Parametric Equations:
Parametric equations express a set of related quantities as functions of an independent
parameter (often denoted as tt).
Instead of writing yy as a function of xx, we define both xx and yy in terms of a third variable
(parameter) tt:
General Form:
x=f(t),y=g(t)x = f(t), \quad y = g(t)
Where:
        xx and yy are dependent variables
        tt is the parameter (usually represents time)
Examples:
1. Circle (radius rr)
x=rcos(t),y=rsin(t),0≤t<2πx = r \cos(t), \quad y = r \sin(t), \quad 0 \le t < 2\pi
2. Parabola
x=t,y=t2⇒Eliminating t⇒y=x2x = t, \quad y = t^2 \quad \Rightarrow \text{Eliminating } t
\Rightarrow y = x^2
3. Ellipse
x=acos(t),y=bsin(t),0≤t<2πx = a \cos(t), \quad y = b \sin(t), \quad 0 \le t < 2\pi
4. Projectile Motion
x=v0cos(θ)t,y=v0sin(θ)t−12gt2x = v_0 \cos(\theta) t, \quad y = v_0 \sin(\theta) t -
\frac{1}{2}gt^2
To Convert to Cartesian Form:
Eliminate tt from the parametric equations.
Example:
x=cos(t),y=sin(t)⇒x2+y2=1x = \cos(t), \quad y = \sin(t) \Rightarrow x^2 + y^2 = 1
Let me know if you want graphs, applications, or 3D parametric forms too.
Parametric Equations:
Parametric equations express a set of related quantities as functions of an independent
parameter (often denoted as tt).
Instead of writing yy as a function of xx, we define both xx and yy in terms of a third variable
(parameter) tt:
General Form:
x=f(t),y=g(t)x = f(t), \quad y = g(t)
Where:
        xx and yy are dependent variables
        tt is the parameter (usually represents time)
Examples:
1. Circle (radius rr)
x=rcos(t),y=rsin(t),0≤t<2πx = r \cos(t), \quad y = r \sin(t), \quad 0 \le t < 2\pi
2. Parabola
x=t,y=t2⇒Eliminating t⇒y=x2x = t, \quad y = t^2 \quad \Rightarrow \text{Eliminating } t
\Rightarrow y = x^2
3. Ellipse
x=acos(t),y=bsin(t),0≤t<2πx = a \cos(t), \quad y = b \sin(t), \quad 0 \le t < 2\pi
4. Projectile Motion
x=v0cos(θ)t,y=v0sin(θ)t−12gt2x = v_0 \cos(\theta) t, \quad y = v_0 \sin(\theta) t -
\frac{1}{2}gt^2
To Convert to Cartesian Form:
Eliminate tt from the parametric equations.
Example:
x=cos(t),y=sin(t)⇒x2+y2=1x = \cos(t), \quad y = \sin(t) \Rightarrow x^2 + y^2 = 1
Let me know if you want graphs, applications, or 3D parametric forms too.