0 ratings 0% found this document useful (0 votes) 45 views 4 pages GM Chap-9.1
The document appears to be a collection of mathematical equations and identities related to trigonometry, including sine, cosine, tangent, and their relationships. It includes various formulas, identities, and examples, possibly for educational purposes. The content is fragmented and lacks coherent structure, making it challenging to extract a single clear topic.
AI-enhanced title and description
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content,
claim it here .
Available Formats
Download as PDF or read online on Scribd
Go to previous items Go to next items
Save GM chap-9.1 For Later cert tngewa wioge 10 wee, wilee ny «wow
| 16
6.8, 0 cate cae faye 4, conta =e ee 1
Sear fea ase ee as oe
fore cstece ies ag
ne = 8 ater age fete ag,
A= 68
ee, Ne SES 0 ory re
:
cst aa
a
oS
= a8
sin? A= 1-38-35
i
3
sin A=
Feta wad
ari Garter RhcartfR eget cere |
a q fase at
TMH 0 = Sioa tte we
eae soo, |
8381 sn AS, tan ARR PAT ATCA
AIM : GHA SITE, sin A=E
sin? a=ig (eons af ea]
ener | :
sR: aa 1
Sart Deke, 1
sin = ee NAT cose 0 as i .
| 4
Paid
cos 0 eft 90 | tan A= x RM, Sec? A ETA PETER |
cot = EG WHAT, cot OSG es
Bert ecw’ 2a — 1 -08r, Pie
sec B a
. aa te Ea .
Besar Ac-NS 0" nec Ya, sectA=x+1
Reger asses | ofr sat ;
rae? fy j 46 teas “
= sin? = 0 —sin' 0. TH FAT A
erunc=48-+ 1 Tai i
PG ae
erste 2 BOGS eS ema aif" = cos! @— sin © = (cos? 6)? — (sin? 8)?
nC
a = (cos? @ + sin? €) (cos @— sin’ 8)
=2xy3=N3 = 13 [> sin? 0+ cos? 0=1]
aA NB.
oo) tna adem, sind GEAR AAT
+ ofom StS, wn A=}
unt =(3) Beers oF
eyed
Pea sate
SEATTeCGH arte ots » ene
SH 3B 1 cot
ARMA : 7B ATM = cot BVI = cos” 6
= cot 8-Vsin 6 [si ‘0
I, sin? @ =
cos 8
= cot 8. sin 8 = 0) | adic, ay <4, 9h =5
HUTA CASTER, sec O=3 : 2) at 4 ABC Preremtarera sarepied, AC? = AB? + BC
al, sec? = 3? [at Fal i 1] 4, ace YAR FBC =F 43! = 16425 = Vai
a, 1+tan?@=9 oy : Sere ai
a, tn? O=9-1-8 soc 4
9 i 4_vai
a noi pom ts
4
Fiefa WA : 22. : wyFES termes wee,
— PUN CS om Pox es tg a
“
IN
Ne
oo
FR: £0, A psn
PM? = Nan + sp2
=P + Nim 14304
PM=Va=2 ; .
MPG
PARC! AABC 2% 2B = 997, ap
A Fer
TAMA: SAR, A ABC 62 25 - 99°
AB=3; BC=4
ALC AREA faze ore oe,
AC? = AB? + BC? = 3? ~ 4
=9+16=25 =75=5
AB_3
4, sinC=
4 sin 98 35 3
©AY1 NS C2, sin V1 + tan? = tan 8,
FMM : WATE = sin OT > tan
sin 0-Vsee™6 [-- 1 + tan? 0 = sec? 6]
=sin 8. sec
Sees gyal peor oe
=sin 8.59 [ secO=—5]
sin
on 9 7 m0 O= STE
4 sin OY1 + tan? 6 = tan 8. (CHITA BM)
O+cosO=1
4, (sin 0 + cos 0)? = 1?
Lp 7h, sin? 0+2 sin 0. cos 0 + cos? = 1
3, 142 sin 0cosO=1 4, 2sin0cos6
mt, tin 9 coso=$ 0
‘. 3 sin @.cos 8 =3.0=0.
. Puta 0,
GA Rr | sec 0 + cos 0=2 WA, cos 0. A FAN FH |
sec 0 + cos 0 =2
4, 1+ cos" 0-2 cos 0=0
—M, 1-coso=0
cos 0= 1,
=3, BC= 4, sinc
7, (1 -cos 0)? =0 , ‘
!
secx+tany
| ee Eee =3 St Svar rey
L+sinx-I+sinx 3-116
TEST S54 Reena Fecarer aca
4 cone
as
200 1 cance 0x 2 tan 9 a FS?
SN : lem are, c
WB _ac
= Orbe ee le
AB=YAC'-BC
1
1
1
i
1
i
i
i
'
| sinx=}.
1
1
1
1
j
1
SsinA=3 ¢
AB =AC’- BC! 3,
]
1
1
1
i
i
| sin A(eos A+1) ~ sin A(cos A+ T
1 WH: 0.
eA 09 | sin 3B + cos 3B = 1 V7, 2 sin 3B . cos 3B G4 WA
Raa
TAIT : IF; sin 3B + cos 3B = 1
1 a, (in 3B +cos 3B)? 1? [a4 ca]
| sin® 3B +2 sin 3B cos 3B + cos” 3B = |
2 sin 3B cos 3B + sin’ 3B + cos” 3B = I
2 sin 3B cos 3B +1=1
2sin 3B cos 3B=1-1=0
2 sin 3B cos 3B =0.
1
‘Feta a : 0.
»AAAAaA— IRM SH CR, cosec? 6
an ore | tov wiifewere
tan A,
Q= card SRR
ont roan
a, - i
Be sae = cance =i 1a :
1 is °
were, |
atx neon 2M
ssteata-(Gh)-Gay | ie
nome Anata gnaw AR ELE ctAl | Cy @y
|
a 1-om ene Be ee
a hohe (orton wm) | 7PMt~ Mp"
ieee: [ater
ef 98 | m= sin GR n= cos 8 RU, CHE CH, J] 2 conec?6— co @= 1. (entre)
= | Stoo Rion ers cert
Tem = See O— tan 8. [RRR
AAP : CRS SICK, m= sin @ AX n= cos 6 {«
i-m 1=sin8 Ge sing) 1 — sin 8) BC
Ne ee ore V+ sin) = sind) oe BE, cos 9 =BE
Mi=sinF _1-sing _1~sing -—1__ sine | ona anf, Gen rer aS
eiaeser plik feadto cond vieoe 0 sons 0 | g8a ag Sern goon) See AaBC
= sec 0 an d= SF Par anaan
AB+BC>AC.41, 26 “AC” AC
afLeB-sec0- tan 0. (HRI RM)
Bornete Aca s Fa] oA B
OY | tan A =F RH, cot A+ tan A= FE?
sin 6 + cos @> 1. (If)
SH 801 GFE , sec? 0 + cosec?
TRIM: STH = sec? @ + cosec? @
1 1 in” 8 + cos? @
i
]
Ve = sec? @- cosec’
i
1
| <1 sin’ 0+ cos?
|“ cos"0” Sin®O cos? Osin®@
}
i
1
]
i
FART: GlSM ICR, tan A
ene eaesen 8
= sec? 8 cosec? 6. (RT =m)
SH 831 GRINS CH, cot? A — cos? A = cot’ A. cos? A.
TET : ee C08 A~ cos? A
a0 A £08! A= sin? Ac
Tsai a7 cone = sin’ A
= 908" A(I ~ sin? A) £08" A.cos? A
sint A sin" A
cos?
= cos? agrees cot" A. cos? A = BRE
£0 A — cos? ee A. (GIA mn),
HER Hiscca- ta =38, Cag am hts
7, ee a~ oo.
PRCT (sec A + tan A) @TaT 9 aa]
TW seca
Sec? A~ tanta =. ~FloerA tan a): (a+b) (a-b)
; 2 : a, Tie leeAc ba 4 Sec? @— tan? @ = 1)
Sin? 0+ dog =|, ne
(eae Reta w:$