Booklet #
MECE 3321
Mechanics of Solids
  Exam Booklet
                                Fundamental Equations of Mechanics of Materials
Axial Load                                                       Bending
Normal Stress                                                    Normal Stress
                                     𝑃                                                             𝑀𝑦
                            𝜎=                                                             𝜎=−
                                     𝐴                                                              𝐼
Displacement                                                     Unsymmetric bending
                             𝐿
                                    𝑃(𝑥)𝑑𝑥                                         𝑀𝑧 𝑦 𝑀𝑦 𝑧                      𝐼𝑧
                     𝛿=∫                                                 𝜎=−           +     ,          tan 𝛼 =      tan 𝜃
                                    𝐴(𝑥)𝐸                                           𝐼𝑧   𝐼𝑦                       𝐼𝑦
                            0
                                     𝑃𝐿                          Shear
                          𝛿=∑
                                     𝐴𝐸                          Average direct shear stress
                          𝛿𝑇 = 𝛼∆𝑇𝐿
                                                                                                     𝑉
                                                                                            𝜏𝑎𝑣𝑔 =
Torsion                                                                                              𝐴
Shear stress in circular shaft                                   Transverse shear stress
                                    𝑇𝜌                                                             𝑉𝑄
                           𝜏=                                                                𝜏=
                                     𝐽                                                             𝐼𝑡
                                                                 Shear Flow
where
              𝜋                                                                                      𝑉𝑄
        𝐽 = 2 𝑐4                      solid cross section                                 𝑞 = 𝜏𝑡 =
                                                                                                      𝐼
          𝜋
     𝐽 = 2 (𝑐𝑜4 − 𝑐𝑖4 )              tubular cross section
                                                                 Material Property Relations
Power
                                                                 Poisson’s ratio
                    𝑃 = 𝑇𝜔 = 2𝜋𝑓𝑇                                                                   𝜀𝑙𝑎𝑡
                                                                                           𝜐=−
                                                                                                   𝜀𝑙𝑜𝑛𝑔
Angle of Twist
                                𝐿
                                                                 Generalized Hooke’s Law
                          𝑇(𝑥)𝑑𝑥                                                     1
                     𝜙=∫                                                       𝜀𝑥 = [𝜎𝑥 − 𝜐(𝜎𝑦 + 𝜎𝑧 )]
                        0 𝐽(𝑥)𝐺                                                      𝐸
                                      𝑇𝐿                                                  1
                          𝜙=∑                                                      𝜀𝑦 =     [𝜎 − 𝜐(𝜎𝑥 + 𝜎𝑧 )]
                                      𝐽𝐺                                                  𝐸 𝑦
                                                                                          1
Average shear stress in a thin-walled tube                                         𝜀𝑧 =     [𝜎 − 𝜐(𝜎𝑥 + 𝜎𝑦 )]
                                                                                          𝐸 𝑧
                                      𝑇                                     1                      1                      1
                       𝜏𝑎𝑣𝑔 =
                                    2𝑡𝐴𝑚                            𝛾𝑥𝑦 =     𝜏 ,          𝛾𝑦𝑧 =     𝜏 ,          𝛾𝑥𝑧 =     𝜏
                                                                            𝐺 𝑥𝑦                   𝐺 𝑦𝑧                   𝐺 𝑥𝑧
Shear Flow                                                       where
                                  𝑇                                                               𝐸
                    𝑞 = 𝜏𝑎𝑣𝑔 𝑡 =                                                          𝐺=
                                 2𝐴𝑚                                                           2(1 + 𝜐)
                                                             2
                                Fundamental Equations of Mechanics of Materials
Stress in Thin-Walled Pressure Vessel                        Relations between w, V, M
                                                                               𝑑𝑉                       𝑑𝑀
Cylinder                                                                          = 𝑤(𝑥),                  =𝑉
                                                                               𝑑𝑥                       𝑑𝑥
                           𝑝𝑟              𝑝𝑟
                    𝜎1 =           𝜎2 =                      Elastic Curve
                            𝑡              2𝑡
                                                                                               1 𝑀
Sphere                                                                                          =
                                                                                               𝜌 𝐸𝐼
                                     𝑝𝑟
                       𝜎1 = 𝜎2 =                                                              𝑑4𝑣
                                     2𝑡                                                  𝐸𝐼        = 𝑤(𝑥)
                                                                                              𝑑𝑥 4
Stress Transformation Equations
                                                                                              𝑑3 𝑣
                𝜎𝑥 + 𝜎𝑦 𝜎𝑥 + 𝜎𝑦                                                          𝐸𝐼        = 𝑉(𝑥)
      𝜎𝑥 ′ =            +          cos 2𝜃 + 𝜏𝑥𝑦 sin 2𝜃                                        𝑑𝑥 3
                   2         2
                                                                                              𝑑2𝑣
                       𝜎𝑥 − 𝜎𝑦                                                           𝐸𝐼        = 𝑀(𝑥)
           𝜏𝑥 ′ 𝑦′ = −         sin 2𝜃 + 𝜏𝑥𝑦 cos 2𝜃                                            𝑑𝑥 2
                          2
Principal Stress                                             Buckling
                                                             Critical axial load
                                    𝜏𝑥𝑦
                    tan 2𝜃𝑝 =                                                                      𝜋 2 𝐸𝐼
                                (𝜎𝑥 − 𝜎𝑦 )/2                                               𝑃𝑐𝑟 =
                                                                                                   (𝐾𝐿)2
                    𝜎𝑥 + 𝜎𝑦     𝜎𝑥 − 𝜎𝑦 2                    Critical stress
           𝜎1,2 =           ± √(            2
                                       ) + 𝜏𝑥𝑦                                             𝜋2𝐸
                       2           2                                       𝜎𝑐𝑟 =                 ,      𝑟 = √𝐼/𝐴
                                                                                         (𝐾𝐿/𝑟)2
Maximum in-plane shear stress
                                                             Secant formula
                                 (𝜎𝑥 − 𝜎𝑦 )/2                                            𝑃     𝑒𝑐      𝐿  𝑃
                   tan 2𝜃𝑠 = −                                           𝜎𝑚𝑎𝑥 =            [1 + 2 sec ( √ )]
                                     𝜏𝑥𝑦                                                 𝐴     𝑟       2𝑟 𝐸𝐴
                         𝜎𝑥 − 𝜎𝑦 2
                𝜏𝑚𝑎𝑥 = √(            2
                                ) + 𝜏𝑥𝑦                      Energy Methods
                            2                                Conservation of energy
                                 𝜎𝑥 + 𝜎𝑦                                                      𝑈𝑒 = 𝑈𝑖
                       𝜎𝑎𝑣𝑔 =
                                    2
Absolute maximum shear stress
                 𝜎𝑚𝑎𝑥                                        Strain energy
     𝜏𝑎𝑏𝑠 𝑚𝑎𝑥 =         𝑓𝑜𝑟 𝜎𝑚𝑎𝑥 , 𝜎𝑚𝑖𝑛 𝑠𝑎𝑚𝑒 𝑠𝑖𝑔𝑛
                   2                                                             𝑁2𝐿
             𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛                                                  𝑈𝑖 =                𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑎𝑥𝑖𝑎𝑙 𝑙𝑜𝑎𝑑
                                                                                 2𝐴𝐸
𝜏𝑎𝑏𝑠 𝑚𝑎𝑥   =             𝑓𝑜𝑟 𝜎𝑚𝑎𝑥 , 𝜎𝑚𝑖𝑛 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑠𝑖𝑔𝑛
                  2                                                                  𝐿
                                                                                         𝑀2 𝑑𝑥
                                                                         𝑈𝑖 = ∫                𝑏𝑒𝑛𝑑𝑖𝑛𝑔 𝑚𝑜𝑚𝑒𝑛𝑡
                                                                                   0      2𝐸𝐼
                                                                                   𝐿
                                                                                       𝑓𝑠 𝑉 2 𝑑𝑥
                                                                        𝑈𝑖 = ∫                   𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑠ℎ𝑒𝑎𝑟
                                                                                 0       2𝐺𝐴
                                                                                     𝐿
                                                                                𝑇 2 𝑑𝑥
                                                                        𝑈𝑖 = ∫         𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑎𝑙 𝑚𝑜𝑚𝑒𝑛𝑡
                                                                              0 2𝐺𝐽
                                                         3
                      Geometric Properties of Area Elements
       1                    1
𝐼𝑥 =      𝑏ℎ3        𝐼𝑦 =      ℎ𝑏 3                    1 4        1
       12                   12                  𝐼𝑥 =     𝜋𝑟   𝐼𝑦 = 𝜋𝑟 4
                                                       4          4
                  1
           𝐼𝑥 =      𝑏ℎ3
                  36
        1 4              1
 𝐼𝑥 =     𝜋𝑟         𝐼𝑦 = 𝜋𝑟 4
        8                8
                                        4
                                               Average Mechanical Properties of Typical Engineering Materials
                                                                        U.S. Customary Units
                                                              Modulus                   Yield Strength Ultimate Strength      %               Coefficient of
                                                    Specific              Modulus
                                                                  of                        (ksi) σY        (ksi) σ u    Elongation Poisson's   Thermal
                            Materials               Weight               of Rigidity,
                                                             Elasticity,                                                   in 2 in.  Ratio, ν Expansion, α
                                                    (lb/in3)       3     G (103) ksi Tens Comp Shear Tens Comp Shear                                -6
                                                             E (10 ) ksi                                                  specimen              (10 )/°F
                 Aluminum      2014-T6               0.101      10.6         3.9       60     60     25  68    68     42     10       0.35        12.8
              Wrought Alloys 6061-T6                 0.098      10.0         3.7       37     37     19  42    42     27     12       0.35        13.1
                               Gray ASTM 20          0.260      10.0         3.9        -      -      -  26    96      -     0.6      0.28         6.7
              Cast Iron Alloys
                               Malleable ASTM A-197 0.263       25.0         9.8        -      -      -  40    83      -      5       0.28         6.6
                               Red Brass C83400      0.316      14.6         5.4      11.4 11.4       -  35    35      -     35       0.35         9.8
               Copper Alloys
                               Bronze C86100         0.319      15.0         5.6       50     50      -  35    35      -     20       0.34         9.6
Metallic
                Magnesium
                               AM 1004-T61           0.066       6.5         2.5       22     22      -  40    40     22      1        0.3        14.3
                   Alloy
                               Structural A-36       0.284      29.0        11.0       36     36      -  58    58      -     30       0.32         6.6
                               Structural A992       0.284      29.0        11.0       50     50      -  65    65      -     30       0.32         6.6
                Steel Alloys
                               Stainless 304         0.284      28.0        11.0       30     30      -  75    75      -     40       0.27         9.6
                               Tool L2               0.295      29.0        11.0      102 102         - 116 116        -     22       0.32         6.5
              Titanium Alloy Ti-6Al-4V                0.160      17.4        6.4       134   134    -    145   145   -       16        0.36         5.2
                               Low Strength           0.086      3.20         -         -     -    1.8     -    -    -        -        0.15         6.0
                 Concrete
Nonmetallic
                               High Strength          0.086      4.20         -         -     -    5.5     -    -    -        -        0.15         6.0
                   Plastic     Kevlar 49              0.0524     19.0         -         -     -     -    104 70 10.2         2.8       0.34          -
                 Reinforced 30% Glass                 0.0524     10.5         -         -     -     -     13   19    -        -        0.34          -
                Wood Select Douglas Fir               0.017      1.90         -         -     -     -    0.3 3.78 0.90        -        0.29          -
              Structural Grade White Spruce           0.130      1.40         -         -     -     -    0.36 5.18 0.97       -        0.31          -
                                                                                   5
                                               Average Mechanical Properties of Typical Engineering Materials
                                                                              SI Units
                                                             Modulus                    Yield Strength   Ultimate Strength      %               Coefficient of
                                                                         Modulus
                                                     Density    of                         (MPa) σY          (MPa) σ u     Elongation Poisson's   Thermal
                            Materials                                   of Rigidity,
                                                           3
                                                    (Mg/m ) Elasticity,                                                    in 50 mm. Ratio, ν Expansion, α
                                                                           G GPa       Tens   Comp Shear Tens Comp Shear                              -6
                                                              E GPa                                                         specimen              (10 )/°C
                 Aluminum      2014-T6                2.79     73.1         27         414     414 172 469 469 290             10       0.35         23
              Wrought Alloys 6061-T6                  2.71     68.9         26         255     255 131 290 290 186             12       0.35         24
                               Gray ASTM 20           7.19     67.0         27           -       -   -   179 669        -      0.6      0.28         12
              Cast Iron Alloys
                               Malleable ASTM A-197   7.28     172          68           -       -   -   276 572        -       5       0.28         12
                               Red Brass C83400       8.74     101          37          70      70   -   241 241        -      35       0.35         18
               Copper Alloys
                               Bronze C86100          8.83     103          38         345     345   -   655 655        -      20       0.34         17
Metallic
                Magnesium
                               AM 1004-T61            1.83     44.7         18         152     152    -    276   276   152      1         0.3         26
                   Alloy
                               Structural A-36        7.85     200          75         250     250    -    400   400    -       30       0.32         12
                               Structural A992        7.85     200          75         345     345    -    450   450    -       30       0.32         12
                Steel Alloys
                               Stainless 304          7.86     193          75         207     207    -    517   517    -       40       0.27         17
                               Tool L2                8.16     200          75         703     703    -    800   800    -       22       0.32         12
              Titanium Alloy Ti-6Al-4V                 4.43      120         44        924     924    -    1000 1000    -       16       0.36         9.4
                               Low Strength            2.38      22.1         -         -       -    1.8     -     -  -         -        0.15         11
                 Concrete
Nonmetallic
                               High Strength           2.37      29.0         -         -       -    5.5     -     -  -         -        0.15         11
                   Plastic     Kevlar 49               1.45      131          -         -       -     -    717   483 20.3      2.8       0.34          -
                 Reinforced 30% Glass                  1.45      72.4         -         -       -     -     90   131  -         -        0.34          -
                Wood Select Douglas Fir                0.47      13.1         -         -       -     -    2.1    26 6.2        -        0.29          -
              Structural Grade White Spruce            3.60      9.7          -         -       -     -    2.5    36 6.7        -        0.31          -
                                                                                  6
Simply Supported Beam Slopes and Deflections
                     7
Simply Supported Beam Slopes and Deflections
                     8
Cantilevered Beam Slopes and Deflections
                   9
Cantilevered Beam Slopes and Deflections
                   10
Geometric Properties of Structural Shapes
                   11
Geometric Properties of Structural Shapes
                   12
Geometric Properties of Structural Shapes
                   13
Geometric Properties of Structural Shapes
                   14
Geometric Properties of Structural Shapes
                   15
Geometric Properties of Structural Shapes
                   16
Geometric Properties of Structural Shapes
                   17
Geometric Properties of Structural Shapes
                   18
Stress Concentration Factors
      Axial Loading
             19
Stress Concentration Factors
    Torsional Loading
             20
Stress Concentration Factors
         Bending
             21