0% found this document useful (0 votes)
14 views20 pages

Practical File

The document contains a practical file for Informatics Practices, detailing various lab activities using Python libraries such as Pandas and Matplotlib, along with SQL queries. It includes code examples for creating and manipulating data frames, performing data analysis, and visualizing results through charts. Additionally, it provides SQL commands for creating tables, inserting data, and querying student information.

Uploaded by

programerayush
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
14 views20 pages

Practical File

The document contains a practical file for Informatics Practices, detailing various lab activities using Python libraries such as Pandas and Matplotlib, along with SQL queries. It includes code examples for creating and manipulating data frames, performing data analysis, and visualizing results through charts. Additionally, it provides SQL commands for creating tables, inserting data, and querying student information.

Uploaded by

programerayush
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 20

INFORMATICS PRACTICES

Practical File

Concept used: -Pandas, Matplotlib, SQL


SESSION: - 2022-2023
Class: - XII-G
Name: - Ayush Kumar
Lab Activity
Write a program in python to calculate the cube of the series values as given
- 2,5,7,4,9
Code:-
import pandas as pd #Importing pandas module
S_data = pd.Series([2,5,7,4,9])
print("Original Series data")
print(S_data)
print("Cube of Series data")
Cube_data= S_data**3
print(Cube_data)
Output: -
Lab Activity
Create a panda’s series from a dictionary of values and a Nd array
Code: -
import pandas as pd
import numpy as np
dict={
'pen':10,
'pencil':20,
'book':30,
'notebook':40
}
ser1=pd.Series(dict)
print('creating pandas series from dictionary')
print(ser1)
#usingnparray to create pandas series
arr = np.array([10,20,30,40])
ser2 = pd.Series(arr)
print('using nparray to create pandas series')
print(ser2)
Output: -
Lab Activity
Create a data frame for examination result and display row labels, column
labels data types of each column and the dimensions..
Code: -
import pandas as pd
marks={
'English': [96,86,49,85,73,62],
'Maths': [45,65,75,95,35,52],
'IP': [62,52,32,42,82,93],
'Sociology': [31,61,41,51,81,91],
'pol-science': [50,60,40,20,30,40]
}
result=pd.DataFrame(marks,index=['Vansh','Manan','Harman','Pushkar','Adit'
,'Ayush'])
print(result)
print('===============Name=============')
print(result.index)
print('============Subjects============')
print(result.columns)
print('====data types of each column====')
print(result.dtypes)
print('===========Dimension=============')
print(result.ndim)

Output: -
Lab Activity
Create a dataframe of marks and show five records from top and six records
from bottom
Code:-
import pandas as pd
dt={'English':[74,79,48,53,68,44,65,67],
'Physics':[76,78,80,76,73,55,49,60],
'Chemistry':[57,74,55,89,70,50,60,80],
'Biology':[76,85,63,68,59,79,49,69],
'IP':[82,93,69,98,79,88,77,66]}
df=pd.DataFrame(dt, index=[1201,1202,1203,1204,1205,1206,1207,1208])
print("===============All data from Dataframe================")
print(df)
print('=================5 records from top===============')
print(df.head(5))
print('=================5 records from bottom===============')
print(df.tail(6))

Output:-
Lab Activity
Given a Series, print all the elements that are above the 75th percentile.
Code:-
import pandas as pd
std_marks = [42, 12, 72, 85, 56, 100]
s = pd.Series(std_marks,index=[1201,1202,1203,1204,1205,1206])
print("the elements that are above the 75th percentile ")
print(s[s>=75])

Output: -
Lab Activity
Create a dataframe using list of tuples
Code:-
import pandas as pd
data =[
('Ayush',10,15),
('Vansh',20,25),
('Manan',30,35),
('Harman',40,45)
]
Column= ['Name','Age','Score']
dataframe=pd .DataFrame(data,columns=Column)
print(dataframe)

Output: -
Lab Activity
Write a programme to add column in dataframe
Code: -
import pandas as pd
data =[
('Ayush',10,15),
('Vansh',20,25),
('Manan',30,35),
('Harman',40,45)
]
Column= ['Name','Age','Score']
df=pd .DataFrame(data,columns=Column)
print('==========orignaldataframe==========')
print(df)
print('==========Adding column==========')
df2=df.assign(Class=[12,11,10,9])
print(df2)

Output:-
Lab Activity
Find the sum of each column, or find the column with the lowest mean.
Code: -
import pandas as pd
data = {
'a':[10,20,30,40],
'b':[2,4,6,8],
'c':[5,10,15,20]
}
df = pd.DataFrame(data)
print(df)
print('=======sum=========')
print(df.sum(axis=0))
print('=======mean========')
print(df.mean(axis=0))

Output: -
Lab Activity
Importing and exporting data between pandas and CSV file.
Code: -
import pandas as pd
import numpy as np
marks = {
"English" :[67,89,90,55],
"Maths":[55,67,45,56],
"IP":[66,78,89,90],
"Chemistry" :[45,56,67,65],
"Biology":[54,65,76,87]
}
result = pd.DataFrame(marks,index=["Harman","Manan","Vansh","Ayush"])
print('======Export result.csv======')
print("******************Marksheet****************")
print(result)
result.to_csv("result.csv")

df = pd.read_csv("result.csv")
print('======Import result.csv======')
print(df)
Output: -
Lab Activity
Given the school result data, analyses the performance of the students
ondifferent parameters, e.g subject wise or class wise.
Code: -
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
marks = { "English" :[67,89,90,55],
"Maths":[55,67,45,56],
"IP":[66,78,89,90],
"Chemistry" :[45,56,67,65],
"Biology":[54,65,76,87]}
df = pd.DataFrame(marks,index=['Harman','Manan','Vansh','Ayush'])
df.plot(kind='bar')
plt.show()

Output: -
Lab Activity
Create dataframe and analyse, and plot appropriate charts with title and
legend.
Code: -
import matplotlib.pyplot as plt
import numpy as np
s=['1st', '2nd', '3rd']
science=[95,89,77]
commerce=[90,93,75]
humanities=[97,92,77]
x=np.arange(len(s))
plt.bar(x,science, label='Science', width=0.15, color='blue')
plt.bar(x+.25,commerce,label=' commerce', width=0.15,color='red')
plt.bar(x+.50,humanities,label='Humanities', width=0.15, color='orange')
plt.xticks(x,s)
plt.xlabel('Position')
plt.ylabel('Percentage')
plt.title('Bar Graph For Result Analysis')
plt.legend()
plt.show()

Output:-
Lab Activity
Draw two line graph where x axis show the individual classes and the y axis
show no..of student paticipatingin Arts and computer inter house event
Code: -
import matplotlib.pyplot as p
x=[4,5,6,7]
y=[6,10,14,13]
z=[10,12,18,20]
p.plot(x,y,label="Student Participating in ART Comprtition")
p.plot(x,z,label="Student Participating in COMPUTER Comprtition")
p.legend()
p.title("My First Line Chart")
p.xlabel("Class")
p.ylabel("No.of Student participtaing")
p.grid(True)
p.show()

Output:-
Lab Activity
Create a Data frame with comparison of sales month wise also draw a bar
graph
Code: -
import matplotlib.pyplot as p
import pandas as pd
dict1={
'Mid_Car':[100,80,150,170],
'Bike':[150,155,170,180],
'High_Car':[50,60,70,40]
}
df=pd.DataFrame(dict1,index=['July','August','Sept','Oct'])
df.plot(kind='bar',color=['green','red','orange'])
p.title("Comparison of Sales Month Wise",fontsize=14,color='b')
p.xlabel("Month",fontsize=14,color='blue')
p.ylabel("Sales",fontsize=14,color='blue')
p.xticks(fontsize=10,rotation=30)
p.show()

Output: -
Lab Activity
Do a hobby analysis of student and create a pie chart
Code:-
import matplotlib.pyplot as p
l=["Music","Dance","Games","Drawing","Reading"]
Student=[130,150,180,160,75]
c=["red","green","yellow","blue","orange"]
expld=(0.1,0,0,0,0)
p.figure(figsize=[8,5])
p.title("Hobby Analysis")
p.pie(Student,explode=expld,labels=l,colors=c,autopct="%.2f%
%",shadow=True,startangle=(170))
p.show()

Output:-
Lab Activity
Write quires for following: -
1. Create a student table with the student id, name, and marks as
attributes where the student id is the primary key.
Query:-
create table student(student_id int(4) primary key,name
varchar(8),marks float(3,1));

2. Insert the details of a new student in the above table.


Query:-
insert into student values(6595,'Ayush',79.9);

3. Delete the details of a student in the above table.


Query:-
4. Use the select command to get the details of the students with marks
more than 80.
Query:-
select*from studentwhere marks>80;

5. Find the min, max, sum, and average of the marks in a student marks
table.
Query:-
Select min(marks) as minimum_marks,max(marks)
asmaximum_marks,sum(marks)astotal_marks,avg(marks)
asaverage_marksFrom student_marks ;
6. Find the total number of customers from each country in the table
(customer ID, customer Name, country) using group by.
Query:-
select country, count(country) from customers group by country;

7. Write a SQL
query to
order the
(student ID,
marks) table
in descending
order of the
marks.
Query:-
select student_id,marks from student order by marks desc;
Lab

Activity
1. Write an SQL query to fetch name from table in upper case
Query:-
Select upper(name) from student;
2. Write an SQL query to print marks for Student with the first name as
Vansh and Manan from Worker table.
Query:-
Select name,marks from student where name='vansh' or
name='manan';

You might also like