate roots forming symmetry about origin.
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 92 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Measurements Formula Sheet
Measurements:
Derived Units:
Area m2 L2 MMF A I
Volume m3 L3 Frequency Hz T −1
Density Kg/ m3 L−3 M Velocity m/sec LT −1
Angular rad / sec [L]0 T −1 Acceleration m/sec 2 LT −2
Velocity
Angular rad / sec 2 [L]0 T −2 Force Kg m/sec 2 LMT −2
Acceleration
Pressure, Kg/m/sec 2 L−1 MT −2 Luminous flux lm(cd Sr)
stress
Luminance cd/m2 Illumination lm/m2
2 −2
Work , Joule L MT Power Watt L2 MT−3
Energy (Nm) (J/sec)
Charge Coulomb TI EMF Volt (W/A) L2 MT −3 I−1
Electric field V/m LMT −3 I −1 Resistance V/A L2 MT −3 I2
strength
Capacitance (AS/v) L−2 M−1 T 4 I2 Magnetic flux Vs L2 MT −2 I−1
Magnetic Wb / m2 MT −2 I −1 Inductance Vs / A L2 MT −2 I2
flux density
Static error:-
Static error is defined as the difference b/w the measured value and the true value of
the quantity.
δA = ϵ0 = Am − At
where Am = measured value of quantity
∂A ϵ
= = A0
At t
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 93 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Measurements Formula Sheet
Static correction :- It is the difference between the true value and the measured value of the quantity
δc = Am − At = - δA
Sensitivity :
A measurement system is considered to be linear if the output is linearly proportional to the input .
∑ n
Xi
Mean : Arithmetic Mean = 𝑋𝑋� = i=1
n
The root mean square value is the standard deviation σ .
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 94 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Measurements Formula Sheet
2 2 2 2
d1 + d2 +⋯dn ∑n
i=1 di
S.D , σ = � =�
n n
Where d1 = xi − x, d2 = x2 − x, etc the deviation from the mean of the individual readings
2
∑n
i=1 di
If the number of readings is less than 20, then S.D, σ = � n−1
Variance = σ2
Where I is the current through fixed coil and moving coil (connected in series) and
L is the inductance.
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 95 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Measurements Formula Sheet
Linearization of scale:
θ.(dL/dθ)=K.
Vdc
d.c supply → Im = R
m +RL
a.c supply → V = Vrms voltage of source.
Vdc = (Vm /π)
Im = (√2V) / (π(R L + R m ))
= (0.45 V)/(R m + R L )
= (√2 V)/(π)
In half wave rectifier type instrument , the sensitivity of a.c is 0.45 times that of d.c.
2Vm
a.c supply → Im = π(R
m +RL )
0.9 V
=
Rm +RL
In full wave rectifier type instrument , the sensitivity of a.c is 0.9 times that of d.c.
Thermal instruments :
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 96 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Measurements Formula Sheet
Hot wire type:
‘b’ is a constant (1 to 2 μv / 0C )
r
Vad = Vam +Vmd =I2 R + I2 p+q+r
P
P qr 𝑃𝑃 𝑝𝑝
R= S.Q p+q+r �𝑄𝑄 − 𝑞𝑞 �
2.Measurement of Medium Resistance:
(a)Voltmeter-Ammeter method:
VR +Va
Measured value of resistance, R ml = IR
Where R is the true value of the resistance.
of resistance.
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 97 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Measurements Formula Sheet
(b)Ammeter-Voltmeter Method:
VR
Measured value of resistance, R m2 = I
V V
Where I= IR = IV = RR + RR
1 v
R
Which gives R m2 = R
1+
Rv
R
Error = R m2 -R = R m2 R
v
−Rm2 −R
% error = Rv
≅
Rv
In this method, the measured value of resistance is always less than the true value
of resistance.
This method is suitable for measurement of low resistance among the range.
The resistance where both the methods give same error is obtained by equating the
two errors.
Ra R
=R ,
R v
R = �R a R v
Wheatstone Bridge:
P R
Balanced condition → Q = S
Q S
=
P R
P R
=
P+Q R+S
θ
Sensitivity of the galvanometer, Sv = e
Where θ = deflection of the galvanometer
= Vb - Vd
= (E - Vab )- (E - Vad )
= Vad - Vab
(R+∆R) E.P
= E−
R+∆R+S P+Q
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 98 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Measurements Formula Sheet
S∆∆
e = E. 2 (R+S)
(R+S)2
∴ Sensitivity of galvanometer, Sv = .θ
E.S∆.
E.S∆R
Or θ = Sv .
(R+S)2
θ
Sensitivity of the Bridge = SB = ∆R
R
E E
SB = Sv . R S = Sv = P Q
+2+ +2+
S R Q P
Sv .E
SBmax =
4
P R
When Q
=S=1
(a) Selecting the galvanometer with which the given unbalance can be observed.
(b) Determining the deflection to be expected for a given unbalance.
0.434 t
R=
C log10 (V/v)
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 99 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Measurements Formula Sheet
The general ac bridge circuit
EBA = EBC = I1 Z1 = I2 Z2
Z1 Z4 =Z2 Z3
∠(Q1+Q 4 ) = ∠(Q 2 +Q 3 )
self-inductance.
At balance condition,
L1 = R 3 L2 /R 4 ; R1 = R 3 (R 2 +r2 )/R 4
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 100 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Measurements Formula Sheet
2.Maxwell’s Inductance-Capacitance Bridge:
variable capacitance.
At balance conditions,
R1 = R 2 R 3 /R 4 ; L1 = R 2 R 3 C4
3.Hay’s Bridge:-
C4 = standard capacitor
At balance conditions,
R R C ω2 R2 R3 R4 C24
L1 = 1+W22 +C
3 4
2 +R2 ; R 1 =
4 4 1+ω2 C24 R24
4.Anderson’s Bridge:-
At balance conditions,
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 101 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Measurements Formula Sheet
R1 =(R 2 R 3 /R 4 ) − r1 ; L1 = CR 3 [r(R 4 + R 2 ) + R 2 R 4 ]/R 4
5.Owen’s Bridge:-
This bridge may be used for the measurement of an inductance in terms of capacitance.
L1 = R 2 R 3 C4
C
R 1 = R 3 C4
2
Measurement of Capacitance:-
1. De Sauty’s Bridge
2. Modified De Sauty’s Bridge
3. Schering Bridge.
1.De Sauty’s Bridge :- This bridge is the simplest method of comparing two capacitances.
C R +r R
At balance condition, C1 = R2 +r2 =R4
2 1 1 3
D2 = tan δ2 = ω c2 r2
𝑅𝑅1 𝑅𝑅4
D1 - D2 = ω c2 � − 𝑅𝑅2 �
𝑅𝑅3
3.Schering’s Bridge :-
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 102 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Measurements Formula Sheet
C1 = C2 (R 4 /R 3 )
The following bridges are used for the measurement of mutual inductance:
Ammeter Shunts:
measuring capacity
Im R m = Ish R sh
m R
= m−1
Series Multipliers:
These are used for increasing the voltage measuring capacity of basic met
V V
Rse + Rm
=R
m
R se = R m (m-1)
Where m is the multiplying power of voltmeter.
Multi Range Ammeter: A range of current settings can be obtained using different shunts.
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 103 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Measurements Formula Sheet
R I
R sh1 = m m−1 , m1 = I 1
1 m
R I
R sh2 = m m−1 , m2 = I 2
2 m
R I
R sh3 = m m−1 , m3 = I 3
3 m
Im R m = (I1 - Im ) R1
R I1
R1 = m m−1 , m1 = Im
1
R I2
R 2 = m m−1 , m2 = Im
2
R I3
R 3 = m m−1 , m3 = Im
3
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 104 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Measurements Formula Sheet
Where V and I are r.m.s values of voltage and current and cos ∅ is the power factor of the
load.
Many watt meters are compensated for errors caused by inductance of pressure coil
by means of a capacitor connected in parallel with a portion of multiplier.
Capacitance C = (L/r 2 )
In present case of wattmeter , i1 is the load current and is the current flowing
through pressure coil.
Td = iP iC (dM/dθ)
Td ∝ VI cos ∅ (dM/dθ)
At balance condition, Td = TC
K1 VI cos ∅ (dM/dθ) = kθ
θ ∝ VI cos ∅
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 105 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Measurements Formula Sheet
∝ power if (dM/dθ) is constant.
cos ∅
True power for lagging pf loads = cos β ∗cos(∅−β) × actual wattmeter reading
cos ∅
True power for leading pf loads = cos β ∗cos(∅+β) × actual wattmeter reading
β = tan−1 (X P/R P )
In the three wattmeter method to determine the power in 3-∅, 4 wire system.
P= V1 i1 +V2 i2+V3 i3
Hence the summation of readings of three watt meters gives the total power of load.
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 106 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Measurements Formula Sheet
(b)Two wattmeter Method:
In a 3-∅, three wire system we required 3 elements. But if we make the common
points of pressure coils coincide with one of the lines, then we will require only (n-1
l =2) elements.
Instantaneous reading of P1 wattmeter (P1 ) = i1 (V1 - V3 )
= V1 i1 - V3 i1 + V2 i2 - V3 i2
= V1 i1 + V2 i2 - V3 (i1 +i2 )
= V1 i1 + V2 i2 - V3 (-i3 )
= V1 i1 + V2 i2 + V3 i3
Hence, the sum of two watt meter readings is equal to power consumed by load.
Let the load be balanced, V1 , V2 , V3 be the rms value of phase voltage and I1 , I2 , I3 be the rms
values of phase currents.
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 107 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Measurements Formula Sheet
Phase currents I1 = I2 = I3 = I (say)
Line currents I1 = I2 = I3 = I
Wattmeter reading = current through wattmeter current coil * voltage across its
pressure coil * cos( phase angle between this current and voltage).
= √3 VI cos ∅
= √3 VI sin ∅
= √3 (P1 - P2 )
√3 (P1 − P2 )
Power factor cos ∅ = cos tan−1 � P1 +P2
�
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 108 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Measurements Formula Sheet
With unity power factor, cos ∅ =1 (or) ∅ = 00
P1 = P2 = √3 VI cos (00 ) = (3/2)VI
The readings of two watt meters are equal , each watt meter reads half of the total power.
P1 = (3/2) VI, P2 =0
When power factor is 0.5 , one of the watt meter reads zero and the other reads total power.
= √3 VI sin ∅
Measurement of Energy:
Energy is the total power delivered or consumed over a time interval, that is.
Energy = Power × time
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 109 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Measurements Formula Sheet
These two fluxes will be produced by two currents which are described earlier.
At steady speed the driving torque must equal to the breaking torque.
k 4N= k 3 VI sin (∆-∅)
= K VI cos ∅
= k x(power)
The values of R and L are so adjusted that the two coils carry the same value of
current
at normal frequency (i.e) R = ωL
Deflecting torque acting on coil B is: TB = KVI Mmax cos (900 -∅) sin (900 +θ)
= KVI Mmax sin ∅ cos θ
At equilibrium , TA = TB ⇒ θ = ∅
Therefore the deflection of the instrument is a measure of phase angle of the circuit.
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 110 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Measurements Formula Sheet
Q-Meter:
So the voltage across the capacitor or coil is Q times the applied voltage
𝐶𝐶1 − 𝐶𝐶2
𝑋𝑋𝑠𝑠 =
𝜔𝜔𝐶𝐶1 𝐶𝐶2
b) 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪:
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 111 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Measurements Formula Sheet
𝐼𝐼𝐼𝐼 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , 𝑡𝑡ℎ𝑒𝑒 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
.
𝑇𝑇ℎ𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 ℎ𝑖𝑖𝑖𝑖ℎ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
1 ωC1 1
RP
= = RQ
Q2 1
1
XP = ω(C
2 −C1 )
C1 −C1 C2
Cd = 3
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 112 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Measurements Formula Sheet
1 2dEa
Deflection factor G is G= S = , V/m
Lld
lLB e
Magnetic Deflection D = �2m , m
�Va
Va - acceleration potential
D e
Magnetic Deflection Sensitivity is B = IL �2mV , m
a
Oscilloscope Specifications:
1.Sensitivity:
It means the vertical sensitivity . It refers to smallest deflection factor G = (1/S) and
expressed as mv/div. The alternator of the vertical amplifier is calibrated in mv/div.
2.Band width:
3.Rise Time:
Rise time is the time taken by the pulse to rise from 10% to 90% of its amplitude.
1
BW = 2πRC BW = band width in MHz
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 113 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Measurements Formula Sheet
1 2.2 0.35
BW = 2πRC = 2πRC = Tr
, Tr = rise time in μ seconds.
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 114 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) EDC & Analog Electronics Formula Sheet
EDC & Analog
EDC
dp dn
• Diffusion current densities Jp = - q Dp Jn = - q Dn
dx dx
• Drift current Densities = q(p µp + nµn )E
• µp , µn decrease with increasing doping concentration .
Dn Dp
• = = KT/q ≈ 25 mv @ 300 K
µn µp
• Carrier concentration in N-type silicon nn0 = ND ; pn0 = n2i / ND
• Carrier concentration in P-type silicon pp0 = NA ; np0 = n2i / NA
𝑁𝑁𝐴𝐴 𝑁𝑁𝐷𝐷
• Junction built in voltage V0 = VT ln � 𝑛𝑛𝑖𝑖2
�
2εs 1 1
• Width of Depletion region Wdep = xp + xn = � � + � (V0 + VR )
q NA ND
2𝜀𝜀𝑓𝑓𝑓𝑓
*� = 12.93𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠�
𝑞𝑞
xn N
• = A
xp ND
q.NA ND
• Charge stored in depletion region qJ = NA +ND
. A . Wdep
εs A εs A
• Depletion capacitance Cj = ; Cj0 =
Wdep Wdep / VR =0
VR m
Cj = Cj0 /�1 + �
V0
Cj = 2Cj0 (for forward Bias)
Dp
• Forward current I = Ip + In ; Ip = Aq n2i L �𝑒𝑒 𝑉𝑉/𝑉𝑉𝑇𝑇 − 1�
p ND
Dn
In = Aq n2i L �𝑒𝑒 𝑉𝑉/𝑉𝑉𝑇𝑇 − 1�
n NA
Dp Dn
• Saturation Current Is = Aq n2i �L +L �
p ND n NA
• Minority carrier life time τp = L2p / Dp ; τn = L2n / Dn
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 115 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) EDC & Analog Electronics Formula Sheet
• Minority carrier charge storage Qp = τp Ip , Q n = τp In
Q = Q p + Q n = τT I τT = mean transist time
𝜏𝜏
• Diffusion capacitance Cd = �𝜂𝜂𝑉𝑉𝑇𝑇 � I = τ.g ⇒ Cd ∝ I.
𝑇𝑇
τ→ carrier life time , g = conductance = I / 𝜂𝜂𝑉𝑉𝑇𝑇
• I02 = 2(T2 −T1 )/10 I01
• Junction Barrier Voltage Vj = VB = Vr (open condition)
= Vr - V (forward Bias)
= Vr + V (Reverse Bias)
1
• Probability of filled states above ‘E’ f(E) = (E−Ef )/KT 1+e
• Drift velocity of e− 𝑣𝑣d ≤ 107 cm/sec
d2 V −ρv −nq dv −nqx
• Poisson equation = = ⇒ =E=
dx2 ϵ ϵ dx ϵ
Transistor :-
• IE = IDE + InE
• IC = ICo – α IE → Active region
• IC = – α IE + ICo (1- eVC /VT )
Common Emitter :-
α
• IC = (1+ β) ICo + βIB β=
1−α
I
• Co
ICEO = 1−α → Collector current when base open
• ICBO → Collector current when IE = 0 ICBO > ICo .
0 V
• VBE,sat or VBC,sat → - 2.5 mv / C ; VCE,sat → BE,sat
10
= - 0.25 mv /0 C
IC − ICBo
• Large signal Current gain β = IB + ICBo
IC
• D.C current gain βdc = = hFE
IB
• (βdc = hFE ) ≈ β when IB > ICBo
∂I hFE
• Small signal current gain β′ = ∂IC � = hfe = ∂h
R VCE 1−(ICBo + IB ) FE
∂IC
βactive
• Over drive factor = ∵ IC sat = βforced IB sat
βforced →under saturation
Conversion formula :-
CC ↔ CE
• hic = hie ; hrc = 1 ; hfc = - (1+ hfe ) ; hoc = hoe
CB ↔ CE
h hie hoe −h hoe
• hib = 1+hie ; hib = 1+h - hre ; hfb = 1+hfe ; hob = 1+h
fe fe fe fe
Specifications of An amplifier :-
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 116 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) EDC & Analog Electronics Formula Sheet
−hf Av .Zi AI .ZL AIs .ZL
• AI = Zi = hi + hr AI ZL Avs = = =
1+h0 ZL Zi +Rs Zi +Rs Rs
∆I ∆I ∆IC
• For S = ∆I C � S ′ = ∆V C � S ′′ = ∆β V
�
Co VB0,β BE IC0,β BE,ICo
1+β
• For fixed bias S = dI =1+β
1−β B
dIC
1+β 1+β
• Collector to Base bias S = RC 0 < s < 1+ β = RC + RE
1+β 1+β� �
RC +RB RC + RE + RB
1+β Rth
• Self bias S = RE ≈ 1+ βR E > 10 R 2
1+β Re
RE +Rth
Vcc Rth V R
• R1 = Vth
; R 2 = V cc−Vth
cc th
VCC
• For thermal stability [ Vcc - 2Ic (R C + R E )] [ 0.07 Ico . S] < 1/θ ; VCE <
2
g m = |IC | / VT
rb′ e = hfe / g m
rb′ b = hie - rb′ e
rb′ c = rb′ e / hre
g ce = hoe - (1+ hfe ) g b′ c
For CE :-
g ′ gm
• fβ = 2π(Cb +e C =
e c) hfe 2π(Ce + Cc )
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 117 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) EDC & Analog Electronics Formula Sheet
1 gb′e
• fT = hfe fβ ; fH = = 2πC C = Ce + Cc (1 + g m R L )
C 2π rb′e
fT = S.C current gain Bandwidth product
fH = Upper cutoff frequency
For CC :-
1+gm RL gm fT Ce gm + gb′e
• fH = ≈ = =
2πCL RL 2πCL CL 2π(CL + Ce )
For CB:-
1+ hfe
• fα = 2πr = (1 + hfe ) fβ = (1 + β) fβ
b′ e (CC + Ce )
β
• fT = f fα > fT > fβ
1+β α
αI ICo = αN IEo
Multistage Amplifiers :-
fL
• fH * = fH √21/n − 1 ; fL∗ =
�21/n −1
0.35 0.35
• Rise time t r = =
fH B.W
• t ∗r = 1.1 2 2
�t r1 + t r2 + ⋯
1 1 1
• = 1.1 � 2 + +⋯
f∗H f H1 f2H2
Differential Amplifier :-
α0 |IEE | I
• gm = = 4VC = g m of BJT/4 α0 → DC value of α
4VT T
h R
• CMRR = R fe+he ; R e ↑ , → Zi ↑ , Ad ↑ & CMRR ↑
s ie
Darlington Pair :-
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 118 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) EDC & Analog Electronics Formula Sheet
• AI = (1 + β1 ) (1 + β2 ) ; Av ≈ 1 ( < 1)
(1+hfe )2 Re2
• Zi = 1+h Ω [ if Q1 & Q 2 have same type ] = AI R e2
fe hoc Re2
R 2h
• R o = (1+hs 2 + 1+hie
fe ) fe
• g m = (1 + β2 ) g m1
• B.W = f0 /Q
∆BW
• fL = f 0 -
2
∆BW
• fH = f0 +
2
• For double tuned amplifier 2 tank circuits with same f0 used . f0 = �fL fH .
2 1 𝑊𝑊
• iD = K ′n [ (VGS - Vt ) VDS - VDS ] � � → triode region ( VDS < VGS - Vt )
2 𝐿𝐿
K ′n = µn Cox
1 2 𝑊𝑊
• iD = K ′n � � [ VDS ] → saturation
2 𝐿𝐿
1
• rDS = 𝑊𝑊 → Drain to source resistance in triode region
K′n � �(VGS − Vt )
𝐿𝐿
PMOS :-
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 119 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) EDC & Analog Electronics Formula Sheet
• Device operates in similar manner except VGS , VDS, Vt are –ve
• iD enters @ source terminal & leaves through Drain .
𝑊𝑊 2 1
iD = K ′p � � [(VGS − Vt )2 - VDS ] K ′p = µp Cox
𝐿𝐿 2
• NMOS PMOS
1 𝑊𝑊
∴ IDSS = K ′n � � Vt2 .
2 𝐿𝐿
MOSFET as Amplifier :-
𝑣𝑣d
• 𝑣𝑣gs
= - gm RD
gm
• Unity gain frequency fT = 2π(C
gs +Cgd )
JFET :-
• VGS ≤ Vp ⇒ iD = 0 → Cut off
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 120 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) EDC & Analog Electronics Formula Sheet
• Vp ≤ VGS ≤ 0, VDS ≤ VGS - Vp
2
𝑉𝑉𝐺𝐺𝐺𝐺 𝑉𝑉𝐷𝐷𝐷𝐷 𝑉𝑉
iD = IDSS �2 �1 − 𝑉𝑉𝑝𝑝
� �−𝑉𝑉 �− � 𝑉𝑉𝐷𝐷𝐷𝐷 � � � → Triode
𝑝𝑝 𝑝𝑝
2
𝑉𝑉 I
iD = IDSS �1− 𝐺𝐺𝐺𝐺 � ⇒ VGS = Vp �1−� 𝐷𝐷 �
𝑉𝑉𝑝𝑝 I DSS
2IDSS 𝑉𝑉 2I I
� → Saturation
gm = �1− 𝐺𝐺𝐺𝐺 � = DSS � 𝐷𝐷
|Vp | 𝑉𝑉 𝑝𝑝 |V | I
p DSS
Zener Regulators :-
Vi − Vz
• For satisfactory operation Rs
≥ IZmin + ILmax
Vsmin − Vz0 − IZmin rz
• R Smax = IZmin + ILmax
• For finding min R L take Vs min & Vzk , Izk (knee values (min)) calculate according to that .
−1
• ⇒ V0 = ∫ Vi dt → LPF acts as integrator ;
RC
−R −L dvi
• ⇒ V0 = ∫ 𝑉𝑉i dt ; V0 = (HPF)
L R dt
−1 dvi
• For Op-amp integrator V0 = ∫ 𝑉𝑉i dt ; Differentiator V0 = - τ
τ dt
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 121 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) EDC & Analog Electronics Formula Sheet
𝑉𝑉
• V0 = -η VT ln �𝑅𝑅I𝑖𝑖 �
0
• V0 = - VBE
𝑉𝑉
= - η VT ln �𝑅𝑅I 𝑠𝑠 �
𝐶𝐶0
1 𝑉𝑉
• Error in differential % error = � 𝑐𝑐 �× 100 %
CMRR 𝑉𝑉𝑑𝑑
Power Amplifiers :-
B 2 B21
• Fundamental power delivered to load P1 = � 21 � R L = RL
√ 2
𝐵𝐵12 𝐵𝐵22
• Total Harmonic power delivered to load PT = � 2 + 2
+ ⋯ . . � 𝑅𝑅𝐿𝐿
𝐵𝐵 2 𝐵𝐵 2
= P1 �1 + �𝐵𝐵2 � + �𝐵𝐵3 � + … … �
1 1
= [ 1+ D2 ] P1
B
Where D = �+D22 + ⋯ . . +D2n Dn = Bn
1
D = total harmonic Distortion .
Class A operation :-
• o/p IC flows for entire 3600
• ‘Q’ point located @ centre of DC load line i.e., Vce = Vcc / 2 ; η = 25 %
• Min Distortion , min noise interference , eliminates thermal run way
• Lowest power conversion efficiency & introduce power drain
• PT = IC VCE - ic Vce if ic = 0, it will consume more power
• PT is dissipated in single transistors only (single ended)
Class B:-
• IC flows for 1800 ; ‘Q’ located @ cutoff ; η = 78.5% ; eliminates power drain
• Higher Distortion , more noise interference , introduce cross over distortion
• Double ended . i.e ., 2 transistors . IC = 0 [ transistors are connected in that way ] PT = ic Vce
• PT = ic Vce = 0.4 P0 PT → power dissipated by 2 transistors .
Class AB operation :-
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 122 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) EDC & Analog Electronics Formula Sheet
Oscillators :-
1 29
• For RC-phase shift oscillator f = hfe ≥ 4k + 23 + where k = R c /R
2πRC √6+4K k
1
f= μ > 29
2πRC√6
1
• For op-amp RC oscillator f = | Af | ≥ 29 ⇒ R f ≥ 29 R1
2πRC√6
Hartley Oscillator :-
1 L
f= |hfe | ≥ L2
2π�(L1 +L2 )C 1
L
| μ | ≥ L2
1
L2
|A| ≥
L1
↓
Rf
R1
Colpits Oscillator :-
1 C
f= C C
|hfe | ≥ C1
2π�L 1 2 2
C1 +C2
C
| μ | ≥ C1
2
C
| A | ≥ C1
2
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 123 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Digital Electronics Formula Sheet
Digital Electronics
IOH IOL
• Fan out of a logic gate = IIH
or IIL
• Noise margin : VOH - VIH or VOL - VIL
I +I
• Power Dissipation PD = Vcc Icc = Vcc � 𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶 � I𝐶𝐶𝐶𝐶𝐶𝐶 → Ic when o/p low
2
I𝐶𝐶𝐶𝐶𝐶𝐶 → Ic when o/p high .
• TTL , ECL & CMOS are used for MSI or SSI
• Logic swing : VOH - VOL
• RTL , DTL , TTL → saturated logic ECL → Un saturated logic
• Advantages of Active pullup ; increased speed of operation , less power consumption .
• For TTL floating i/p considered as logic “1” & for ECL it is logic “0” .
• “MOS” mainly used for LSI & VLSI . fan out is too high
• ECL is fastest gate & consumes more power .
• CMOS is slowest gate & less power consumption
• NMOS is faster than CMOS .
• Gates with open collector o/p can be used for wired AND operation (TTL)
• Gates with open emitter o/p can be used for wired OR operation (ECL)
• ROM is nothing but combination of encoder & decoder . This is non volatile memory .
• SRAM : stores binary information interms of voltage uses FF.
• DRAM : infor stored in terms of charge on capacitor . Used Transistors & Capacitors .
• SRAM consumes more power & faster than DRAM .
• CCD , RAM are volatile memories .
• 1024 × 8 memory can be obtained by using 1024 × 2 memories
• No. of memory ICs of capacity 1k × 4 required to construct memory of capacity 8k × 8 are “16”
DAC ADC
1
• FSV = VR �1 − � * LSB = Voltage range / 2n
2𝑛𝑛
step size VR /2n 1 FSV
• Resolution = = 1 = × 100% * Resolution =
FSV VR �1− n � 2n −1 2n −1
2
1 1 V
• Accuracy = ± LSB = ± n+1 * Quantisation error = 2nR %
2 2
• Analog o/p = K. digital o/p
AND OR
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 124 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Digital Electronics Formula Sheet
• Flash Type ADC : 2n−1 → comparators
2n → resistors
2n × n → Encoder
Fastest ADC :-
Flip Flops :-
• a(n+1) = S + R′ Q
=D
= JQ′ + K ′ Q
= TQ′ + T ′ Q
Excitation tables :-
S R J K D T
0 0 0 x 0 0 0 x 0 0 0 0 0 0
0 1 1 0 0 1 1 x 0 1 1 0 1 1
1 0 0 1 1 0 x 1 1 0 0 1 0 1
1 1 x 0 1 1 x 0 1 1 1 1 1 0
Combinational Circuits :-
Multiplexer :-
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 125 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Digital Electronics Formula Sheet
• 2n i/ps ; 1 o/p & ‘n’ select lines.
• It can be used to implement Boolean function by selecting select lines as Boolean variables
• For implementing ‘n’ variable Boolean function 2n × 1 MUX is enough .
• For implementing “n + 1” variable Boolean 2n × 1 MUX + NOT gate is required .
• For implementing “n + 2” variable Boolean function 2n × 1 MUX + Combinational Ckt is
required
• If you want to design 2m × 1 MUX using 2n × 1 MUX . You need 2m−n 2n × 1 MUXes
Decoder :-
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 126 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Microprocessors Formula Sheet
Microprocessors
1
• Clock frequency = crystal frequency
2
• Hardware interrupts
TRAP (RST 4.5) 0024H both edge level
RST 7.5 → Edge triggered 003CH
RST 6.5 0034 H
RST 5.5 level triggered 002C
INTR Non vectored
0 0 Halt
0 1 write
1 0 Read
1 1 fetch
• HOLD & HLDA used for Direct Memory Access . Which has highest priority over all interrupts .
Flag Registers :-
S Z X AC X P X CY
• Sign flag :- After arthematic operation MSB is resolved for sign flag . S = 1 → -ve result
• If Z = 1 ⇒ Result = 0
• AC : Carry from one stage to other stage is there then AC = 1
• P : P =1 ⇒ even no. of one’s in result .
• CY : if arthematic operation Results in carry then CY = 1
• For INX & DCX no flags effected
• In memory mapped I/O ; I/O Devices are treated as memory locations . You can connect max of
65536 devices in this technique .
• In I/O mapped I/O , I/O devices are identified by separate 8-bit address . same address can be used
to identify i/p & o/p device .
• Max of 256 i/p & 256 o/p devices can be connected .
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 127 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Microprocessors Formula Sheet
• 8155 → programmable peripheral Interface with 256 bytes RAM & 16-bit counter
• 8255 → Programmable Interface adaptor
• 8253 → Programmable Interval timer
• 8251 → programmable Communication interfacing Device (USART)
• 8257 → Programmable DMA controller (4 channel)
• 8259 → Programmable Interrupt controller
• 8272 → Programmable floppy Disk controller
• CRT controller
• Key board & Display interfacing Device
RAL :- Each bit shifted to adjacent left position . D7 becomes CY & CY becomes D0 .
• When CALL executes , μp automatically stores * Programmer use PUSH to save the contents
16 bit address of instruction next to CALL on the rp on stack
Stack
• CALL executed , SP decremented by 2 * PUSH executes “SP” decremented by “2” .
• RET transfers contents of top 2 of SP to PC * same here but to specific “rp” .
• RET executes “SP” incremented by 2 * same here
CALL Instruction
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 128 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Microprocessors Formula Sheet
CZ → Call on Zero ; CNZ call on non zero
CP → Call on +ve
RET : - 10 T
RC : - 6/ 12 ‘T’ states
Jump Instructions :-
JMP → 10 T
JZ → Jump on zero
JP → Jump on Positive
JM → Jump on Minus
• PCHL : Move HL to PC 6T
• PUSH : 12 T ; POP : 10 T
• SHLD : address : store HL directly to address 16 T
• SPHL : Move HL to SP 6T
• STAX : R p store A in memory 7T
• STC : set carry 4T
• XCHG : exchange DE with HL “4T”
• For “AND “ operation “AY” flag will be set & “CY” Reset
• For “CMP” if A < Reg/mem : CY → 1 & Z → 0 (Nothing but A-B)
A > Reg/mem : CY → 0 & Z → 0
A = Reg/mem : Z → 1 & CY → 0 .
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 129 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Microprocessors Formula Sheet
• “DAD” Add HL + RP (10T) → fetching , busidle , busidle
• DCX , INX won’t effect any flags . (6T)
• DCR, INR effects all flags except carry flag . “Cy” wont be modified
• “LHLD” load “HL” pair directly
• “ RST “ → 12T states
• SPHL , RZ, RNZ …., PUSH, PCHL, INX , DCX, CALL → fetching has 6T states
• PUSH – 12 T ; POP – 10T
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 130 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Electronics Formula Sheet
Power electronics:
3.SERIES OPERATION:
C C
T1 T2
𝑏𝑏𝑏𝑏−𝑉𝑉𝑠𝑠𝑛𝑛𝑉𝑉
→ Static equalizing Resistance Rs = (𝑛𝑛−1)∆
𝐼𝐼𝐼𝐼
(n−1)∆ Q
→ Dynamic equalizing capacitance C =
n Vbm−Vs
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 131 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Electronics Formula Sheet
V0
Average output current, I0 =
𝑅𝑅
V2or / R Vor
pf= p.f =
Vs Is Vs
3. Single Phase Half wave rectifier R.L load and free wheeling Diode:
m V
Average output voltageV0 = � 2π � [ 1 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶]
1
1
r.m.s output voltageVor = Vm / (2 √π ) �π − α + (sin 2α)�2
2
2π +θ1 −β
Circuit turn off time, t c = , θ1 = Sin−1 (𝐸𝐸/𝑉𝑉𝑚𝑚 ) and θ2 = 1800 - θ1
ω
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 132 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Electronics Formula Sheet
1
Average Output currentI0 = � � [𝑉𝑉𝑚𝑚 (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) − 𝐸𝐸(𝛽𝛽 − 𝛼𝛼)]
2𝜋𝜋𝜋𝜋
I2 or R + I0 E
Supply power factor, pf = Vs Ior
π−α
Circuit turn off time t c =
ω
2Vm cos α
Average output voltage , V0 =
π
2Vm cos α
Average output voltage , V0 =
π
Vm
Average output voltage V0 = π
[1+cos α]
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 133 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Electronics Formula Sheet
1
1 2
r.m.s output voltageVor = Vs / (√π ) �π − α + (sin 2α)�
2
3 3√3
Average output voltage V0 = Vml cos α= Vmp cos α
2π 2π
3
voltage V0 Average output = Vml cos α
π
1
3 π √3 2
r.m.s output voltageVor = VML � � + 2 (cos 2α)�
2π 3
𝟑𝟑
𝐢𝐢𝐬𝐬= 𝐢𝐢𝐨𝐨 �𝟐𝟐
3
voltage V0 Average output = Vml (1+cos α)
2π
1
VML 3 2π √3 2
r.m.s output voltageVor = � � + (1 + cos 2α)�
2 π 3 2
11. For a 3-∅ converter , The inductance of source results in an lesser value of voltage
3√6 3ωLs
V0 = π
Vph cos α - π
I0
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 134 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Electronics Formula Sheet
CHOPPERS:
a.STEP UP CHOPPER:
T
Duty cycle, = � on �(T � = (Ton / T)
on + Toff )
VS
Average output voltage across load ,V0 = 1−α
(Imin +Imax )
Energy supplied by inductor = Wout = (𝑉𝑉0 − 𝑉𝑉𝑠𝑠 ) 2
x ToFF
T
Duty cycle,=� on �(T � = (Ton / T)
on + Toff )
VS
Average output current through load,𝐼𝐼0 =𝛂𝛂 R
√α Vs
Rms value of thyristor current = R
R
Effective input resistence of chopper=
α
Ton
−
Vs /R [e Ta −1]
Imn = T - (E/R)
−
[e Ta −1]
Ton Toff
− −
�1−e Ta ��1−e Ta �
Vs
Ripple ∆I = R
� T �
−
[1−e Ta ]
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 135 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Electronics Formula Sheet
αT (1−α)T
− −
�1−e Ta ��1−e Ta �
Per unit Ripple = T
−
[1−e Ta ]
A.C.ripple voltage 1
Ripple factor = = �� � − 1
D.C voltage α
Cvs −(−vs )
The output current , I0 =
2tc
I0 tc V 2
where C = , L ≥ � S� C
vs I0
t1 = π√LC
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 136 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Electronics Formula Sheet
INVERTERS:
2Vs
V0 = ∑∞
n=1,3 sin nωt
nπ
2Vs
i0 = ∑∞
n=1,3 Sin(nωt − ∅n )
nπZn
4Vs
V0 = ∑∞
n=1,3 nπ
sin nωt
4Vs
i0 = ∑∞
n=1,3 sin (nωt - ∅n )
nπZn
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 137 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Electronics Formula Sheet
−1 nωL−1/nωc
∅n = tan � �
R
�V2or −V21
=
V1
Vn
Distortion factor of nth harmonic is defined as V 2
1 .n
4Vs nπ
Vab = ∑∞
n=1,3 Cos Sin n(ωt + π/6)
nπ 6
4Vs nπ
Vbc = ∑∞
n=1,3 Cos Sin n(ωt - π/2)
nπ 6
4Vs nπ
Vca = ∑∞
n=1,3 Cos Sin n(ωt + 5π/6)
nπ 6
0.8165 Vs
Vph = = 0.4714 Vs
√3
2Vs nπ π
Va0 = ∑∞
n=1,3 nπ
Cos Sin n(ωt+ )
6 6
2Vs nπ π
Vb0 = ∑∞
n=1,3 nπ
Cos Sin n(ωt - )
6 2
2Vs nπ 5π
Vc0 = ∑∞
n=1,3 nπ
Cos Sin n(ωt+ )
6 6
1 2π/3 Vs 2
�Vph = ∫0 �2� d(ωt) = Vs �1/6
π
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 138 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Electronics Formula Sheet
Vor = Vs �2d/π
4V
V0 = ∑∞ s
n=1,3( nπ Sin nπ/2. sin nd) sin(nωt)
↓
Maximum value of nth harmonic
To eliminate nth harmonic , nd = π
i.e., width of the pulse = 2d = 2π/n
Vor = √2 d/π
8Vs nd
V0 = ∑∞n=1,3 nπ sin nγ sin sin (nωt)
2
AC VOLTAGE CONTROLLERS:
VC = ∑ω ω
n=1,3,5 An sin nωt + ∑n=1,3,5 Bn cos nωt d(ωt)
Vm sin(𝑛𝑛+1)𝛼𝛼 sin(𝑛𝑛−1)𝛼𝛼
Where An = π
� (𝑛𝑛+1) − (𝑛𝑛−1) �
Vm cos(𝑛𝑛+1)𝛼𝛼−1 sin(𝑛𝑛+1)𝛼𝛼−1
Bn = π
� (𝑛𝑛+1) − �
(𝑛𝑛−1)
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 139 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Electronics Formula Sheet
Vm 1 1/2
Vor = �(𝜋𝜋 − 𝛼𝛼) + 2 sin 2𝛼𝛼�
√2π
Vor
Ior = R
2 V2or V2
m
P = Ior R= R
= 2πR (π-α) + ½ sin 2α
V2 1
= πRs �(𝜋𝜋 − 𝛼𝛼) + sin 2𝛼𝛼�
2
Real power V2 /R V
Power factor = = Vor /R = Vor
Apparent power Vs or s
1/2
1 1
= � �(𝜋𝜋 − 𝛼𝛼) + sin 2𝛼𝛼��
𝜋𝜋 2
Vm Vm −𝑅𝑅
i0 = 2
sin (ωt - ∅) - 2
sin (α - ∅). exp � (𝜔𝜔𝜔𝜔 − 𝛼𝛼)�
𝜔𝜔𝜔𝜔
DC & AC DRIVES
DC Motor equations :
Z∅N 𝐏𝐏
Ea = N → rpm
60 𝐀𝐀
P
= Z∅n n → rps
A
If ωm = 2πn
ω 𝐏𝐏
Ea = Z- ∅ 2πm
𝐀𝐀
𝒁𝒁 𝑷𝑷
=� �∅ 𝝎𝝎𝒎𝒎
𝟐𝟐𝟐𝟐 𝑨𝑨
1 P
Torque T = Z∅ Ia
2π A
Z P
=� � ∅ Ia
2π A
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 140 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Electronics Formula Sheet
T = K a ∅ Ia k a = Newton meter / wb amper
∅ ∝ Ia , ∅ = c I a
Ea = k a c Ia ωm
volt sec
Ea = k1 Ia ωm k1 → motor constant
rad.amp
Te = k a ∅Ia
= k a c Ia2
Te = k1 Ia2 k1 → Nm /Amp2
Vm
Vf = π
(1+cos α2 )
1 π 2
Is rms = � ∫ I d(ωt)
2π α a
1
= Ia � (π − α)
2π
Is rms = Ia [(π − α)/2π]1/2
IF.D.R = Ia [(π + α)/2π]1/2
Ea Ia +I2a ra
= Vs Isr
Ia [Ea +Ia ra ]
=
Vs Isr
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 141 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Electronics Formula Sheet
Vm
v0 = vt = π
[1+ cos α1 ]
Vm
Vf = π
[1+cos α2 ]
Isr = Ia �(π − α)/π
2Vm
V0 = Vt = π
cos α1
2V
Vf = πm cos α2
Isr = Ia
ITr = Ia �π/2π = Ia /√2
Pf = Vt Ia / Vs Isr
3√6
V0 = Vt = Vph cos α
π
3√6
V0 = Vt = V (1 + cos α)
2π ph
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 142 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Institute of Engineering Studies (IES,Bangalore) Power Electronics Formula Sheet
Static Rotor Resistance Control:
Toff
R eff = R × 𝑇𝑇
= R × (T-Ton )/T
Leading coaching center for GATE/IES/PSU in Bangalore & All over India for Online Tests/Practice
Branches: Jayanagar & Malleshwaram Ph: 0 99003 99699 Email: gateiespsu.com@gmail.com Pg.No. 143 of 143
Site: www.GateIesPsu.com Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies
Link to Contents
Introduction
6th Edition 2011 351
Formula
Handbook
including
Engineering
Formulae,
Mathematics,
Statistics
and
Computer Algebra
http://ubuntuone.com/p/ZOF/ - pdf
Name__________________________ http://ubuntuone.com/p/dAn - print
http://ubuntuone.com/p/ZOE/ - OOo (edit)
Course__________________________
Introduction
In order to use the interactive graphs you will need to have access to Geogebra
(see 25). If you are using a MS Windows operating system and you already have
Java Runtime Environment loaded then no changes will be required to the registry.
This should mean that no security issues should be encountered. For Mac and Linux
(and for MS Windows if you have problems)
see http://www.geogebra.org/cms/en/portable
Many thanks to my colleagues at Aberdeen College for their contributions and help
in editing the handbook. Special thanks are due to Mark Perkins at Bedford College
who adopted the handbook for his students, helped to format the contents and
contributed to the contents. Without Mark's encouragement this project would
have never taken off.
If you find any errors or have suggestions for changes please contact the editor:
Peter K Nicol. (p.nicol@abcol.ac.uk) (peterknicol@gmail.com) Contents
19/01/12
351
Contents
1 Recommended Books........................................................................................................... 3
1.1 Maths........................................................................................................................... 3
1.2 Mechanical and Electrical Engineering ............................................................................3
2 Useful Web Sites..................................................................................................................4
3 Evaluation............................................................................................................................ 6
3.1.1 Accuracy and Precision................................................................................................................... 6
3.1.2 Units.................................................................................................................................................... 6
3.1.3 Rounding............................................................................................................................................ 6
4 Electrical Formulae and Constants .........................................................................................7
4.1 Basic ........................................................................................................................... 7
4.2 Electrostatics................................................................................................................ 7
4.3 Electromagnetism .........................................................................................................7
4.4 AC Circuits ...................................................................................................................8
5 Mechanical Engineering.........................................................................................................9
5.1.1 Dynamics: Terms and Equations...................................................................................................9
5.1.2 Conversions...................................................................................................................................... 9
5.2 Equations of Motion.......................................................................................................9
5.3 Newton's Second Law..................................................................................................10
5.3.1 Centrifugal Force............................................................................................................................10
5.4 Work done and Power..................................................................................................10
5.5 Energy....................................................................................................................... 10
5.6 Momentum / Angular Impulse........................................................................................11
5.7 Specific force / torque values........................................................................................11
5.8 Stress and Strain......................................................................................................... 11
5.9 Fluid Mechanics.......................................................................................................... 12
5.10 Heat Transfer............................................................................................................ 12
5.11 Thermodynamics.......................................................................................................13
6 Maths for Computing........................................................................................................... 14
6.1.1 Notation for Set Theory and Boolean Laws ..............................................................................14
7 Combinational Logic............................................................................................................ 15
7.1.1 Basic Flowchart Shapes and Symbols........................................................................................15
8 Mathematical Notation – what the symbols mean....................................................................16
8.1.1 Notation for Indices and Logarithms............................................................................................17
8.1.2 Notation for Functions....................................................................................................................17
9 Laws of Mathematics........................................................................................................... 18
9.1 Algebra – sequence of operations.................................................................................19
10 Changing the subject of a Formula (Transposition)................................................................20
11 Simultaneous Equations with 2 variables.............................................................................21
12 Matrices ......................................................................................................................... 22
13 The Straight Line ............................................................................................................. 24
14 Quadratic Equations .......................................................................................................25
15 Areas and Volumes........................................................................................................... 26
16 The Circle......................................................................................................................... 27
16.1.1 Radian Measure........................................................................................................................... 27
17 Trigonometry.................................................................................................................... 28
17.1.1 Notation for Trigonometry...........................................................................................................28
17.2 Pythagoras’ Theorem.................................................................................................28
The Triangle...................................................................................................................... 29
17.2.1 Sine Rule....................................................................................................................................... 29
17.2.2 Cosine Rule................................................................................................................................... 29
17.2.3 Area formula.................................................................................................................................. 29
17.3 Trigonometric Graphs................................................................................................30
17.3.1 Degrees - Radians Conversion..................................................................................................31
17.4 Trigonometric Identities..............................................................................................32
17.5 Multiple / double angles..............................................................................................32
Contents p1 8 Notation 1 26 Computer Input
17.6 Sinusoidal Wave........................................................................................................33
18 Complex Numbers............................................................................................................. 34
19 Vectors............................................................................................................................ 35
20 Co-ordinate Conversion using Scientific Calculators..............................................................36
21 Indices and Logs............................................................................................................... 39
21.1.1 Rules of Indices: ..........................................................................................................................39
21.1.2 Definition of logarithms................................................................................................................39
21.1.3 Rules of logarithms:..................................................................................................................... 39
21.1.4 Infinite Series................................................................................................................................ 40
21.1.5 Hyperbolic Functions .................................................................................................................. 40
21.1.6 Graphs of Common Functions...................................................................................................41
22 Calculus .......................................................................................................................... 42
22.1.1 Notation for Calculus....................................................................................................................42
22.2 Differential Calculus - Derivatives................................................................................43
22.2.1 Maxima and Minima..................................................................................................................... 45
22.2.2 Differentiation Rules..................................................................................................................... 45
22.2.3 Formula for the Newton-Raphson Iterative Process...............................................................46
22.2.4 Partial Differentiation ..................................................................................................................46
22.2.5 Implicit Differentiation..................................................................................................................46
22.2.6 Parametric Differentiation............................................................................................................46
22.3 Integral Calculus - Integrals........................................................................................47
22.3.1 Integration by Substitution..........................................................................................................48
22.3.2 Integration by Parts......................................................................................................................48
22.3.3 Indefinite Integration....................................................................................................................49
22.3.4 Area under a Curve...................................................................................................................... 49
22.3.5 Mean Value................................................................................................................................... 49
22.3.6 Root Mean Square (RMS)..........................................................................................................49
22.3.7 Volume of Revolution ..................................................................................................................50
22.3.8 Centroid.......................................................................................................................................... 50
22.3.9 Partial Fractions............................................................................................................................ 50
22.3.10 Approximation of Definite Integrals..........................................................................................51
22.3.10.1 Simpson's Rule..................................................................................................................51
22.3.10.2 Trapezium Method.............................................................................................................51
22.4 Laplace Transforms ..................................................................................................52
22.5 Approximate numerical solution of differential equations................................................53
22.6 Fourier Series. .........................................................................................................54
22.6.1 Fourier Series - wxMaxima method...........................................................................................55
23 Statistics.......................................................................................................................... 56
23.1.1 Notation for Statistics................................................................................................................... 56
23.2 Statistical Formulae...................................................................................................57
23.2.1 Regression Line ........................................................................................................................... 58
23.2.2 Tables of the Normal Distribution .............................................................................................59
23.2.3 Critical Values of the t Distribution.............................................................................................60
23.2.4 Normal Distribution Curve...........................................................................................................61
23.2.5 Binomial Theorem........................................................................................................................ 61
23.2.6 Permutations and Combinations................................................................................................61
24 Financial Mathematics.......................................................................................................62
25 Recommended Computer Programs...................................................................................63
26 Computer Input ................................................................................................................ 64
26.1 wxMaxima Input........................................................................................................ 65
26.1.1 Newton Raphson..........................................................................................................................65
26.1.2 Differential Equations................................................................................................................... 65
26.1.3 Runge-Kutta.................................................................................................................................. 65
26.2 Mathcad Input .......................................................................................................... 66
27 Using a Spreadsheet to find the ‘best fit’ formula for a set of data. ..........................................67
28 Calibration Error................................................................................................................ 68
29 SI Units - Commonly used prefixes......................................................................................69
30 Electrical Tables................................................................................................................ 69
31 THE GREEK ALPHABET...................................................................................................70
Mechanical Engineering
Electrical Engineering
Mathway Try the problem solver for algebra, trig and calculus
and it draws graphs too. See 26 for input syntax.
http://www.mathway.com
Plus Magazine Plus magazine opens a door to the world of maths, with
all its beauty and applications, by providing articles from
the top mathematicians and science writers on topics as
diverse as art, medicine, cosmology and sport. You can
read the latest mathematical news on the site every week,
browse our blog, listen to our podcasts and keep
up-to-date by subscribing to Plus (on email, RSS,
Facebook, iTunes or Twitter).
http://plus.maths.org/content/
If you come across any Engineering or Mathematics sites that might be useful
to students on your course please tell me (Peter Nicol) - p.nicol@abcol.ac.uk
-------------------------------------------------------------------------------------------------------
3.1.2 Units
Treat units as algebra -
1 2 m
for example KE = m v where m=5 kg and v=12 .
2 s
2
1
KE = ×5×kg ×
2 12×m
2
s
2
Standard workshop
1 12 ×m
KE = ×5×kg × tolerance ±0.2 mm
2 s
2
2
1 2 kg×m
KE = ×5×12 × 2
2 s
2
kg m
KE =360 2 KE =360 J
s
-------------------------------------------------------------------------------------------------------
3.1.3 Rounding
Do not round calculations until the last line.
Round to significant figures preferably in engineering form
2
d
Example: A= where d =40
4
3
A=1256.637061 A=1.256637061×10
3
A=1.257×10 rounded to 4 sig fig ( A=1257 )
1 1 1 1
Parallel Resistors = …. 8
R T R1 R2 R 3
Potential Difference V =I R V
2 V2
Power P= I V or P= I R or P= W
R
1
Frequency f= Hz
T
-------------------------------------------------------
4.2 Electrostatics
1 1 1 1
Series Capacitors = …. F
CT C1 C2 C3
A A 0r
Capacitance C= = F
d d
−12
Absolute Permittivity 0≈8.854×10 F/m
-------------------------------------------------------
4.3 Electromagnetism
IN
Magnetisation H= At/m or A/m
ℓ
l l
Reluctance S= = At/Wb or A/Wb
A o r A
−7
Absolute Permeability 0=4 ×10 H/m
--------------------------------------------------------
Contents p1 8 Notation 7 26 Computer Input
4.4 AC Circuits
Unit Symbol
Force on a conductor F =B I ℓ N
Electromotive Force E= B ℓ v V
d di
Induced emf e= N e= L V
dt dt
1
RMS Voltage V rms= ×V V rms≈0.707 V peak V
2 peak
2 V AV ≈0.637 V peak V
Average Voltage V AV = ×V peak
V s Ns I p
Transformation Ratios = =
V p N p Is
Potential Difference V =I Z V
1
Capacitive Reactance X C=
2 f C
1
Admittance Y= S
Z
Linear Angular
s= displacement (m) = angular displacement (rad)
u= initial velocity (m/s) 1= initial velocity (rad/s)
v= final velocity (m/s) 2= final velocity (rad/s)
a= acceleration 2
(m/s ) = acceleration (rad/s2)
t= time (s) t = time (s)
--------------------------------------------------------
5.1.2 Conversions
Displacement s=r
s
Velocity v=r v= =
t t
Acceleration a=r
o
o
2 radians = 1 revolution = 360 , i.e. 1 rad =
360
2 o
≈57.3 see 17.4.1
2 N
If N = rotational speed in revolutions per minute (rpm), then = rad/s
60
--------------------------------------------------------
5.2 Equations of Motion
Linear Angular
1 1
s= uvt = 12 t
2 2
1 1
s=ut a t 2 =1 t t 2
2 2
v–u 2− 1
a= =
t t
-------------------------------------------------------------
Linear Angular
∑ F =ma ∑T=I
where T = F r , I =m k 2
and k = radius of gyration
---------------------------------------------------------
5.3.1 Centrifugal Force
m v2
CF=
r
CF=m 2 r
--------------------------------------------------------
5.4 Work done and Power
Linear Angular
Work done
P=
Time taken
Power Fs P=T
=
t
=F v
--------------------------------------------------------
5.5 Energy
Linear Angular
1 1
Kinetic Energy KE= m v 2 KE= I 2
2 2
1
KE= m k 2 2
2
Linear Angular
Ft=m2 v – m 1 u Tt= I 2 2− I 1 1
F
Stress = load / area =
A
l x
Strain = change in length / original length = or =
l l
E= Stress / Strain E=
M E
Bending of Beams = =
I y R
b d3
2nd Moment of Area (rectangle) I= A h2
12
T G
Torsion Equation = =
J r L
D4 d 4
2nd Moment of Area (cylinder) J= −
32 32
--------------------------------------------------------
Thanks to Frank McClean and Scott Smith, Aberdeen College
p C2
Bernoulli’s Equation z = constant
g 2g
p 1 C 21 p 2 C 22
or z 1= z 2z F
g 2g g 2g
m
2gh –1
f
Actual flow for a venturi-meter Qactual = A1 c d
A1
A2
–1
Efunda Calculator
m
2gh –1
f
Actual flow for an orifice plate Q= A0 c d 4
D
1– 0
D1
ρV D VD
Reynold’s number Re= Re= Efunda calculator
v
4 f l v2 4 f l v2
Darcy formula for head loss h= , h= energy loss
2gd 2d
Efunda Calculator
-----------------------------------------------------------------------------------------------------
5.10 Heat Transfer
k AT 1 – T 2
Through a slab Q̇=
x
T x1 x2 1 1
Through a composite Q̇= where R= …
R k 1 k 2 h1 h2
T
Through a cylindrical pipe Q̇=
R
where
R=
1
R
ln 2
R1
R
ln 3
R2
1
2 R 1 h 1 2 k 1 2 k 2 2 R 3 h 3
------------------------------------------------------------------------------------------------------
Boyle’s Law p 1 V 1= p 2 V 2
V1 V2
Charles’s Law =
T1 T2
p1 V 1 p 2 V 2
Combined Gas Law =
T1 T2
Perfect Gas pV =m R T
Isentropic Process cP
(reversible adiabatic) pV = constant where =
cV
2 2
C C
Steady flow energy equation Q̇=ṁ h 2 – h1 2 – 1 g z 2 – z 1 Ẇ
2 2
Vapours v x= x v g
u x =u f x u g −u f
h x =h f xh g – h f or h x =h f x h f g
___________________________________________________________________
Thanks to Richard Kaczkowski and Scott Smith, Aberdeen College.
a 16 hexadecimal ( a h) a8 octal ( a o)
-----------------------------------------------------------------------------------------------
5
1015 Peta 2 50 1024 petabyte
_____________________________________________________________
6.1.1 Notation for Set Theory and Boolean Laws
[J Bird pp 377 - 396]
E universal set E
A B .b .c
A={ a , b , c …} a set A with elements a , b , c etc .a
a∈ A a is a member of A B⊂ A
A∪ B A B
Set theory Boolean
E
∪ union ∨ OR A B
A' A
Contents p1 8 Notation 14 26 Computer Input
7 Combinational Logic
A0= A A⋅0=0
A1=1 A⋅1= A
A⋅A= A A A= A
A A=0 A A=1
A= A
A⋅B=B⋅A A B= B A
De Morgan's Laws
------------------------------------------------------------------------------------------------------
7.1.1 Basic Flowchart Shapes and Symbols
______________________________________________________________
therefore
≠ not equal to
≈ approximately equal to
∞ infinity
⇒ implies
--------------------------------------------------------
8.1.1 Notation for Indices and Logarithms
1
k a k th root of a number a . 3 8=2 k a=a k .
--------------------------------------------------------
8.1.2 Notation for Functions
------------------------------------------------------------------------------------------------------
abc=abc a b c=a b c
--------------------------------------------------------
Commutative laws - for addition and multiplication
a b
a b=b a but ≠
b a
--------------------------------------------------------
Distributive laws - for multiplication and division
bc b c
a bc=a ba c =
a a a
--------------------------------------------------------
Arithmetical Identities
ab3 =ab a 22 a bb 2 =a 33 a 2 b3 ab2b3 see 21.1.6
--------------------------------------------------------
Other useful facts
a a 1
a – b=a−b =a÷b= ×
b 1 b
a−−b=a−−b=ab
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ------
a c a d b c a c ac
= × = see 22.3.8, 4
b d bd b d bd
a c a d
÷ = × MC
b d b c
------------------------------------------------------------------
Brackets come before
-------------------------------------------------------------------
Of x 2, x , sin x , e x , comes before
“square of x , sine of x
-------------------------------------------------------------------
Multiplication × comes before
-------------------------------------------------------------------
Addition comes before
Subtraction −
-------------------------------------------------------------------
left bracket
x squared
times a
plus b
right bracket
times 3
minus 5
5a - 7 + 7 = 3b + 7
You can’t move a term (or number) from one side of the equals sign to
the other.
You must UNDO it by using the correct MATHEMATICAL operation.
etc
a x 2 b
General method:
a 1 xb1 y=c1
y y2
a 2 xb 2 y=c2
y1
x x1 x2
Notation:
[ ]
1 0 0 ..
0 1 0 ..
Identity =
0 0 1 ..
. . . ..
If A=
[ a 11 a 12
a 21 a 22 ]
and B=
b 11 b12
b 21 b 22[ ]
then A B=
[ a 11b11 a 12b12
a 21b 21 a 22b22 ]
and A× B=
[ a 11 b11a 12 b 21 a 11 b 12a 12 b 22
a 21 b11a 22 b 21 a 21 b 12a 22 b 22 ] Columns A=Rows B
-------------------------------------------------------------------------------------------------------
Solution of Equations 2 x 2
If A X = B then X = A−1 B
If A= [ ]
a b
c d
−1
A =
1
[
d −b
det A −c a ]
, a d −b c≠0
where det A= ∣ ∣a b
c d
=ad −bc
--------------------------------------------------------
[ ∣ ]
a 11 a12 a 13 1 0 0
Start with a 21 a22 a 23 0 1 0 carry out row operations to:
a 31 a32 a 33 0 0 1
[ ∣ ] [ ]
1 0 0 b 11 b12 b13 b 11 b12 b13
−1
0 1 0 b 21 b22 b23 where b 21 b22 b 23 = A
0 0 1 b 31 b32 b33 b 31 b32 b33
1
or for 3x3 A−1= ×transpose of the co-factors of A [place signs!!]
det A
∣ ∣
a 11 a 12 a13
where
a
det A= a 21 a 22 a 23 =a 11 22
a 31 a 32 a33
∣a 23
a32 a 33 ∣ ∣
a a
a 31 a 33
a
∣ ∣
a
−a 12 21 23 a 13 21 22
a 31 a 32 ∣
or use Sarrus' Rule as below _ _ _
∣ ∣[ ]
a 11 a 12 a 13 a 11 a 12 a 13 a 11 a 12
det A= a 21 a 22 a 23 = a 21 a 22 a 23 a 21 a 22
a 31 a 32 a 33 a 31 a 32 a 33 a 31 a 32
+ + +
detA=a 11 a 22 a 33 a 12 a 23 a 31 a 13 a 21 a 32
−a 31 a 22 a 13 −a 32 a 23 a 11 −a 33 a 21 a 12
y2 ( x2 , y2 )
+ve gradient
dy
y1
( x1 , y1 ) -ve gradient
c
dx
x
x1 x2
y =m xc
y2 – y1 dy y 2 – y 1
m= or = . See 22.1.1 and 17.3
x 2− x 1 dx x 2− x 1
Also:
y−b=m x−a
------------------------------------------------------------------------------------------------------
x1 x2 x
Geogebra quadratic
The solutions (roots) x 1 and x 2 of the equation a x 2b xc=0 are the
value(s) of x where y=a x 2 b xc crosses the x axis.
x=
−b b – 4 a c
±
2
or x=
−b± b2 – 4 a c
2a 2a 2 a
a x 2 b xc=0
2 b c
x x =0 2
a a b
2 where c a see 22.4
b d 2= −
a 2
a 2
x d =0
2
-------------------------------------------------------------------------------------------------------
Area
length
l
V =A l
1
Triangle A= b h
h 2
r πd2
Circle A= =π r 2
4
d
C=π d =2 π r
π d2
Cylinder Total surface area = π d h2
4
side + 2 ends
h 2 π r h2 π r 2
d
d2h
V= = r 2 h
4
l πdl
h Cone Curved surface area = =π r l
2
Total surface area = r l r 2
d
d2h r2h
V= =
12 3
C
A
B D
--------------------------------------------------------
y
(x,y)
r
The equation x – a2 y – b2=r 2
b
represents a circle centre a , b
and radius r .
a x
------------------------------------------------------------------------------------------------------
16.1.1 Radian Measure
r
A radian: The angle subtended (or r
made by) an arc the same
θ
length as the radius of a circle.
Notice that an arc is curved. r
BE.com degrees and radians
c b
B C
a
=sin−1 b arcsin b the value of the basic angle whose sine function
value is b . −90o≤o≤90 o or
−
2
≤≤
2
=cos−1 b arccos b the value of the basic angle whose cosine function
value is b . 0o ≤o ≤180 o or 0≤≤
=tan−1 b arctan b the value of the basic angle whose tangent function
value is b . −90o≤ o≤90o or
−
2
≤≤
2
------------------------------------------------------------------------------------------------------
17.2 Pythagoras’ Theorem
SOHCAHTOA
H O
The other two sides have lengths
A (adjacent, or next to angle )
and O (opposite to angle ) θ
then
A
MC
O A O
sin = cos = tan = see also 20
H H A
and 13
------------------------------------------------------------------------------------------------------
[K Singh pp 187 - 192] A
c b
In any triangle ABC, where A is the
angle at A, B is the angle at B and C
is the angle at C the following hold:
B C
a
--------------------------------------------------------
17.2.1 Sine Rule
a b c
Sine Rule = =
sin A sin B sin C
y=sin x o
Calculator answer
Geogebra Sine wave slider http://www.ies.co.jp/math/java/trig/graphSinX/graphSinX.html
y=cos x o
Calculator answer
Geogebra Cosine wave slider http://www.ies.co.jp/math/java/trig/graphCosX/graphCosX.html
Calculator answer
------------------------------------------------------------------------------------------------------
17.3.1 Degrees - Radians Conversion
0, 30, 45, 60, 90, 120, 135, 150, 180, 210, 225, 240, 270, 300 315, 330, 360
2 3 5 7 5 4 3 5 7 11
0 2
6 4 3 2 3 4 6 6 4 3 2 3 4 6
r
Degrees to radians o
x ÷180×= rad r
r
o
Radians to degrees rad ÷×180=x
=1 radian
Geogebra Radians
BE degrees and radians see 5.1.2
------------------------------------------------------------------------------------------------------
sin A 1 cos A
tan A= cot A= = , (the cotangent of A )
cos A tan A sin A
--------------------------------------------------------
1 1
sec A= , (the secant of A ), cosec A= , (the cosecant of A )
cos A sin A
--------------------------------------------------------
2 2
sin 2 Acos 2 A=1
entered as sin A cos A
--------------------------------------------------------
sin −=−sin (an ODD function)
tan A−tan B
tan A− B=
1tan A tan B
---------------------------------------------------------
1
sin A cos B= sin ABsin A− B
2
1
cos Asin B= sin AB−sin A−B
2
1
cos Acos B= cos A Bcos A− B
2
1
sin Asin B= cos A−B−cos A B
2
---------------------------------------------------------
Sums to Products
R V =R sin t
Period =
2
[Frequency = 2 ]
= phase angle
= phase shift
Thanks to Mark Perkins, Bedford College
z 1 r 1 ∠1 r 1
Polar Division = = ∠1−2
z 2 r 2 ∠ 2 r 2
AB a vector
a
b
a vector in Component form (Rectangular Form)
---------------------------------------------------------
Vectors y
b x (a,b)
r bj
θ
a ai
A point a , b A vector v= a
b
or v=r
a1 b1
a b
where a= 2 and b= 2
a3 b3
. .
-------------------------------------------------------------------------------------------------------
R to P Rectangular to Polar
x
y
to r ∠ ( x jy to r ∠ )
P to R Polar to Rectangular r ∠ to
x
y
( r ∠ to x jy )
see also 17.3
x
P to R SHIFT Rec( r SHIFT , ) = out
y
Casio S-VPAM and new Texet Edit keystrokes for your calculator
R to P SHIFT Pol( x SHIFT , y ) = r out RCL tan out
Texas - 36X
Sharp Graphics
Insert the keystrokes for your calculator here (if different from above)
R to P
P to R
------------------------------------------------------------------------------------------------------
Degrees to Radians ÷180× Radians to degrees ÷×180
_____________________________________________________________
am
2. =a m− n
an
3. a m n =a mn
4.
a
m
n = a
n m 1
n
a = a
n
k
5. k a−n =
an
Also,
1
a 0=1
2
x= x = x 0.5
2 and a= a
a 1=a
n
a=b⇔ bn =a
------------------------------------------------------------------------------------------------------
21.1.2 Definition of logarithms
If N =a n then n=log a N
---------------------------------------------------------
21.1.3 Rules of logarithms:
MC
1. log A× B =log Alog B
2. log A
B
=log A – log B
3. log A n =n log A
log b N
4. log a N =
log b a
------------------------------------------------------------------------------------------------------
exp x≡e x log e x≡ln x log 10 x≡lg x
------------------------------------------------------------------------------------------------------
x x x2 x3 x 4 x5 x6 x7
e =1 ... for ∣x∣∞
1! 2! 3 ! 4 ! 5! 6! 7 !
BE exponential functions better explained
jx − jx 3 5 7
e −e x x x
sin x= =x− − ... for ∣x∣∞
j2 3! 5! 7 !
jx − jx 2 4 6
e e x x x
cos x= =1− − ... for ∣x∣∞
2 2! 4! 6!
MC pronunciation
x −x 3 5 7
e −e x x x
sinh x= =x ... “shine x”
2 3! 5! 7!
x −x 2 4 6
e e x x x
cosh x= =1 ... “cosh x”
2 2! 4! 6!
e x −e −x
tanh x= x −x “thaan x”
e e
______________________________________________________________
y = cosh x
y = ex y=x y = sinh x
y = ln x y = tanh x
y = tanh x
y = sinh x
ax
ke slider k lna x slider
a
y= b y=x 2 and y= x
x
dy
the first derivative of y where y is a function of x (Leibniz)
dx
Also see 13
d2 y dy dy
the second derivative of y w.r.t x . The of
dx 2 dx dx
∂z
the partial derivative of z w.r.t. x . ( ∂ “partial d”)
∂x
------------------------------------------------------------------------------------------------------
Integration
b
∫ f x dx the definite integral of f x from x =a to x=b
a
the area under f x between x=a and x=b
-------------------------------------------------------------------------------------------------------
BE - gentle introduction to learning Calculus discovring pi - betterexplained.com
Contents p1 8 Notation 42 26 Computer Input
22.2 Differential Calculus - Derivatives
dy
[K Singh pp 258 - 358]
dx
dy
y or f x or f ' x
dx
________________________________________________
xn n x n−1
sin x cos x
cos x −sin x
ex ex
1
ln x
x
________________________________________________
k 0
k xn k n x n−1
sin a x a cos a x
cos a x −a sin a x
ea x a ea x
a 1
ln a x =
ax x
________________________________________________
k a xbn k n a a xbn−1
k sin a xb k a cos a xb
k cosa xb −k a sin a xb
ka
k tan a xb k a sec 2 a xb= 2
cos a xb
k e axb k a e ax b e
x
gradient slider
ka
k ln a xb
a xb
________________________________________________
cos
−1 x
a
−1
a – x
2 2
, x 2a 2
tan
−1 x
a
a
a x2
2
sinh
−1
x
a
1
x2a2
cosh
−1
x
a
1
x −a
2 2
, x 2a 2
tanh
−1
x
a
a
2
a −x
2
, x 2a 2
_____________________________________________________________
Differentiation as a gradient function (tangent to a curve).
y=k x n c dy
=k n x n−1
dx
x
------------------------------------------------------------------------------------------------------
dy
+ 0 − − 0 + + 0 + − 0 −
dx
d2 y
– + ? ?
dx2
-------------------------------------------------------------------------------------------------------
22.2.2 Differentiation Rules
[K Singh pp 274 – 285]
dy dy du
= × MC
dx du dx
--------------------------------------------------------
If u and v are functions of x then:
du dv
Addition Rule D uv= =u ' v '
dx dx
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
du dv
Product Rule D uv=v u =v u ' u v ' MC
dx dx
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
du dv
–u v
Quotient Rule
D
u
v
=
dx
v 2
dx vu ' – uv '
=
v2
MC
-------------------------------------------------------------------------------------------------------
f x n
xn f x n f ' xn x n1= x n –
f ' x n
(where f ' x n ≠0 )
f x =0 when x n1=x n to accuracy required.
http://archives.math.utk.edu/visual.calculus/3/newton.5/1.html
-------------------------------------------------------------------------------------------------------
22.2.4 Partial Differentiation
[K Singh pp 695 - 704]
If z = f x , y then
dy
=
∂z
∂x Also dy = 1
dx ∂z
∂y dx
dx
dy
-------------------------------------------------------------------------------------------------------
22.2.6 Parametric Differentiation
[K Singh pp 291 - 296]
If x= f t and y=g t
dx dy
= f ' t and =g ' t
dt dt
dy
dy g ' t
=
dx f ' t
or
dy
dx
=
dt
dx
f ' t , ≠0 MC
dx
dt
dt
______________________________________________________________
dy
f ' x
dx ln f x ln y
f x
y
1
a 2− x 2
, x 2
a 2
sin−1
x
a
2
1
a x
2
1
a
tan−1
x
a
1
sinh a xb cosh a xb
a
1
cosh a xb sinh a xb
a
1
sech 2 a xb tanh a xb
a
1
x a
2 2
, x 2a 2 sinh−1
x
a
or ln x x 2a 2
1
x −a
2 2
, x 2a 2 cosh−1
a
x
or ln x x 2−a 2
2
1
a −x
2
, x 2a 2 1
a
tanh−1 x
a
or
1
ln
2 a a – x ∣
a x
∣
2
1
x −a
2
, x 2a 2 −1
a
coth −1
x
a
or
1
ln
x−a
2 a xa ∣ ∣
______________________________________________________________
Addition Rule ∫ f x g x dx=∫ f x dx∫ g x dx
-------------------------------------------------------------------------------------------------------
22.3.1 Integration by Substitution
[K Singh p 368]
∫ f g x dx MC
du du
∫ f u du where u=g x then = g ' x and dx=
dx g ' x
x=b u when x=b
∫ f x dx
a
b
=[ F x c ]a
F(b) - F(a)
= F bc – F ac
a b x
Hyperlink to interactive demo of areas by integration
http://surendranath.tripod.com/Applets/Math/IntArea/IntAreaApplet.html
Procedure y
Plot between limits - a and b
Check for roots ( R1 , R 2 .. R n ) and evaluate
+ve +ve
See Newton Raphson 22.2.3
Integrate between left limit, a , and R1 a R1 R2 b x
then between R1 and R 2 and so on to -ve
last root R n and right limit b
Add moduli of areas. (areas all +ve)
-------------------------------------------------------------------------------------------------------
22.3.5 Mean Value
[K Singh p 445]
If y= f x then y , y y = f(x)
the mean (or average) value of y
over the interval x=a to x=b is
y
b
1
y= ∫ y dx
b−a a
a b x
--------------------------------------------------------
22.3.6 Root Mean Square (RMS)
b
1 2
where y= f x
y rms= ∫
b−a a
y dx
-------------------------------------------------------------------------------------------------------
Contents p1 8 Notation 49 26 Computer Input
22.3.7 Volume of Revolution
around the x axis [J Bird pp 207-208]
b
2
V = ∫ y dx where y= f x
a
-------------------------------------------------------------------------------------------------------
22.3.8 Centroid
[J Bird pp 208 - 210]
The centroid of the area of a lamina y
bounded by a curve y= f x and
y = f(x)
limits x=a and x=b
has co-ordinates x , y .
b b
1 2
∫ x y dx ∫
2 a
y dx x Centroid = (x, y)
a
x= b and y= b
y
∫ y dx ∫ y dx
a a
a b x
------------------------------------------------------------------------------------------------------
22.3.9 Partial Fractions
[K Singh pp 397 - 402]
f x A B
≡ see 8
xa xb x a x b
f x A B C
≡
xa2 xb xa xa2 xb
f x Ax B C
2
≡ 2 2
x a xb x a x a xb
MC
-----------------------------------------------------------------------------------------------------
b−a
w= yn
n
y1 y2 y3 yn-1 yn
x1 x2 x3 xn-1 xn x w
a b
b
w
∫ f x dx≈ Area≈ 3 y 14 y 22 y 3…2 y n−14 y n y n1
a
( n is even)
b
n xn yn
Multiplier m Product m y n
1 a 1 y1 1× y 1
2 aw 4 y2 4× y 2
3 a2w 2 y3 2× y 3
. . . . .
. . . . .
. . . . .
n−1 . y n−1 2 2× y n−1
n . yn 4 4× y n
n1 b y n1 1 1× y n1
Sum =
×w =
÷3 =
---------------------------------------------------------
s
9 cos (ω t ) 2 2
s
ω2
10 1−cos(ω t)
s(s 2+ω2)
2 2 s
11 ω t sin (ω t )
s 22 2
23
12 sin (ω t)−ω t cos (ω t )
s 22 2
13 e−a t sin(ω t ) 2 2 see 14
sa
sa
14 e− a t cos(ω t) 2 2
sa
a s
15 e−a t (cos (ω t)− ω sin (ω t )) 2 2
sa
ssin cos
16 sin t φ 2 2
s
a a 22
17 e−a t + ω sin (ω t)−cos(ω t)
sa s 2 2
Contents p1 8 Notation 52 26 Computer Input
f t L[ f t]
18 sinh (βt )
s − 2
2
s
19 cosh(βt ) 2 2
s −
20 e− a t sinh(β t) 2 2
sa −
sa
21 e−a t cosh(βt ) 2 2
sa −
L [ ]
dy
dt
=s L[ y ] – y 0 where y 0 is the value of y at t=0
[ ]
2
d y dy
L 2
=s 2 L[ y ]– s y0− y ' 0 where y ' 0 is the value of at t =0
dt dt
MC Efunda Calculator Efunda - Laplace
-----------------------------------------------------------------------------------------------------
22.5 Approximate numerical solution of differential equations
[K Singh pp 630 - 655] and section 26.1
Eulers’ method
x0 y0 y ' 0 y1
------------------------------------------------------------------------------------------------------
See also K Singh pp 601 - 693 - Differential Equations
_____________________________________________________________
2
Fundamental angular frequency =
T
or
∞
f t =a 0∑ a n cosn t b n sin n t
n=1
where
T
2
1
a 0=
T
∫ f t dt mean value of f t over period T
−T
2
see 22.3.9
T
2
2
a n=
T
∫ f t cosn t dt n=1, 2, 3…
−T
2
T
2
2
b n=
T
∫ f t sin n t dt n=1, 2, 3…
−T
2
n sample size
X a population statistic
f frequency
P= X −x the probability that the population statistic equals the sample
statistic
Mean, x =
∑fx or x=
∑ xi where x i is the variate,
∑f n
f is frequency
BE - averages n is the sample size
--------------------------------------------------------
--------------------------------------------------------
=
∑ f d2
∑f
d = xi – x
--------------------------------------------------------
Table for the calculation of Sample Mean and Standard Deviation
xi f f xi x− x f x−x
2
. . . . .
. . . . .
∑ f xi = ∑ f x−x 2=
∑ f xi =
x =
n s=
∑ f x−x 2 =
n−1
--------------------------------------------------------
Coefficient of Variation
s
of a sample (as a %) ×100
x
------------------------------------------------------------------------------------------------------
Q 3−Q 1
Semi-interquartile Range SIR=
2
------------------------------------------------------------------------------------------------------
∑ y –b∑ x n ∑ xy – ∑ x ∑ y
a= b= 2 2
n n ∑ x – ∑ x
--------------------------------------------------------
Product moment coefficient of Correlation (r value)
r=
n ∑ xy – ∑ x ∑ y
−1≤r≤1
n ∑ x 2 – ∑ x
2
n ∑ y 2 − ∑ y
2
------------------------------------------------------------------------------------------------------
x−
Z Scores Z=
-------------------------------------------------------------------------------------------------------
Poisson Distribution - the probability of the occurrence of a rare event
e − x
Geogbra Poisson slider P X = x=
x!
-------------------------------------------------------------------------------------------------------
T Test 1 sample
s
Standard Error of the Mean SE x=
n
x−
T test (1 sample test) t=
SE x
---------------------------------------------------------
2 sample for n30 ( d f = n 1n 2 – 2 )
2 2
n 1 – 1 s 1n2 – 1 s 2
Pooled Standard Deviation sp=
n1n 2−2
2
−x−μ
1 2 2
y= e
2 π
±1sd≈68%
±2sd≈95 %
±3 sd≈99.7 %
Geogebra Normal Dist slider
Geogebra Skewed Dist
----------------------------------------------------------------------------
23.2.5 Binomial Theorem
n
n
x y = ∑
k=0
n n−k k
k
x y where
n
=
n!
k k ! n – k !
n! n! n!
x yn= x n x n−1 y 1 x n−2 y 2... x 1 y n−1 y n
1!n−1! 2 ! n−2! n−1! 1!
-------------------------------------------------------------------------------------------------------
23.2.6 Permutations and Combinations
n n!
No repetition Pr= order does matter
n−r !
Combinations
n n!
No repetition Cr= order doesn’t matter
r !n−r !
n nr−1!
Repetition allowed Cr= order doesn’t matter
r !r−1!
______________________________________________________________
Thanks to Gillian Cunningham, Aberdeen College.
P Principal
A Accrued amount
a Amount
-------------------------------------------------------------------------------------------------------
Financial Mathematics Formulae
r=1i
A= P 1i n A= P 1 – d n
a r n – 1 a1−r n
S n= or S n=
r−1 1−r
a 1 – r−n
(annuities) P=
r−1
BE - visual guide to interest rates
Efunda Calculator
______________________________________________________________
http://wxmaxima.sourceforge.net/wiki/index.php/Main_Page
Windows: download maxima 5.24.0 (or later version)
http://portableapps.com/node/18166 (portable application)
This program can be accessed over the web i.e. you do not need to download
it although you do usually need to be running Java Runtime Environment (free
download). GeoGebra is a dynamic mathematics software that joins geometry,
algebra and calculus. An expression in the algebra window corresponds to an
object in the geometry window and vice versa.
----------------------------------------------------------------------------------------------------
Mathcad ( £1000 approx.) MS Windows
This is the tool of choice for most engineering mathematics. Notes available.
---------------------------------------------------------------------------------------------------
Graph
free (Open Source) MS Windows
n
x 1 1
^ ^
x Calculator toolbar x
o o
5sin x 30
5sin x o30o 5*sin(x/180*%pi+
o symbol from 5sin x deg 30 deg 30/180*%pi)
(1)
drop down list
e from drop %e^( )
x x
e down list then ^ e or
or exp( ) exp( )
ln ln ln log
π pi CTRL g %pi
10××0.7 10 pi *0.7 10 CTRL g*0.7 10*%pi*0.7
sin−1 0.5
means asin(0.5) asin(0.5) asin(0.5)
arcsin(0.5)
(1) As all programs work in radians by default you must change every input
into degrees (if you have to work in degrees).
(2) Also available on toolbars.
(3) Only x allowed as variable
(4) See also 17.5
(5) In wxMaxima typing pi will produce π as a variable NOT 3.1415...
The same is true for e .
-------------------------------------------------------------------------------------------------------
26.1.1 Newton Raphson
load(newton1)
newton f x , x , x 0, p . Start with precision p=0.1 and then
p=0.01 etc. until outputs are identical to
significant figures required
---------------------------------------------------------
26.1.2 Differential Equations
see also 22.4 (2nd page)
dy
typed as ‘diff(y,x) note the apostrophe ‘ before diff
dx
d2 y
typed as ‘diff(y,x,2)
d x2
Equations; Solve ODE. Equations; Initial value problem (1) or (2).
---------------------------------------------------------
26.1.3 Runge-Kutta
Applied Maths
Definition of variables and functions
m
Example: x:3kg will read as x :=3 kg and a:5 m/s^2 as a :=5
s2
You can type a different unit in place of the box and the number will change to
satisfy the units chosen.
---------------------------------------------------------
Symbolic Maths
f x = use Boolean (bold) equals
symbolic units
Implicit multiplication: This is allowed but only with variables that cannot be
confused with units.
When editing expressions use the Ins key to change from editing to the left
to editing to the right of cursor.
Basic Procedure:-
R 2 value should lie between 0.95 and 1. The closer to 1 the better. Right
click on trendline to change to a better type.
All instructions necessary for MS Excel (E). Open Office Calc will provide the
same answers but in a slightly different format.
Mathcad and Maxima can be used but are more complicated mathematically
but will be more accurate. Geogebra can be used to match a line to data.
Input Input
Output Output
Input Input
Output Output
Input Input
-------------------------------------------------------------------------------------------------------
Thanks to Olaniyi Olaosebikan, Aberdeen College
30 Electrical Tables
Recti er E ciency
Ripple Factor
Rparallel=
Rseries=
RESISTANCE 1/
R1+R2+...
(1/R1+1/R2+...)
Lseries= Lparallel=
INDUCTANCE
L1+L2+... 1/(1/L1+1/L2+...)
Cseries=
Cparallel=
CAPACITANCE 1/
C1+C2+...
(1/C1+1/C2+...)
Z=R+jωL+1/jωC
Series
Z=
1/(1/R+1/jωL+jωC)
Parallel
MAGNETIC FIELD UNITS AND EQUATIONS
CONVER-
SYM- CGS CGS
QUANTITY SI UNIT SI EQUATION SION
BOL UNIT EQUATION
FACTOR
Magnetic Gauss 1T=
B tesla (T) B=µo(H+M) B = H+4πM
induction (G) 104 G
ampere/ H = NI/lc H = 0.4πNI/lc 1 A/m =
Magnetic Oersted
H meter ( lc - magnetic (lc - magnetic 4 π×10-3
field strength (Oe)
(A/m) path, m) path, cm) Oe
Φ = BAc
weber Maxwell Φ = BAc 1 Wb =
Magnetic flux Φ (Ac - area,
(Wb) (M) (Ac - area, cm2 ) 108 M
m2 )
M=m/V M=m/V
(m- total (m- total
ampere/ 1 A/m =
magnetic 3 magnetic
Magnetization M meter emu/cm 10-3
moment, moment,
(A/m) emu / cm3
V- volume, V- volume,
m3 ) cm3 )
Magnetic
newton/
permeability µo µo= 4π×10-7 1 - 4π×10-7
ampere2
of vacuum
L=
L=µoµN2Ac/lc =0.4πµN2Ac/lc×
(N- turns, ×10-8
Inductance L henry Ac- area, m2, henry (N- turns, 1
lc - magnetic Ac-area, cm2,
path, m) lc - magnetic
path, cm)
V= -10-8×
V= -NdΦ/dt
Emf (voltage) V volt volt ×N×dΦ/dt 1
(N- turns)
(N- turns)
MAXWELL'S EQUATIONS IN FREE SPACE (IN SI UNITS)
LAW DIFFERENTIAL FORM INTEGRAL FORM
Faraday's law
of induction
Ampere's law
NOTES: E - electric field, ρ - charge density, ε0 ≈ 8.85×10-12 - electric permittivity of free space, π ≈ 3.14159,
k - Boltzmann's constant, q - charge, B - magnetic induction, Φ - magnetic flux, J - current density, i - electric
current,
c ≈ 299 792 458 m/s - the speed of light, µ0 = 4π×10-7 - magnetic permeability of free space, ▼ - del operator (if
V is a vector function, then ▼. V - divergence of V, ▼×V - the curl of V).
Rparallel=
Rseries=
1/
RESISTANCE R1+R2+...
(1/R1+1/R2+...)
Lseries= Lparallel=
INDUCTANCE L1+L2+... 1/(1/L1+1/L2+...)
Cseries=
Cparallel=
CAPACITANCE 1/
C1+C2+...
(1/C1+1/C2+...)
1 2
Z=R+jωL+1/jωC Z R 2 ( L )
Series C
1
Z= Z
1 1 2
1/(1/R+1/jωL+jωC) ( C )
R 2
L
Parallel
MAGNETIC FIELD UNITS AND EQUATIONS
CONVER-
SYM- CGS CGS
QUANTITY SI UNIT SI EQUATION SION
BOL UNIT EQUATION
FACTOR
Magnetic Gauss 1T=
B tesla (T) B=µo(H+M) B = H+4πM
induction (G) 104 G
ampere/ H = NI/lc H = 0.4πNI/lc 1 A/m =
Magnetic Oersted
H meter ( lc - magnetic (lc - magnetic 4 π×10-3
field strength (Oe)
(A/m) path, m) path, cm) Oe
Φ = BAc
weber Maxwell Φ = BAc 1 Wb = 108
Magnetic flux Φ (Ac - area,
(Wb) (M) (Ac - area, cm2 ) M
m2 )
M=m/V M=m/V
(m- total (m- total
ampere/ 1 A/m =
magnetic magnetic
Magnetization M meter emu/cm3 10-3
moment, moment,
(A/m) emu / cm3
V- volume, V- volume,
m3 ) cm3 )
Magnetic
newton/
permeability µo µo= 4π×10-7 1 - 4π×10-7
ampere2
of vacuum
L=
2
L=μoμN Ac/lc =0.4πμN2Ac/lc×
(N- turns, ×10-8
Inductance L henry Ac- area, m2, henry (N- turns, 1
lc - magnetic Ac-area, cm2,
path, m) lc - magnetic
path, cm)
V= -10-8×
V=-N×dΦ/dt
Emf (voltage) V volt volt ×N×dΦ/dt 1
(N- turns)
(N- turns)
MAXWELL'S EQUATIONS IN FREE SPACE (IN SI UNITS)
LAW DIFFERENTIAL FORM INTEGRAL FORM
Faraday's law
of induction
Ampere's law
NOTES: E - electric field, ρ - charge density, ε0 ≈ 8.85×10-12 - electric permittivity of free space, π ≈ 3.14159,
k - Boltzmann's constant, q - charge, B - magnetic induction, Φ - magnetic flux, J - current density, i - electric
current,
c ≈ 299 792 458 m/s - the speed of light, µ0 = 4π×10-7 - magnetic permeability of free space, - del operator (if
.
V is a vector function, then V - divergence of V, ×V - the curl of V).
REFERENCES:
1. EE Information Online
800-893-2321
399
Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.clrwtr.com - Email: info@clrwtr.com
www.emersonct.com
800-893-2321
HP = E x I x 3 x Eff x PF
746 Mechanism Efficiencies
HP x 746 Acme screw with brass nut ~0.35-0.65
Motor Amps =
E x 3 x Eff x PF Acme screw with plastic nut ~0.50-0.85
Ballscrew ~0.85-0.95
Motor Amps = kVA x 1000
Chain and Sprocket ~0.95-0.98
3 xE
Preloaded Ballscrew ~0.75-0.85
Motor Amps = kW x 1000 Spur or Bevel gears ~0.90
3 x E x PF Timing Belts ~0.96-0.98
kW x 1000 Worm Gears ~0.45-0.85
Power Factor =
ExIx 3 Helical Gear (1 reduction) ~0.92