DSBDA Merge PDF
DSBDA Merge PDF
8
23
P826 [Total No. of Pages : 2
ic-
[5870] - 1149
tat
T. E. (Information Technology)
3s
DATA SCIENCE AND BIG DATA ANALYTICS
2:5
(2019 Pattern ) (Semester - II) (314452)
02 91
8:3
Time : 2½ Hours] [Max. Marks : 70
0
20
2/0 13
Instructions to the candidates:
1) Answer Q.1, or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
0
2) Neat diagrams must be drawn wherever necessary.
7/2
.23 GP
8
C
23
Q1) a) Explain Big data Ecosystem with suitable diagram. [7]
ic-
16
tat
b) Explain anatomy of File read and write in HDFS. [7]
8.2
3s
c) Write and explain any two Hadoop shell commands. [4]
.24
2:5
91
OR
49
8:3
30
Q2) a) Explain Map Reduce with proper diagram for word count example. [7]
20
8
Q3) a) Explain different steps in Data Analytics Project Life cycle [7]
23
.23
ic-
b) Draw and explain Architecture of HIVE. [7]
16
tat
c) Explain different data transformation techniques. [3]
8.2
3s
OR
.24
2:5
91
8:3
30
b) How data can be ingested in python. Write syntax in python for the
20
same. [7]
01
02
OR
.24
49
[5870] - 1149 1
P.T.O.
Q6) a) Explain different tools for data visualization. [7]
8
23
ic-
b) Explain scatter plot, histogram and heat map with example. [7]
tat
c) Write two data visualization functions from seaborn. [3]
3s
2:5
02 91
8:3
0
Q7) a) How Social Media analytics helps in value creation? Explain with suitable
20
examples. 2/0 13 [7]
0
7/2
b) Explain in brief data analytics life cycle. [7]
.23 GP
8
C
23
OR
ic-
16
tat
Q8) a) What is text mining? Draw and explain text mining architecture and its
8.2
3s
use. [7]
.24
2:5
91
b) Explain Big data analytics in research. [7]
49
8:3
30
20
CE
80
8
23
.23
ic-
16
tat
8.2
3s
.24
2:5
91
49
8:3
30
20
01
02
7/2
GP
2/0
CE
80
.23
16
8.2
.24
49
[5870] - 1149 2
Total No. of Questions : 8 SEAT No. :
8
23
PA-1508 [Total No. of Pages : 2
ic-
tat
[5926]-128
2s
T.E. (Information Technology)
0:4
02 91
DATA SCIENCE AND BIG DATA ANALYTICS
9:5
(2019 Pattern) (Semester-II) (314452)
0
30
Time : 2½ Hours]
6/0 13 [Max. Marks : 70
0
Instructions to the candidates:
1/2
.23 GP
8
C
23
4) Assume suitable data, if necessary.
ic-
16
tat
8.2
2s
ii) Explain ETL in Big data. [5]
.24
0:4
91
b) Explain Hadoop distributed file system. [8]
49
9:5
30
30
OR
01
02
ii) Explain Role Job tracker and Task Tracker in Hadoop Architecture.
6/0
[5]
CE
81
8
23
b) Explain Map Reduce with proper diagram for word count example. [8]
.23
ic-
16
tat
8.2
2s
0:4
9:5
OR
GP
6/0
Q4) a) i) Explain Mean, Mode and variance and standard deviation with
CE
P.T.O.
49
Q5) a) i) How data visualization help Big data Analytics. [4]
8
23
ii) List the conventional Data visualization tools. Explain any Two. [6]
ic-
b) Explain data visualization with the help of example? What are the
tat
advantages of data visualization? [8]
2s
OR
0:4
02 91
Q6) a) Explain any 4 Types of data visualization with example. [8]
9:5
0
b) i) Explain different data visualization tools. [6]
30
6/0 13
ii) Explain Data Visualization with Tableau. [4]
0
1/2
.23 GP
8
C
23
OR
ic-
16
tat
Q8) a) Explain four Big Data use cases. [8]
8.2
2s
b) Explain types of Mobile Analytics. [9]
.24
0:4
91
49
9:5
30
30
01
02
1/2
GP
6/0
CE
81
8
23
.23
ic-
16
tat
8.2
2s
.24
0:4
91
49
9:5
30
30
01
02
1/2
GP
6/0
CE
81
.23
16
8.2
.24
[5926]-128 2
49
Total No. of Questions : 8] SEAT No. :
8
23
P490 [Total No. of Pages : 2
ic-
[6003]-711
tat
T.E. (I.T.)
9s
1:3
DATA SCIENCE AND BIG DATA ANALYTICS
02 91
0:4
(2019 Pattern) (Semester-II) (314452)
0
31
Time : 2½ Hours]
3/0 13 [Max. Marks : 70
0
6/2
Instructions to the candidates:
.23 GP
8
C
23
3) Neat diagrams must be drawn wherever necessary.
ic-
4) Assume suitable data, if necessary.
16
tat
8.2
9s
Q1) a) Explain Google file system and its advantages. [10]
.24
1:3
91
b) Explain Hadoop distributed file system [8]
49
0:4
30
OR
31
01
Q2) a) Why map reduce is required in Hadoop? Explain the stages involved in
02
b) Describe the various types of NoSQL Databases with example and also
CE
8
23
.23
ic-
16
Q3) a) Explain Mean, Mode and variance and standard deviation with suitable
tat
8.2
example. [9]
9s
.24
1:3
0:4
OR
30
31
Q4) a) Explain Min-max scaling. For the following dataset carry out min-max
01
02
b) What is data Wrangling? Why do you need it? explain data Wrangling
3/0
methods? [8]
CE
82
.23
OR
.24
49
P.T.O.
8
Q6) a) Explain data visualization with the help of example? What are the
23
advantages of data visualization? [9]
ic-
tat
b) Explain Data Visulization with Tableau. [9]
9s
1:3
02 91
Q7) a) Explain Big Data Analytics Challenges in brief. [9]
0:4
0
b) Explain types of Mobile Analytics. [8]
31
3/0 13
OR
0
6/2
.23 GP
Q8) a) What is Porters valuation creation model? Explain porter’s value chain
analysis. [9]
E
82
8
C
23
b) What is social media analytic? Explain the process of social media data
ic-
analytic. [8]
16
tat
8.2
9s
.24
1:3
91
49
0:4
30
31
01
02
6/2
GP
3/0
CE
82
8
23
.23
ic-
16
tat
8.2
9s
.24
1:3
91
49
0:4
30
31
01
02
6/2
GP
3/0
CE
82
.23
16
8.2
.24
[6003]-711
49
2
Total No. of Questions : 8] SEAT No. :
8
23
P-7626 [Total No. of Pages : 2
ic-
[6180]-146
tat
7s
T.E. (Information Technology)
8:3
02 91
DATA SCIENCE AND BIG DATA ANALYTICS
9:5
0
(2019 Pattern) (Semester - II) (314452)
30
3/1 13
0
Time : 2½ Hours] [Max. Marks : 70
2/2
.23 GP
8
C
23
2) Figures to the right indicate full marks.
ic-
16
tat
Q1) a) Explain the process of reading and writing a file in HDFS with neat
8.2
7s
diagram. [8]
.24
8:3
91
b) List and explain any four Hadoop shell commands with syntax. [4]
49
9:5
c) Differentiate between SQL and NoSQL databases with example.What
30
30
[6]
2/2
GP
OR
3/1
Q2) a) What is the need of map reduce in Big Data? Explain the stages involved
CE
81
8
in map reduce task with a suitable example? [9]
23
.23
tat
8.2
7s
Q3) a) What is data wrangling? Why do you need it? Explain data wrangling
.24
8:3
91
methods? [9]
49
9:5
30
OR
2/2
GP
P.T.O.
Q5) a) What is Data Visualization? What are the major challenges in big data
8
visualization and how to overcome these challenges? [6]
23
ic-
b) Explain various techniques for visual data representation. [6]
tat
7s
c) Explain the following data visualization techniques. [5]
8:3
02 91
i) Candela
9:5
0
30
ii) D3.js
3/1 13
OR
0
2/2
.23 GP
Q6) a) Explain data visualization with respect to l-D, 2-D, 3-D data. [6]
E
81
8
b) Explain various analytical techniques used in big data visualization.
C
23
[6]
ic-
16
tat
c) Draw histogram with a suitable example and explain its usage. [5]
8.2
7s
.24
8:3
91
49
9:5
Q7) a) What is Porters valuation creation model? Explain porter’s value chain
30
30
analysis. [9]
01
02
OR
81
8
23
.23
Q8) a) What is text mining? Draw and explain text mining architecture and its
ic-
16
use. [8]
tat
8.2
7s
8:3
91
49
2/2
GP
3/1
CE
81
.23
16
8.2
.24
49
[6180]-146 2
Total No. of Questions : 8] SEAT No. :
8
23
PB3866 [Total No. of Pages : 2
ic-
[6262]-130
tat
3s
T.E. (Information Technology)
0:1
02 91
DATA SCIENCE AND BIG DATA ANALYTICS
9:4
0
(2019 Pattern) (Semester - II) (314452)
40
7/0 13
Time : 2½ Hours] [Max. Marks : 70
0
5/2
Instructions to the candidates:
.23 GP
8
C
23
ic-
Q1) a) Explain all the steps for writing a file in HDFS with neat diagram. [8]
16
tat
8.2
b) Describe the various types of NoSQL Databases with example and also
3s
.24
0:1
compare them. [10]
91
49
9:4
OR
30
40
Q2) a) Why map reduce is required in Hadoop? Explain the stages involved in
01
02
8
23
.23
ic-
16
3s
b) How missing values are filled in Pandas Data Frame with zeros? Assume
.24
0:1
9:4
c) Explain Min-max scaling. For the following dataset carry out min-max
30
40
OR
5/2
GP
7/0
b) What is data wrangling? Why do you need it? Explain data wrangling
16
methods? [9]
8.2
.24
49
P.T.O.
Q5) a) How Data Visualization is important in Big Data? Explain challenges to
8
23
big data visualization? [6]
ic-
b) Explain various techniques for visual data representation. [6]
tat
3s
c) Explain the following data visualization techniques. [6]
0:1
02 91
i) Google Chart API
9:4
0
40
ii) D3.js
7/0 13
OR
0
5/2
.23 GP
Q6) a) Explain data visualization with respect to l-D, 2-D, 3-D data? [6]
E
81
8
C
23
ic-
c) Draw boxplot with a suitable example and explain its usage. [6]
16
tat
8.2
3s
.24
Q7) a) What is text mining? Draw and explain text mining architecture and its
0:1
91
use. [8]
49
9:4
30
OR
7/0
CE
Q8) a) What is Porters valuation creation model? Explain porter’s value chain
81
8
23
analysis. [9]
.23
b) What is social media analytic? Explain the process of social media data. ic-
16
tat
analytic. [8]
8.2
3s
.24
0:1
91
49
9:4
30
40
01
02
5/2
GP
7/0
CE
81
.23
16
8.2
.24
[6262]-130
49